ANN ARBOR HISTORIC DISTRICT COMMISSION

Staff Report

ADDRESS: 606 S Ashley Street, Application Number HDC21-178

DISTRICT: Old West Side Historic District

REPORT DATE: June 10, 2021

REPORT PREPARED BY: Jill Thacher, Historic Preservation Coordinator

REVIEW COMMITTEE DATE: Monday, June 7, 2021

OWNER APPLICANT

Name: Mary Raab & John Boyer Homeland Solar, LLC

David Friedrichs

Address: 606 S Ashley St 4975 Miller Rd

Ann Arbor MI 48103 Ann Arbor, MI 48103

Phone: (734) 662-3244 (734) 790-8997

BACKGROUND: This 1 ¾ story gable-fronter features one-over-one windows, a full-width front porch with a hipped roof and round half-columns on a sculpted block masonry porch wall. It was first occupied in 1916 by George Koch, vice-president of Koch Building and Supply.

LOCATION: The property is located on the west side of South Ashley, south of West Madison and north of West Mosley. It is next door to the Washtenaw Dairy.

APPLICATION: The applicant seeks HDC approval to install a solar array of black-on-black panels on the south-facing roof of the house.

APPLICABLE REGULATIONS:

From the Secretary of the Interior's Standards for Rehabilitation:

- (2) The historic character of a property shall be retained and preserved. The removal of historic materials or alteration of features and spaces that characterize a property shall be avoided.
- (9) New additions, exterior alterations, or related new construction shall not destroy historic materials that characterize the property. The new work shall be differentiated from the old and shall be compatible with the massing, size, scale, and architectural features to protect the historic integrity of the property and its environment.
- (10) New additions and adjacent or related new construction shall be undertaken in such a manner that if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.

From the Secretary of the Interior's Guidelines for Rehabilitating Historic Buildings:

Roofs

<u>Recommended</u>: Identifying, retaining, and preserving roofs--and their functional and decorative features—that are important in defining the overall historic character of the building.

<u>Not Recommended</u>: Changing the configuration of a roof by adding new features such as dormer windows, vents, or skylights so that the historic character is diminished.

Energy Efficiency

<u>Recommended</u>: Placing a new addition that may be necessary to increase energy efficiency on non-character-defining elevations.

<u>Not Recommended</u>: Designing a new addition which obscures, damages, or destroys character-defining features.

Mechanical Equipment

<u>Recommended</u>: Providing adequate structural support for new mechanical equipment.

<u>Not Recommended</u>: Failing to consider the weight and design of new mechanical equipment so that, as a result, historic structural members or finished surfaces are weakened or cracked.

Installing a new mechanical system so that character-defining structural or interior features are radically changed, damaged, or destroyed.

From the Ann Arbor Historic District Design Guidelines (other Guidelines may apply):

Solar

<u>Appropriate</u>: Mounting solar panels at grade or on ground pole mountings. In the absence of an appropriate ground-based mounting location, panels should be mounted on side or rear facing roof surfaces.

Installing mechanical and service equipment on the roof related to the solar units and their related devices so that they are inconspicuous from the public right-of-way and do not damage or obscure character-defining features.

For sloped roof installations, mounting solar panels parallel to and within 8" of roof surface.

<u>Not Appropriate</u>: Mounting solar panels and their related devices on primary elevations or roofs that face the primary elevation or in planes that are highly visible from the street view. This location has the highest impact on the historic character of the historic building and all other options should be thoroughly explored.

Any other alteration or installation procedure that will cause irreversible changes to historic features or materials.

STAFF FINDINGS:

- 1. The application proposes to install an array of 16 solar panels on the south face of the roof of the house Black modules with black framing are appropriately proposed. The array is 2' below the roof ridge and 3' from the front (east) edge of the roof to allow roof access. The roof is black/dark gray and was installed in May 2021. The meter is located on the rear elevation. An electrical panel and AC inverter are in the basement. Because the panels are confined to the south face of the roof, are one consistent color, and cover most of the roof surface, staff believes the panels will not be a visual distraction from the historic structure.
- 2. Staff believes that the materials and design of the solar panels are compatible with the existing structure, neighboring buildings, and the surrounding historic district, and meet both the Secretary of the Interior's Standards and the *Ann Arbor Historic District Design Guidelines*.

POSSIBLE MOTIONS: (Note that the motion is only a suggestion. The Review Committee, consisting of staff and at least two Commissioners, will meet with the applicant on site and then make a recommendation at the meeting.)

I move that the Commission issue a certificate of appropriateness for the application at 606 South Ashley Street, a contributing property in the Old West Side Historic District, to install a black-on-black solar array on the south-facing roof, as proposed. The work is compatible in exterior design, arrangement, texture, material and relationship to the rest of the building and the surrounding area and meets *The Secretary of the Interior's Standards for Rehabilitation* and *Guidelines for Rehabilitating Historic Buildings*, in particular standards 2, 9 and 10 and the guidelines for roofs, energy efficiency, and mechanical systems, as well as the *Ann Arbor Historic District Design Guidelines*, particularly as they pertain to solar installations.

MOTION WORKSHEET:

I move that the Commission issue a Certificate of Appropriateness for the work at <u>606 S Ashley Street</u> in the <u>Old West Side</u> Historic District

Provided the following condition(S) is (ARE) met: 1) STATE CONDITION(s)

The work is generally compatible with the size, scale, massing, and materials and meets the Secretary of the Interior's Standards for Rehabilitation, standard(S) number(S) (circle all that apply): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

ATTACHMENTS: application, drawings, photos and technical information.

606 S Ashley Street (November 2020, courtesy Google Streetview)

HISTORIC DISTRICT COMMISSION

PLANNING AND DEVELOPMENT SERVICES

City Hall: 301 E. Huron St. Ann Arbor, MI 48104-6120 Mailing: P.O. Box 8647, Ann Arbor, MI 48107-8647

Phone: 734.794.6265 ext. 42608 Fax: 734.994.8460

ithacher@a2gov.org

	OFFICE USE ONLY
Permit Number	HDC#
	BLDG#_
	DATE STAMP

APPLICATION MUST BE FILLED OUT COMPLETELY PROPERTY LOCATION/OWNER INFORMATION NAME OF PROPERTY OWNER HISTORIC DISTRICT PROPERTY/ADDRESS CITY 606 Halley **ANN ARBOR** ZIPCODE DAYTIME PHONE NUMBER **EMAIL ADDRESS** 48103 1734) 662 - 3244 PROPERTY OWNER'S ADDRESS (IF DIFFERENT FROM ABOVE) 2273 Delaware STATE, ZIP MI 48103 PROPERTY OWNER'S SIGNATURE APPLICANT INFORMATION NAME OF APPLICANT (IF DIFFERENT FROM ABOVE) Homeland ADDRESS OF APPLICANT. STATE ZIPCODE PHONE / CELL# FAX No 48103 ÉMAIL ADDRESS APPLICANT'S SIGNATURE (if different from Property Owner) BUILDING USE - CHECK ALL ☐ SINGLE FAMILY DUPLEX D RENTAL MULTIPLE FAMILY COMMERCIAL INSTITUTIONAL PROPOSED WORK Describe in detail each proposed exterior alteration, improvement and/or repair (use additional paper, if necessary). DESCRIBE CONDITIONS THAT JUSTIFY THE PROPOSED CHANGES: For Further Assistance With Required Attachments, please visit www.a2gov.org/hdc

HISTORIC DISTRICT COMMISSION APPLICATION

FEE CHART	
DESCRIPTION	
STAFF REVIEW FEES	FEE
Application for Staff Approval	\$35.00
Work started without approvals	Additional \$50.00
HISTORIC DISTRICT COMMISSION FEES	
All other proposed work not listed below	\$100.00
Work started without approvals	Additional \$250.00
RESIDENTIAL - Single and 2-story Structure	
Addition: single story	\$300.00
Addition: taller than single story	\$550.00
New Structure - Accessory	\$100.00
New Structure – Principal	\$850.00
Replacement of single and 2-family window(s)	\$100 + \$25/window
COMMERCIAL – includes multi-family (3 or	more unit)
structures	1
Additions	\$700.00
Replacement of multi-family and commercial window (s)	\$100 + \$50/window
Replacement of commercial storefront	\$250.00
DEMOLITION and RELOCATION	I
Demolition of a contributing structure	\$1000.0
Demolition of a non-contributing structure	\$250.00
Relocation of a contributing structure	\$750.00
Relocation of a non-contributing structure	\$250.00

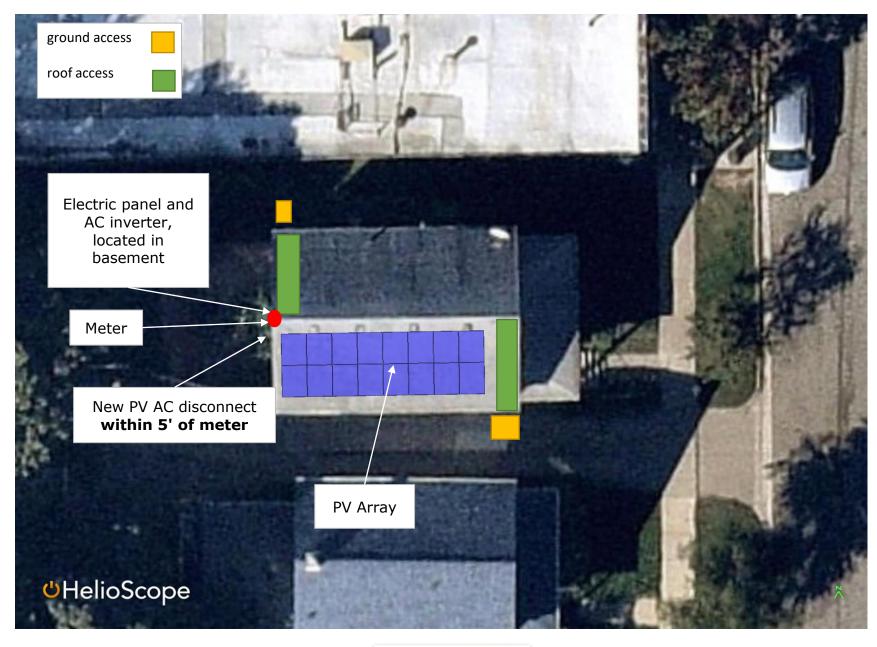
FOR COMMISSION REVIEWS:

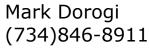
- Application withdrawals made before public notice is published will qualify for a 50% refund of the application fee.
- Application withdrawals made after public notice is sent but before the public hearing will qualify for a 25% refund of the application fee.

INSTRUCTIONS FOR SUBMITTING APPLICATIONS

All HDC applications must be signed by the property owner and the applicant, if different, with the exception of staff approvals, which may be signed by only the applicant.

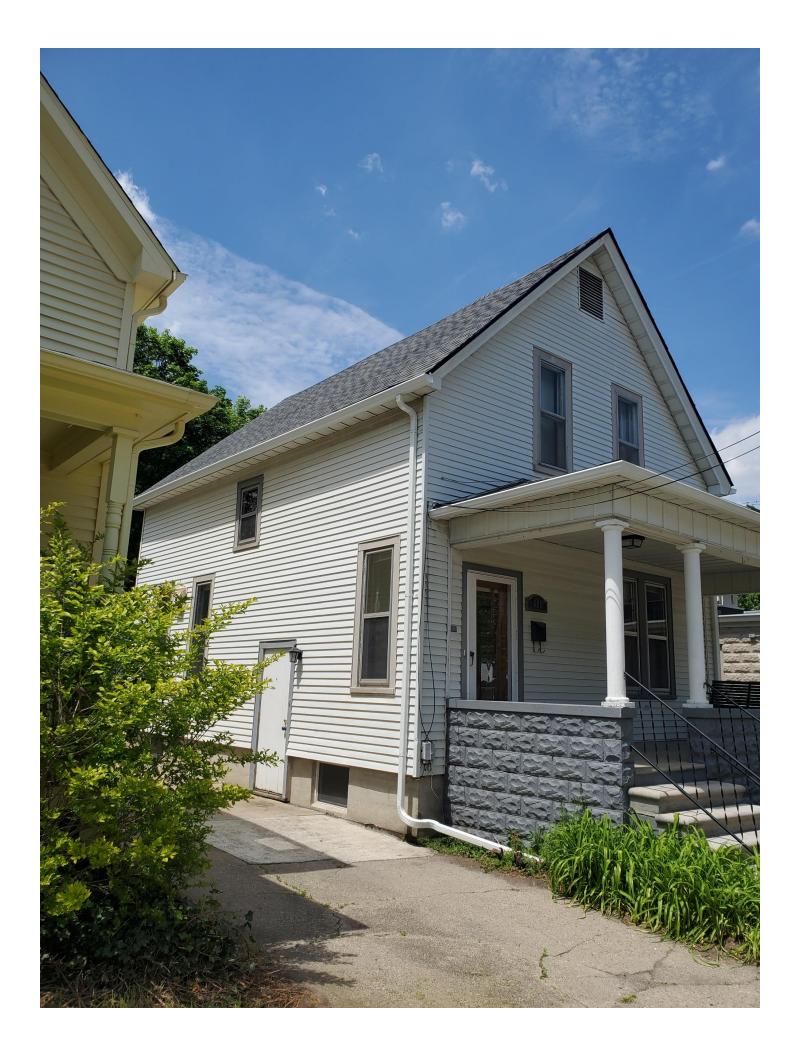
All completed HDC applications and their attachments may be submitted to Planning and Development Services by mail, in person (paper or digital), faxed, or via email to building@a2gov.org.

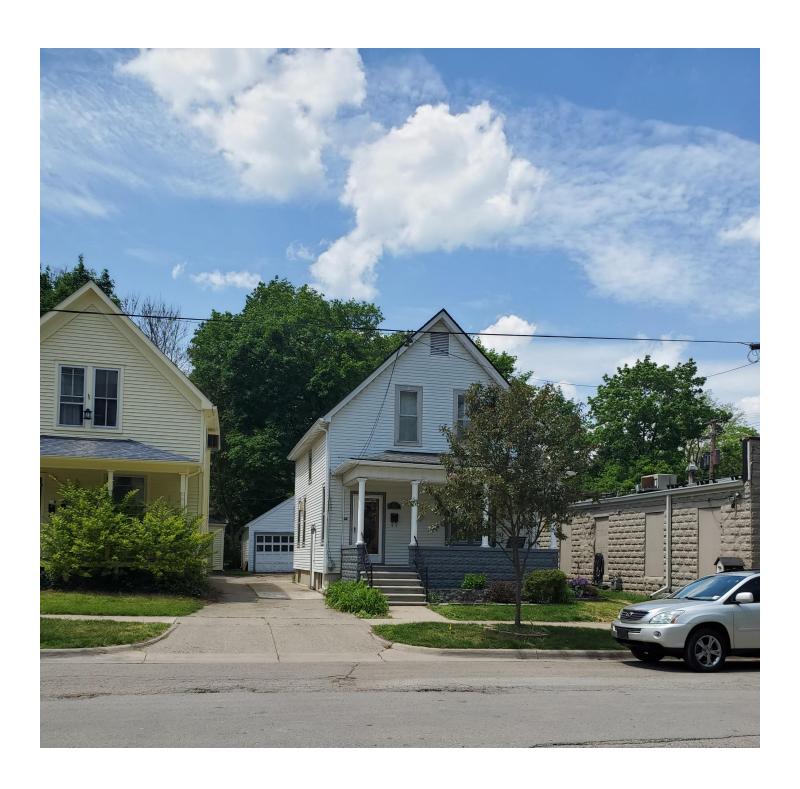

We accept CASH, CHECK, and all major credit cards. Checks should be made payable to "City of Ann Arbor"

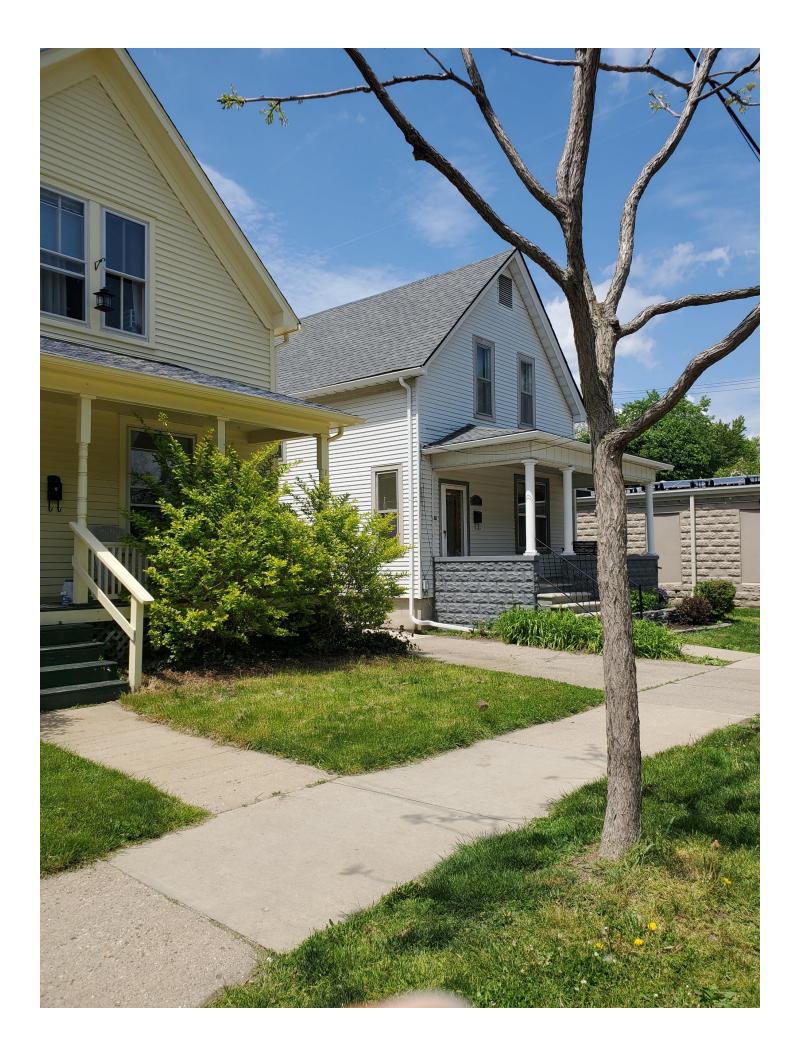

HDC applications that are incomplete or not submitted with the required documentation or payment will not be processed or approved.

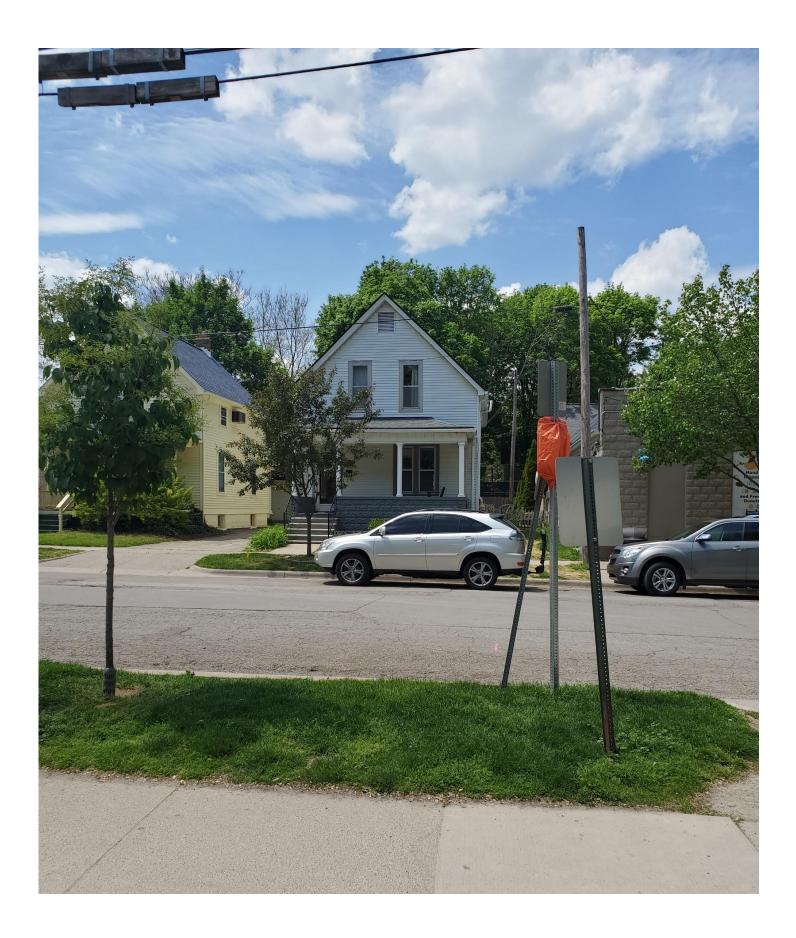
APPLICATION EXPIRATION

HDC applications expire three (3) years after the date of approval.


OFFICE USE ONLY		
Date of Hearing:	E WHEN MONE PROBABILITY	
Action	☐ HDC COA	☐ HDC Denial
Action	☐ HDC NTP	☐ Staff COA
Staff Signature	ENDAL MENTS	AND THE PROPERTY OF THE PROPER
Comments		MASSES COMM
Fee:	\$	DE LINE E TURN EN
Payment Type	☐ Check: # ☐ Cash ☐ Credit Card	DISTRICT WITH A SECOND OF THE







THE MOST DEPENDABLE SOLAR BRAND

EAGLE 66TR G4

370-390 WATT TILING RIBBON MONO MODULE

Positive power tolerance of $0 \sim +3\%$

- NYSE-listed since 2010, Bloomberg Tier 1 manufacturer
- Best-selling panel globally for last 4 years
- Top performance in the strictest 3rd party labs
- 99.9% on-time delivery to the installer
- Premium solar panel factories in USA and Malaysia

KEY FEATURES

TR Technology

Tiling Ribbon eliminates cell gaps to increase module efficiency and power

9BB Half Cell Technology

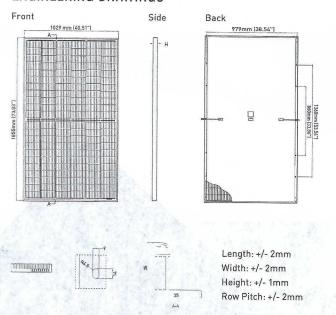
Uniquely designed 9 busbar mono half cut solar cells deliver ultra-high power in a small footprint.

Shade Tolerant

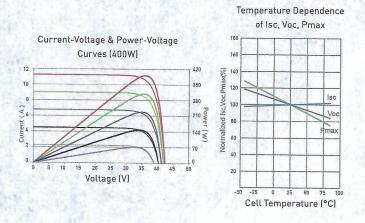
Twin array design allows continued performance even with shading by trees or debris.

Designed for Long Life

Uses the same DuPont protective film as the Space Station, Mars Lander, and jettiners.



Leading Warranty


12-year product and 25-year linear power warranty. 18% guaranteed first year, max 0.55% annual loss.

ENGINEERING DRAWINGS

ELECTRICAL PERFORMANCE & TEMPERATURE DEPENDENCE

MECHANICAL CHARACTERISTICS

Cells	Monocrystalline
No. of Cells	132 (6x22)
Dimensions	1855x1029x35mm (73.03×40.51×1.37 in)
Weight	21.3 kg [46.96 lbs]
Front Glass	3.2mm, Anti-Reflection Coating High Transmission, Low Iron, Tempered Glass
Frame	Anodized Aluminum Alloy
Junction Box	IP67 Rated
Output Cables	12 AWG, 1825mm (71.85in) or Customized Length
Connector	MC4
Fire Type	Type 1
Pressure Rating	5400Pa (Snow) & 2400Pa (Wind)

TEMPERATURE CHARACTERISTICS

Temperature Coefficients of Pmax	-0.35%/°C	
Temperature Coefficients of Voc	-0.28%/°C	
Temperature Coefficients of Isc	0.048%/°C	
Nominal Operating Cell Temperature (NOCT)	45 ± 2°C	

MAXIMUM RATINGS

Operating Temperature (°C)	-40°C~+85°C
Maximum System Voltage	1000VDC
Maximum Series Fuse Rating	20A

PACKAGING CONFIGURATION

2 pallets = 1 stack; 31pcs/pallets, 62pcs/stack, 744pcs/ 40 HQ Container

- IS09001:2008 Quality Standards
- ISO14001:2004 Environmental Standards
- IEC61215, IEC61730 certified products
- UL1703/61730 certified products (pending)
- ISO45001:2018 Occupational Health & Safety Standards

ELECTRICAL CHARACTERISTICS

JKM370M	1-6RL3-B	JKM375N	1-6RL3-B	JKM380N	1-6RL3-B	JKM3851	M-6RL3-B	JKM390	M-6RL3-B
SCT	NOCT	SCT	NOCT	SCT	NOCT	SCT	NOCT	SCT	NOCT
370Wp	275Wp	375Wp	279Wp	380Wp	283Wp	385Wp	286Wp	390Wp	290Wp
36.71V	33.49V	36.80V	33.57V	36.90V	33.70V	37.02V	33.90V	37.15V	34.02V
10.08A	8.22A	10.19A	8.31A	10.30A	8.39A	10.40A	8.45A	10.50A	8.53A
44.02V	41.55V	44.12V	41.64V	44.22V	41.74V	44.34V	41.85V	44.47V	41.97V
10.90A	8.80A	11.01A	8.89A	11.12A	8.98A	11.22A	9.06A	11.32A	9.14A
19.3	8%	19.6	55%	19.9	1%	20.	17%		43%
	SCT 370Wp 36.71V 10.08A 44.02V 10.90A	370Wp 275Wp 36.71V 33.49V 10.08A 8.22A 44.02V 41.55V	SCT NOCT SCT 370Wp 275Wp 375Wp 36.71V 33.49V 36.80V 10.08A 8.22A 10.19A 44.02V 41.55V 44.12V 10.90A 8.80A 11.01A	SCT NOCT SCT NOCT 370Wp 275Wp 375Wp 279Wp 36.71V 33.49V 36.80V 33.57V 10.08A 8.22A 10.19A 8.31A 44.02V 41.55V 44.12V 41.64V 10.90A 8.80A 11.01A 8.89A	SCT NOCT SCT NOCT SCT 370Wp 275Wp 375Wp 279Wp 380Wp 36.71V 33.49V 36.80V 33.57V 36.90V 10.08A 8.22A 10.19A 8.31A 10.30A 44.02V 41.55V 44.12V 41.64V 44.22V 10.90A 8.80A 11.01A 8.89A 11.12A	SCT NOCT SCT NOCT SCT NOCT 370Wp 275Wp 375Wp 279Wp 380Wp 283Wp 36.71V 33.49V 36.80V 33.57V 36.90V 33.70V 10.08A 8.22A 10.19A 8.31A 10.30A 8.39A 44.02V 41.55V 44.12V 41.64V 44.22V 41.74V 10.90A 8.80A 11.01A 8.89A 11.12A 8.98A	SCT NOCT SCT NOCT SCT NOCT SCT 370Wp 275Wp 375Wp 279Wp 380Wp 283Wp 385Wp 36.71V 33.49V 36.80V 33.57V 36.90V 33.70V 37.02V 10.08A 8.22A 10.19A 8.31A 10.30A 8.39A 10.40A 44.02V 41.55V 44.12V 41.64V 44.22V 41.74V 44.34V 10.90A 8.80A 11.01A 8.89A 11.12A 8.98A 11.22A	SCT NOCT SCD 986Wp 286Wp 38.90V 33.90V 33.90V 33.90V 33.90V 33.90V 30.90V 33.90V 30.90V 34.90V 44.50V 44.00V 44.10V 44.10V 44.22V 41.74	SCT NOCT SCT NOCT SCT NOCT SCT NOCT SCT NOCT SCT 370Wp 275Wp 375Wp 279Wp 380Wp 283Wp 385Wp 286Wp 390Wp 36.71V 33.49V 36.80V 33.57V 36.90V 33.70V 37.02V 33.90V 37.15V 10.08A 8.22A 10.19A 8.31A 10.30A 8.39A 10.40A 8.45A 10.50A 44.02V 41.55V 44.12V 41.64V 44.22V 41.74V 44.34V 41.85V 44.47V 10.90A 8.80A 11.01A 8.89A 11.12A 8.98A 11.22A 9.06A 11.32A

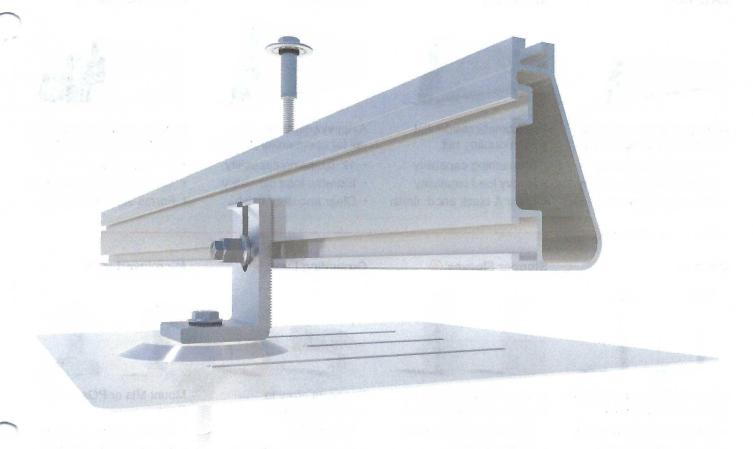
*STC: Irradiance 1000W/m² NOCT: Irradiance 800W/m²

Cell Temperature 25°C

AM = 1.5AM = 1.5

≕ Wind Speed 1m/s

^{*}Power measurement tolerance: +/- 3%



Flush Mount System

Built for solar's toughest roofs.

IronRidge builds the strongest mounting system for pitched roofs in solar. Every component has been tested to the limit and proven in extreme environments.

Our rigorous approach has led to unique structural features, such as curved rails and reinforced flashings, and is also why our products are fully certified, code compliant and backed by a 20-year warranty.

Strength Tested

All components evaluated for superior structural performance.

PE Certified

Pre-stamped engineering letters available in most states.

Class A Fire Rating

Certified to maintain the fire resistance rating of the existing roof.

Design Assistant

Online software makes it simple to create, share, and price projects.

UL 2703 Listed System

Meets newest effective UL 2703 standard.

20-Year Warranty

Twice the protection offered by competitors.

XR Rails

XR10 Rail

A low-profile mounting rail for regions with light snow.

- · 6' spanning capability
- · Moderate load capability
- · Clear & black anod, finish

XR100 Rail

The ultimate residential solar mounting rail.

- · 8' spanning capability
- · Heavy load capability
- · Clear & black anod, finish

XR1000 Rail

A heavyweight mounting rail for commercial projects.

- · 12' spanning capability
- · Extreme load capability
- · Clear anodized finish

Bonded Splices (

All rails use internal splices for seamless connections.

- · Self-drilling screws
- · Varying versions for rails
- · Forms secure bonding

Clamps & Grounding

UFOs 🛞

Universal Fastening Objects bond modules to rails.

- · Fully assembled & lubed
- · Single, universal size
- · Clear & black finish

Stopper Sleeves (

Snap onto the UFO to turn into a bonded end clamp.

- · Bonds modules to rails
- · 6 different sizes
- · Clear & black anod, finish

Grounding Lugs 😁

Connects array to equipment ground.

- · Low profile
- Single tool installation
- · Mounts in any direction

Microinverter Kit

Mount MIs or POs to XR Rails.

- Bonds devices to rails
- · Kit comes assembled
- Listed to UL 2703

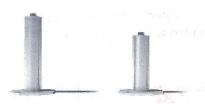
Attachments

FlashFoot

Anchor, flash, and mount with all-in-one attachments.

- · Ships with all hardware
- · IBC & IRC compliant
- · Certified with XR Rails

Bonded L-Feet 🛞



Drop-in design for rapid rail attachment.

- · Bonding hardware included
- · Forms secure rail connection
- · Clear & black anod, finish

Standoffs

Raise Flush Mount System to various heights.

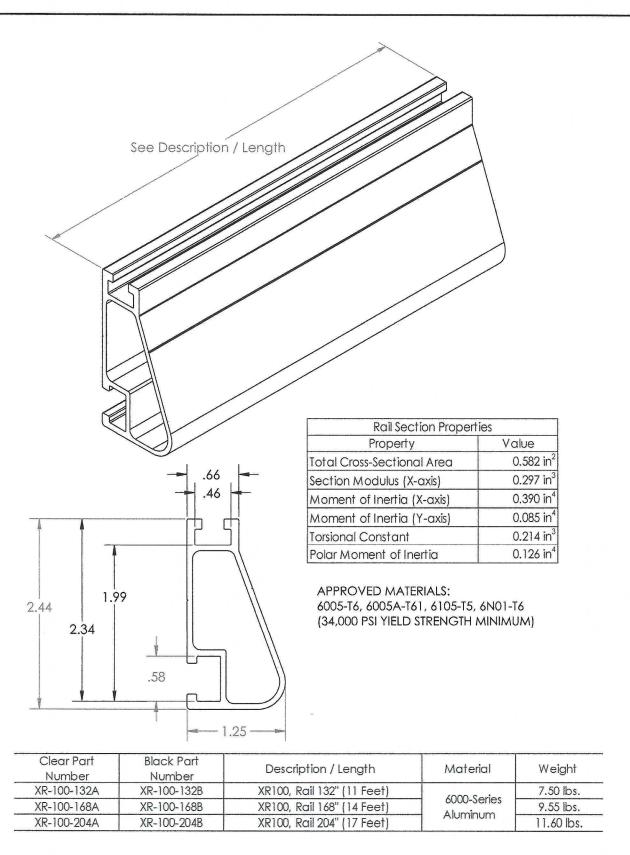
- · Works with vent flashing
- · Ships assembled
- · 4" and 7" Lengths

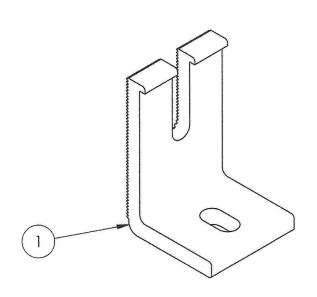
Resources

Design Assistant

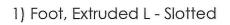
Go from rough layout to fully engineered system. For free.

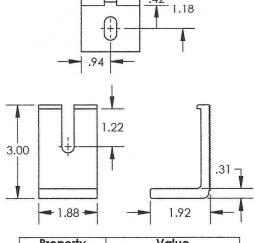
Go to IronRidge.com/design


NABCEP Certified Training


Earn free continuing education credits, while learning more about our systems.

Go to IronRidge.com/training





Item Number	Component	
1	FOOT, EXTRUDED L - SLOTTED	

Part Number	Description	
LFT-03-M1	SLOTTED L-FOOT, MILL	
LFT-03-B1	SLOTTED L-FOOT, BLACK	

Property	Value
Material	Aluminum
Finish	Mill / Black