
SITE PLAN DRAWINGS FOR

LIBERTY TOWNHOMES

2658 W. LIBERTY STREET A PART OF SE 1/4 SECTION 25, T.2S, R.5E, CITY OF ANN ARBOR, WASHTENAW COUNTY, MICHIGAN

LOCATION MAP - NOT TO SCALE

DEVELOPMENT PROGRAM

THE PROPOSED PROJECT IS LOCATED ON ONE PARCEL OF CURRENTLY VACANT LAND ZONED R4B, MULTI-FAMILY RESIDENTIAL THE DEVELOPMENT WILL CONSIST OF NINE THREE-STORY APARTMENT BUILDINGS RANGING IN FLOOR AREAS. EACH UNIT WILL HAVE A PRIVATE GARAGE WITH AN ENTRANCE TO THE UNIT AS WELL AS AN ADDITIONAL EXTERIOR ENTRANCE ON THE SIDE OPPOSITE OF THE GARAGE.

THE DEVELOPMENT WILL BE ACCESSED VIA ONE DRIVEWAY FROM LIBERTY STREET AND INCLUDE A TOTAL OF 109 PARKING SPACES, INCLUDING 52 PRIVATE GARAGE SPACES (PROVIDING 52 CLASS 'A' BIKE PARKING SPACES).

IN ALL, THE PROPOSED DEVELOPMENT CONSISTS OF 52 APARTMENT UNITS.

SITE DENSITY WILL BE 11.2 UNITS/ACRE.

PROBABLE SITE CONSTRUCTION COST = \$5,200,000

COMMUNTITY ANALYSIS:

- THE PROPOSED DEVELOPMENT IS NOT EXPECTED TO SIGNIFICANTLY IMPACT LOCAL SCHOOLS.
- THE SURROUNDING USES CONSIST OF AN INTERSTATE EXPRESSWAY (I-94), CITY STREET (LIBERTY), SOUTH MAPLE PARK, ONE SINGLE FAMILY HOME, AND 242 CHURCH. THESE USES ARE NOT EXPECTED TO BE NEGATIVELY IMPACTED BY THIS DEVELOPMENT.
- THE SITE WILL BE SCREENED FROM THE SURROUNDING USES BY PRIVACY FENCING, LANDSCAPING AND EXISTING TREES, MITIGATING
- THE SITE IS CURRENTLY VACANT, CONSISTING OF PERIMETER TREES, GRASS AND SCRUB BRUSH. A MAJORITY OF THE SITE IS VOID OF NATURAL FEATURES. SEVEN LANDMARK TREES EXIST ON THE SITE, OF WHICH TWO WILL BE REMOVED AND REPLACED PER MITIGATION REQUIREMENTS. OF SPECIAL INTEREST IS A STAND OF MATURE SPRUCE AND PINE TREES ALONG THE WEST BOUNDARY OF THE SITE FRONTING the I-94 EXPRESSWAY. ONLY TWO OF THESE TREES WILL BE REMOVED FOR DEVELOPMENT, THE REST BEING PRESERVED WITH THE USE OF A RETAINING WALL ALONG THE WEST SIDE OF THE PROPOSED BUILDINGS. THE SITE WILL NOT CAUSE ANY ADVERSE IMPACTS TO AIR AND WATER QUALITY.
- THERE ARE NO KNOW HISTORIC SITES ON THE PROPERTIES.

SITE ANALYSIS:

- 1. THE SITE IS CURRENTLY VACANT.
- SOIL TYPES ON SITE ARE CONOVER LOAM AND MIANMI LOAM PER THE WASHTENAW COUNTY SOIL SURVEY. A GEOTECHNICAL INVESTIGATION PERFORMED IN 2004 REPORTED PRIMARILY CLAY AND SILTY CLAY BELOW THE OVERLYING TOPSOIL, WITH ISOLATED AREAS OF SAND LAYERS. INFILTRATION TESTING PERFORMED IN 2015 REVEALED SIMILAR RESULTS, WITH NO INDICATION OF SOIL SUITABILITY FOR STORM WATER INFILTRATION. SITE VEGETATION CONSISTS PRIMARILY OF SCRUB BRUSH AND GRASSES OVER THE MAJORITY OF THE SITE, WITH TREES LOCATED
- AROUND THE PERIMETER, INCLUDING A STAND OF MATURE SPRUCE AND PINE TREES ALONG THE WEST BOUNDARY OF THE SITE. REFER TO SHEETS P-2 AND P-2.1, "TOPOGRAPHIC SURVEY" FOR SITE TOPOGRAPHY.
- 3. SITE NATURAL FEATURES
- THERE IS NO KNOWN ENDANGERED SPECIES HABITAT ON SITE. THE SITE IS NOT LOCATED WITHIN THE 100-YEAR FLOOD PLAIN
- SEVEN LANDMARK TREES EXIST ON THE SITE. REFER TO SHEETS P-2.2 AND P-2.3 FOR EXACT LOCATIONS, AND LANDMARK TREE EVALUATION FORMS FOR CONDITION ASSESSMENT OF LANDMARK TREES.
- TREE #1078 20-INCH DIA. NORWAY SPRUCE LOCATED NEAR THE SOUTH END OF THE SITE NEAR LIBERTY (TO BE REMOVED) TREE #1079 22-INCH DIA. NORWAY SPRUCE LOCATED NEAR THE SOUTH END OF THE SITE NEAR LIBERTY (TO BE REMOVED)
- TREE #1096 19-INCH DIA. NORWAY SPRUCE LOCATED NEAR THE SOUTHWEST CORNER OF THE SITE (TO REMAIN) TREE #1132 40-INCH DIA. RED OAK LOCATED ON THE EAST PROPERTY LINE NEAR THE N.E. CORNER OF THE SITE (TO REMAIN)
- TREE #1139 19-INCH DIA. SHAGBARK HICKORY LOCATED ON THE EAST PROPERTY LINE LINE (TO REMAIN)
- TREE #1141 21-INCH DIA. SHAGBARK HICKORY LOCATED ON THE EAST PROPERTY LINE LINE (TO REMAIN) 3.3.6. TREE #1142 36-INCH DIA WHITE OAK LOCATED LOCATED ON THE EAST PROPERTY LINE LINE (TO REMAIN)
- NO STEEP SLOPES EXIST ON THE SITE THERE ARE NO WATERCOURSES ON THE PROPERTY.
- THERE ARE NO WETLANDS ON THE PROPERTY. THERE ARE NO WOODLANDS ON THE PROPERTY.
- 4. THERE ARE NO EXISTING STRUCTURES ON THE SITE.
- THE SITE WILL BE ACCESSED VIA A PROPOSED DRIVEWAY ON LIBERTY STREET. THE SITE SIDEWALKS WILL CONNECT TO A PROPOSED PUBLIC WALK ON LIBERTY STREET AND WILL CONNECT TO ALL PARKING LOTS, BUILDING ENTRANCES, AND TO A WALKING LOOP AROUND THE PROPOSED DETENTION AREA. THE PROPOSED PUBLIC SIDEWALK ON LIBERTY STREET WILL EXTEND EAST THROUGH THE EAST PROPERTY LINE AND CONNECT TO THE EXISTING PUBLIC SIDEWALK IN FRONT OF 2608 W. LIBERTY STREET. ALL SIDEWALKS PROPOSED IN THE PUBLIC RIGHT-OF-WAY SHALL MEET ALL REQUIREMENTS AS SET FORTH IN THE ADA STANDARDS FOR ACCESSIBLE DESIGN.
- PUBLIC WATER MAIN WILL BE EXTENDED THROUGH THE SITE, CONNECTING TO THE EXISTING MAIN WITHIN LIBERTY STREET AND TO THE EXISTING WATER MAIN LOCATED ON THE ADJACENT 242 CHURCH PROPERTY TO THE NORTH. 40' WIDE WATER MAIN EASEMENTS WILL BE PROVIDED ON SITE. THE WATER MAIN CONNECTION THROUGH THE 242 CHURCH PROPERTY WILL UTILIZE AN EXISTING PUBLIC
- PUBLIC SANITARY SEWER WILL CONNECT TO THE EXISTING SANITARY SEWER ON LIBERTY STREET TO THE SOUTH. A MINIMUM WIDTH OF TWICE THE DEPTH PLUS TEN FEET, WITH THE SEWER OFFSET FIVE FEET FROM THE CENTER WITH A MINIMUM WIDTH OF THIRTY FEET SANITARY SEWER EASEMENT WILL BE PROVIDED THROUGH THE SITE, AS REQUIRED.
- THE SITE CURRENTLY DRAINS UN-DETAINED VIA SHEET FLOW TO THE I-94 HIGHWAY RIGHT-OF-WAY, THE EXISTING LIBERTY STREET STORM SEWER SYSTEM, AND THE ADJACENT PARCEL TO THE EAST. THE PROPOSED DEVELOPMENT INCLUDES A NEW DETENTION BASIN WITH A SEDIMENT FOREBAY AND A NEW ON-SITE ENCLOSED STORM SEWER SYSTEM DESIGNED PER THE WASHTENAW COUNTY WATER RESOURCES COMMISSIONER STANDARDS. THE DETENTION BASIN WILL CAPTURE STORM WATER RUNOFF FROM EXISTING ON-SITE AND OFF-SITE TRIBUTARY DRAINAGE AREAS. THE DETENTION BASIN WILL DISCHARGE TO THE EXISTING STORM SEWER SYSTEM IN THE LIBERTY STREET RIGHT-OF-WAY AT A LOWER PEAK FLOW RATE THAN CURRENTLY EXISTS.

SITE NATURAL FEATURES ALTERNATIVES ANALYSIS

THE UNUSUAL SHAPE OF THE SITE, LONG AND NARROW AND REDUCING IN WIDTH TO THE NORTH, LIMITED THE DEVELOPMENT LAYOUTS PRACTICAL ON THE SITE. OTHER LAYOUTS INVESTIGATED INCLUDED THE FOLLOWING:

1) LARGER NARROW BUILDINGS ORIENTED WITH THEIR LONG DIMENSION PARALLEL TO I-94: THIS LAYOUT WOULD ALLOW THE SITE TO BE SLIGHTLY CONSTRICTED IN THE EAST-WEST DIRECTION TO LIMIT IMPACT TO ROOT ZONES OF PERIMETER TREES, HOWEVER THIS WOULD PLACE A LARGE PORTION OF THE OCCUPANTS WINDOWS FACING THE EXPRESSWAY. IN INITIAL MEETINGS WITH THE CITY, THIS APPROACH WAS DISCOURAGED FOR THIS REASON.

2) PLACING THE BUILDINGS TOWARD THE NORTH END OF THE SITE RATHER THAN THE SOUTH END: THIS LAYOUT WOULD SITE THE BUILDINGS AWAY FROM THE TREES LOCATED AT THE SOUTHWEST CORNER OF THE SITE. HOWEVER, THE SHAPE OF THE SITE WOULD LIMIT FEASIBILITY OF BUILDINGS AT THE NORTH END OF THE SITE WITHOUT ORIENTING THEM TOWARD I-94. PLACING THE BUILDINGS NEAR THE NORTH END OF THE SITE WOULD PLACE THEM CLOSE TO THE BILLBOARD AND THE CORRESPONDING CLEAR VISION EASEMENT WHICH LIMITS THE AVAILABLE SPACE. THIS WOULD ALSO ISOLATE THE COMMUNITY AWAY FROM LIBERTY STREET, AND NOT MEET THE 40' MAXIMUM BUILDING SETBACK REQUIREMENT. ADDITIONALLY, PARKING WOULD BE HAVE TO BE LOCATED FARTHER AWAY FROM THE BUILDINGS DUE TO THE LACK OF SPACE AVAILABLE AT THE NORTH END OF THE PROPERTY.

SEE ALTERNATE LAYOUT ANALYSIS SHEET, P-2.4, FOR MORE INFORMATION.

LEGAL DESCRIPTION: (Per PEA, Inc.)

A parcel of land in the Southeast 1/4 of Section 25, Town 2 South, Range 5 East, Washtenaw County, Michigan, being more particularly described as; Commencing at the Southeast corner of said Section 25;

thence along the East line of said Section 25, also being the centerline of Maple Road (variable width - public) N00°28'00"E (tax N00°28'00"W), 988.84 feet to the centerline of Liberty Street (variable width — public); thence along said centerline, S75°26'15"W, 876.75 feet;

thence N00°19'55"E, 72.44 feet to the North line of said Liberty Street and the POINT OF BEGINNING:

thence along said North line, 240.18 feet (tax 240.19 feet) along the arc of a curve to the right, having a radius of 1839.86 feet, a central angle of 7°28'46" (record 2°07'00"), and a chord bearing S79°14'11"W, 240.01 feet (tax S79°14'30"W, 240.02 feet, record S79°14'30"W, 240.19 feet) to the East Right-of-Way line of I-94;

thence along said East Right-of-Way line, NO5°01'00"E, 1089.89 feet (tax 1089.74 feet);

thence S89°40'05"E, 146.51 feet (tax S89°42'34"E, 146.58 feet); thence S00°19'55"W, 1040.06 feet (tax S00°19'35"W, 1040.02 feet) to the aforementioned North line of Liberty Street and the POINT OF BEGINNING. Containing ± 4.65 acres of land.

INDEX OF DRAWINGS:

COVER SHEET TOPOGRAPHIC SURVEY (SOUTH) TOPOGRAPHIC SURVEY (NORTH) ALTA/NSPS LAND TITLE SURVEY

NATURAL FEATURES PLAN (SOUTH) NATURAL FEATURES PLAN (NORTH) ALTERNATIVE LAYOUT ANALYSIS

OVERALL SITE PLAN DIMENSION AND PAVING PLAN (SOUTH) DIMENSION AND PAVING PLAN (NORTH)

GRADING PLAN (SOUTH) GRADING PLAN (NORTH)

SOIL EROSION CONTROL PLAN (SOUTH) SOIL EROSION CONTROL PLAN (NORTH)

OVERALL UTILITY PLAN UTILITY PLAN (SOUTH)

UTILITY PLAN (NORTH) STORM WATER MANAGEMENT PLAN

OVERALL DRAINAGE PLAN

STORM WATER CALCULATIONS AND DETAILS W.C.W.R.C. COMPUTATIONAL REQUIREMENTS

NOTES AND DETAILS MDOT DETAILS

LANDSCAPE PLAN LANDSCAPE PLAN L-2LANDSCAPE DETAILS

A - 101COVER

CLUSTER CONCEPT PLANS UNIT CONCEPT PLANS

A-104 ELEVATIONS A-105 SECTION

PHOTOMETRIC LIGHTING PLAN

CITY OF ANN ARBOR STANDARD DETAILS: CITY OF ANN ARBOR DETAIL SHEET CITY OF ANN ARBOR DETAIL SHEET CITY OF ANN ARBOR DETAIL SHEET

THE CONSTRUCTION COVERED BY THESE PLANS SHALL BE IN COMPLETE CONFORMANCE WITH THE CITY OF ANN ARBOR STANDARDS.

PETITIONER (DEVELOPER):

MCP LIBERTY DEVCO, LLC 2617 BEACON HILL DRIVE AUBURN HILLS, MI, 48326 CONTACT: TONY RANDAZZO PHONE: (248) 373-2440

CIVIL ENGINEER:

PEA, INC. 7927 NEMCO WAY, STE. 115 BRIGHTON, MICHIGAN 48116 CONTACT: JONATHAN E CURRY, PE PHONE: (517) 546-8583 FAX: (517) 546-8973

ARCHITECT:

JARRATT ARCHITECTURE 108 N. LAFAYETTE ST. SOUTH LYON, MI, 48175 CONTACT: WILLIAM JARRATT PHONE: (248) 446-1100 X 42

PLYMOUTH, MI CONTACT: JAMES GRAY, PLA PHONE: (734) 249-3568

LANDSCAPE ARCHITECT:

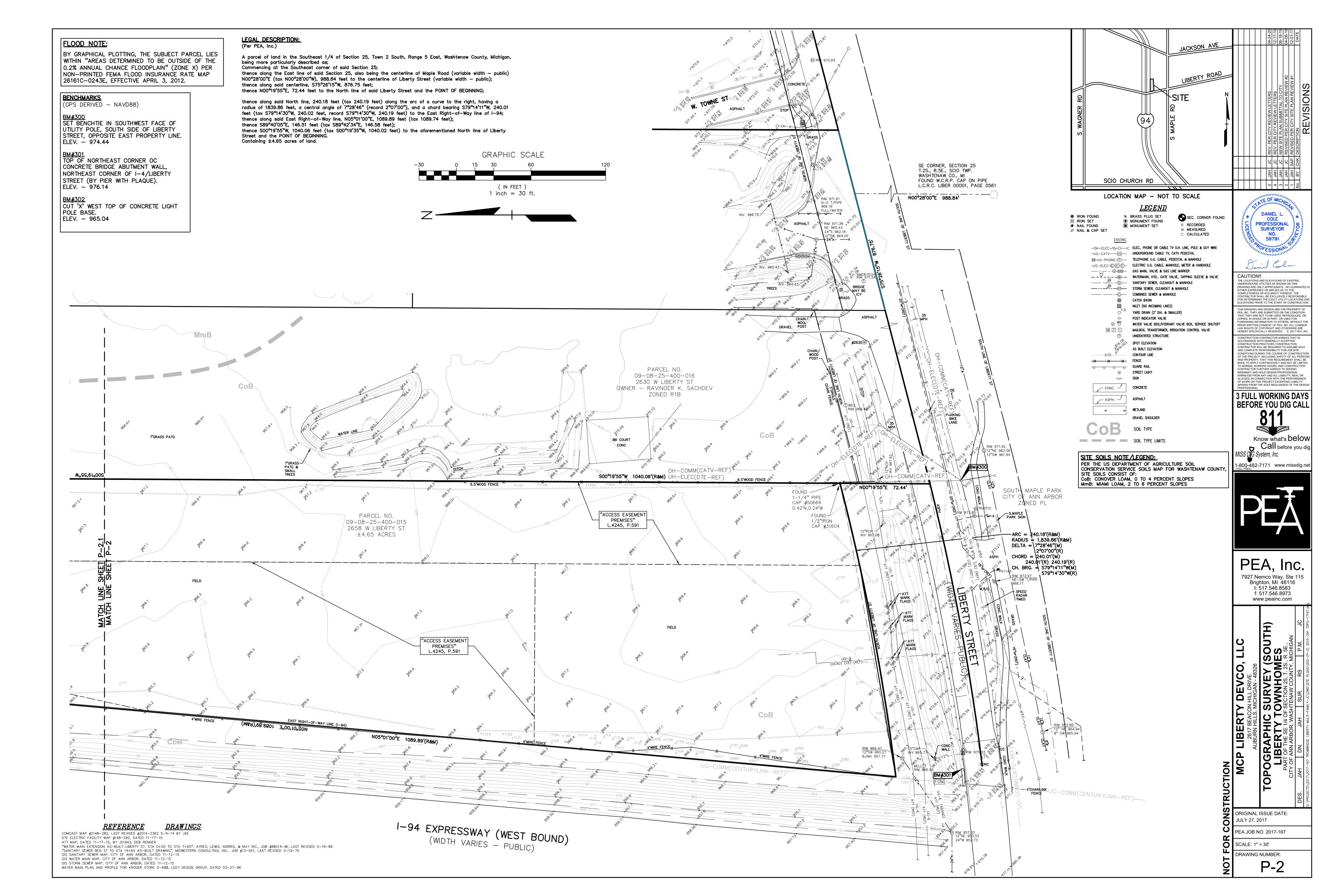
VERT VERDE LANDSCAPE ARCHITECTURE, LLC

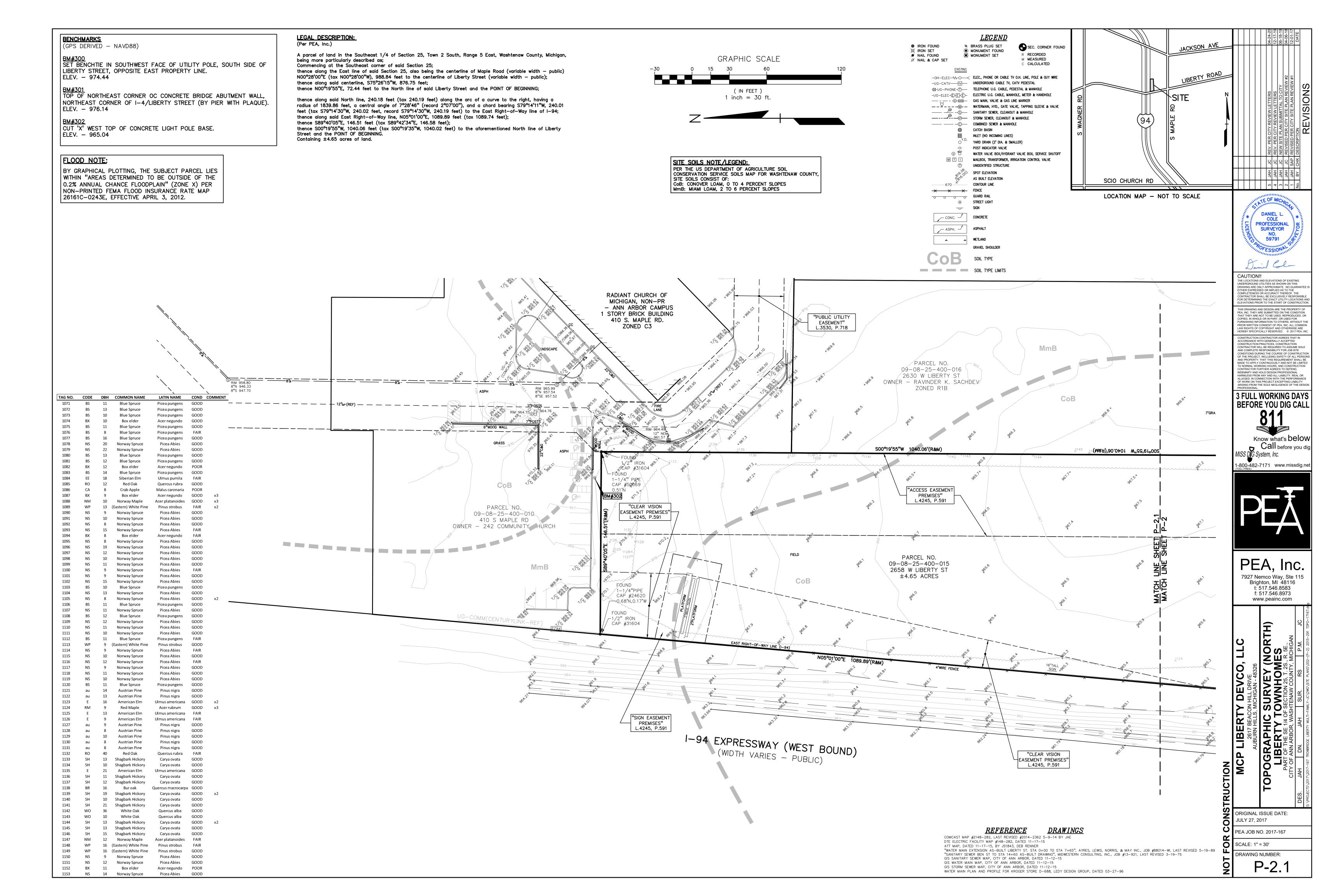
CAUTION!!

DRAWING ARE ONLY APPROXIMATE. NO GUARAI EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS OR ACCURACY THEREOF. THE

3 FULL WORKING DAYS **BEFORE YOU DIG CALL**

Know what's below


PEA, Inc. 7927 Nemco Way, Ste 115 Brighton, MI 48116 t: 517.546.8583 f: 517.546.8973 www.peainc.com


IBERTY TOWNHON MC

ORIGINAL ISSUE DATE: JULY 27, 2017

PEA JOB NO. 2017-167 SCALE: NONE

RAWING NUMBER:

SCHEDULE B-II (EXCEPTIONS)

First American Title Insurance Company Commitment No. 845787 Commitment Date: April 16, 2019

- 1. Any defect, lien, encumbrance, adverse claim, or other matter that appears for the first time in the Public Records or is created, attaches, or is disclosed between the Commitment Date and the date on which all of the Schedule B, Part I-Requirements are met.
- [SURVEYOR'S COMMENTS: THIS IS NOT A PLOTTABLE LAND SURVEY ITEM AND IS NOT SHOWN ON THE SURVEY MAP.]
- Any facts, rights, interests, or claims that are not shown by the Public Records but that could be ascertained by an inspection of the Land or by making inquiry of persons in possession of the Land.
 [SURVEYOR'S COMMENTS: THIS IS NOT A PLOTTABLE LAND SURVEY ITEM AND IS NOT SHOWN ON THE SURVEY MAP.]
- Easements, liens or encumbrances, or claims thereof, not shown by the Public Records.
 [SURVEYOR'S COMMENTS: THIS IS NOT A PLOTTABLE LAND SURVEY ITEM

AND IS NOT SHOWN ON THE SURVEY MAP.]

AND IS NOT SHOWN ON THE SURVEY MAP.]

- 4. Any encroachment, encumbrance, violation, variation, or adverse circumstance affecting the Title including discrepancies, conflicts in boundary lines, shortage in area, or any other facts that would be disclosed by an accurate and complete land survey of the Land, and that are not shown in the Public Records.

 [SURVEYOR'S COMMENTS: AS SHOWN ON THE SURVEY MAP, IF ANY.]
- Any lien or right to lien for services, labor or material imposed by law and not shown by the Public Records.
 [SURVEYOR'S COMMENTS: THIS IS NOT A PLOTTABLE LAND SURVEY ITEM
- 6. Taxes and assessments not due and payable at Commitment Date.

 [SURVEYOR'S COMMENTS: THIS IS NOT A PLOTTABLE LAND SURVEY ITEM AND IS NOT SHOWN ON THE SURVEY MAP.]
- Interest of Donald E. Van Curler and Carol A. Van Curler, as Co-Trustees of the Van Curler Investment Trust dated November 14, 2000, as evidenced by instrument recorded in Liber 4120, page 21.
 [SURVEYOR'S COMMENTS: EXHIBIT 1 THEREIN DESCRIBES A PORTION OF THE SUBJECT PARCEL AND IS SHOWN ON THE SURVEY MAP.]
- Mortgage in the original amount of \$8,384,212.80 executed by MCP Liberty Devco LLC, a Michigan limited liability company to Fund Investment 90, LLC, dated December 06, 2018, recorded December 10, 2018, in Liber 5284, page 139.

 [SURVEYOR'S COMMENTS: SCHEDULE A THEREIN DESCRIBES THE ENTIRE SUBJECT PARCEL; HOWEVER, THIS IS NOT A PLOTTABLE LAND SURVEY ITEMS AND IS NOT SHOWN ON THE SURVEY MAP.]
- 9. Assignment of Leases and Rents executed by MCP Liberty Devco LLC, a Michigan limited liability company to Fund Investment 90, LLC, dated December 06, 2018, recorded December 10, 2018, in Liber 5284, page 140.
- [SURVEYOR'S COMMENTS: EXHIBIT A THEREIN DESCRIBES THE ENTIRE SUBJECT PARCEL; HOWEVER, THIS IS NOT A PLOTTABLE LAND SURVEY ITEMS AND IS NOT SHOWN ON THE SURVEY MAP.]

SCHEDULE B-II (EXCEPTIONS) CONT.

- UCC Financing Statement between MCP Liberty Devco LLC, Debtor(s), and Fund Investment 90, LLC, Secured Party, recorded December 12, 2018, in Liber 5284, page 530.
 ISURVEYOR'S COMMENTS: EXHIBIT A THEREIN DESCRIBES THE ENTIRE
- [SURVEYOR'S COMMENTS: EXHIBIT A THEREIN DESCRIBES THE ENTIRE SUBJECT PARCEL; HOWEVER, THIS IS NOT A PLOTTABLE LAND SURVEY ITEMS AND IS NOT SHOWN ON THE SURVEY MAP.]
- 11. Grant of Easement in favor of Weber's, Inc. and the Covenants, Conditions and Restrictions contained in instrument recorded in Liber 4245, page 591.
 [SURVEYOR'S COMMENTS: AFFECTS THE SURVEYED PROPERTY AS PLOTTED AND SHOWN ON THE SURVEY MAP.]
- 12. Terms and Conditions contained in Resolution Authorizing Sanitary Sewer and Water Improvement Charges as disclosed by instrument recorded in Liber 4628, page 823. [SURVEYOR'S COMMENTS: RESOLUTION ITEM 1 THEREIN DESCRIBES THE ENTIRE SUBJECT PARCEL; HOWEVER, THIS IS NOT A PLOTTABLE LAND SURVEY ITEMS AND IS NOT SHOWN ON THE SURVEY MAP.]
- Any rights, title interest or claim thereof to that portion of the land taken, used or granted for streets, roads or highways.
 [SURVEYOR'S COMMENTS: AS SHOWN ON THE SURVEY MAP, IF ANY.]
- 14. Interest of others in oil, gas and mineral rights, if any, whether or not recorded in the public records.
 [SURVEYOR'S COMMENTS: THIS IS NOT A PLOTTABLE LAND SURVEY ITEM AND IS NOT SHOWN ON THE SURVEY MAP.]
- 15. Interest, if any, of the United States, State of Michigan, or any political subdivision thereof, in the oil, gas and minerals in and under and that may be produced from the captioned land.
 [SURVEYOR'S COMMENTS: THIS IS NOT A PLOTTABLE LAND SURVEY ITEM AND IS NOT SHOWN ON THE SURVEY MAP.]
- 16. Loss or damage arising out of any discrepancy between the legal description of the property as insured and the legal description of the property as assessed on the Washtenaw County tax rolls.
 [SURVEYOR'S COMMENTS: THIS IS NOT A PLOTTABLE LAND SURVEY ITEM AND IS NOT SHOWN ON THE SURVEY MAP.]
- 17. Matters referenced by survey recorded in Liber 2230, page 941.

 [SURVEYOR'S COMMENTS: MATTERS NOT CLEARLY REFERENCED OR IDENTIFIED THEREIN AND MAY OR MAY NOT BE NOT SHOWN ON THE SURVEY MAP.]
- 18. Rights of tenants, if any, under any unrecorded leases.

 [SURVEYOR'S COMMENTS: THIS IS NOT A PLOTTABLE LAND SURVEY ITEM AND IS NOT SHOWN ON THE SURVEY MAP.]
- 19. Lien for outstanding water or sewer charges, if any.

 [SURVEYOR'S COMMENTS: THIS IS NOT A PLOTTABLE LAND SURVEY ITEM AND IS NOT SHOWN ON THE SURVEY MAP.]

EXHIBIT "A"- LEGAL DESCRIPTION

First American Title Insurance Company Commitment No. 845787 Commitment Date: April 16, 2019

Land in the City of Ann Arbor, Washtenaw County, MI, described as follows:

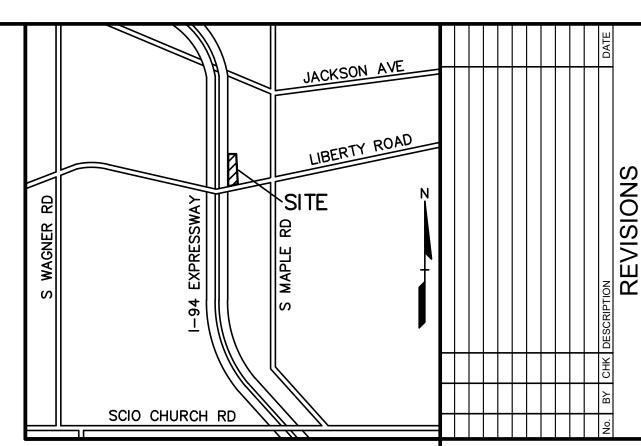
Commencing at the Southeast corner of Section 25, Town 2 South, Range 5 East, City of Ann Arbor, Washtenaw County, Michigan; thence North 00 degrees 28 minutes 00 seconds East 988.84 feet along the East line of said Section and the centerline of Maple Road to a point on the centerline of Liberty Road; thence South 75 degrees 26 minutes 15 seconds West, 876.75 feet along said centerline; thence North 00 degrees 19 minutes 55 seconds East, 72.44 feet to a point on the Northerly right-of-way line of Liberty Road, said point being the POINT OF BEGINNING; thence along said right-of-way line Westerly 240.19 feet along the arc of a curve to the right, radius 1839.86 feet, chord South 79 degrees 14 minutes 30 seconds West 240.02 feet to a point on the Easterly right-of-way line of the I-94 Expressway; thence North 05 degrees 01 minutes 00 seconds East 1089.74 feet along said right-of-way line; thence South 89 degrees 42 minutes 34 seconds East 146.58 feet; thence South 00 degrees 19 minutes 35 seconds West 1040.02 feet to the Point of Beginning. Being a part of the Southeast 1/4 of Section 25, Town 2 South, Range 5 East, City of Ann Arbor, formerly Township of Scio, Washtenaw County, Michigan.

SURVEYOR'S NOTES

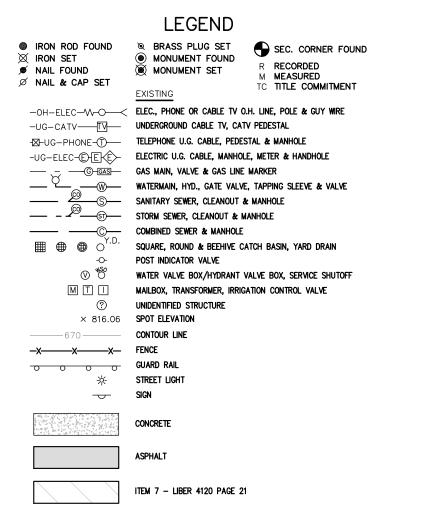
Table A Items

- 2. The subject property is identified as: 2658 W Liberty St. Ann Arbor, MI 48103 Tax Parcel No. 09-08-25-400-015
- By graphic plotting, the subject parcel is in "Zone X" (Areas determined to be outside of 0.2% annual chance floodplain) per FEMA Flood Insurance Rate Map Numbers 26161C0243E, Effective Date of April 03, 2012.
- 4. The property covers approximately 4.65 acres of land.
- 8. Substantial features observed in the process of conducting the fieldwork are shown on the survey map and are depicted as observed.
- 1. The location of utilities existing on and serving the subject property are shown on the survey map and depicted as observed in the field and/or as noted in plans obtained from utility companies.
- Names of adjoining land owners are shown and noted on the survey map pursuant to current tax records.

SURVEYOR'S CERTIFICATE


To: MCP Liberty Devco, LLC
First American Title Insurance Company

This is to certify that this map or plat and the survey on which it is based were made in accordance with the 2016 Minimum Standard Detail Requirements for ALTA/NSPS Land Title Surveys, jointly established and adopted by ALTA and NSPS, and includes Items 2, 3, 4, 8, 11, and 13 of Table A thereof. The fieldwork was completed on April 29, 2019.


Christopher T. Beland, P.S.

Michigan Professional Surveyor No. 49106

Agent for Professional Engineering Associates, Inc.

LOCATION MAP - NOT TO SCALE

GRAPHIC SCALE

-50 0 25 50 100 200

(IN FEET) 1 inch = 50 ft.

CAUTION!!

THE LOCATIONS AND ELEVATIONS OF EXISTING UNDERGROUND UTILITIES AS SHOWN ON THIS DRAWING ARE ONLY APPROXIMATE. NO GUARANT EITHER EXPRESSED OR IMPLIED AS TO THE

THER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS OR ACCURACY THEREOF. THE CONTRACTOR SHALL BE EXCLUSIVELY RESPONS OR DETERMINING THE EXACT UTILITY LOCATION LEVATIONS PRIOR TO THE START OF CONSTRUC

ND COMPLETE RESPONSIBILITY FOR JOB SITE ONDITIONS DURING THE COURSE OF CONSTRU

MADE TO APPLY CONTINUOUSLY AND NOT BE LIMITE TO NORMAL WORKING HOURS, AND CONSTRUCTION

ISING FROM THE SOLE NEGLIGENCE OF THE DES

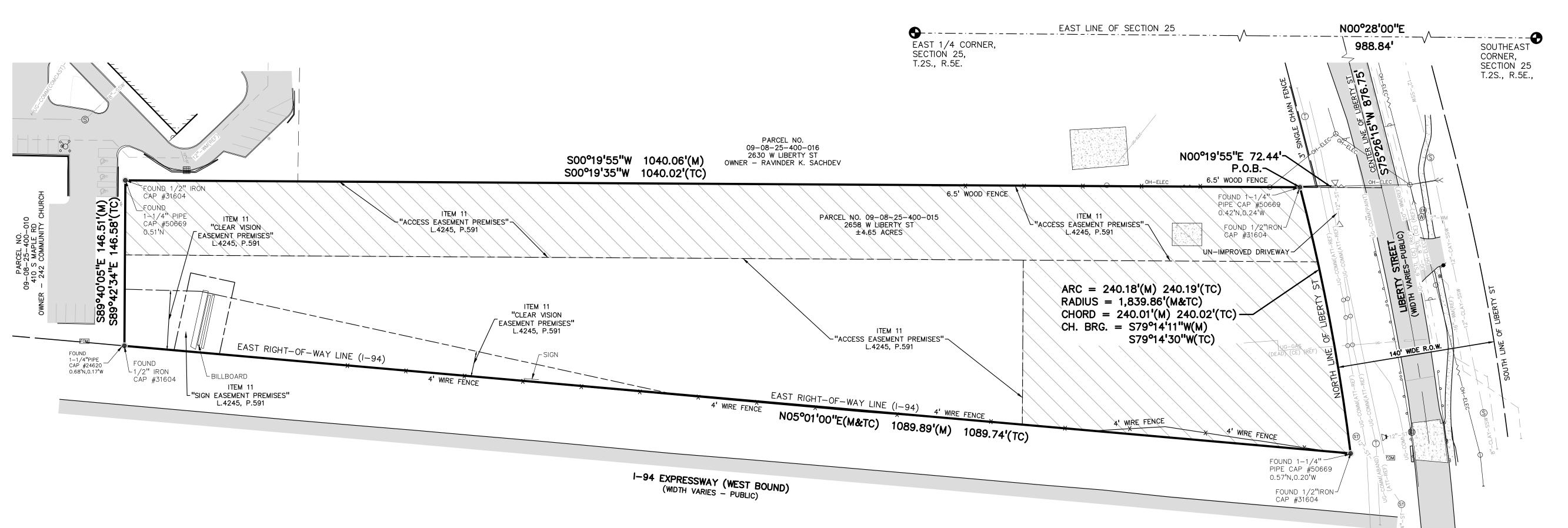
3 FULL WORKING DAYS

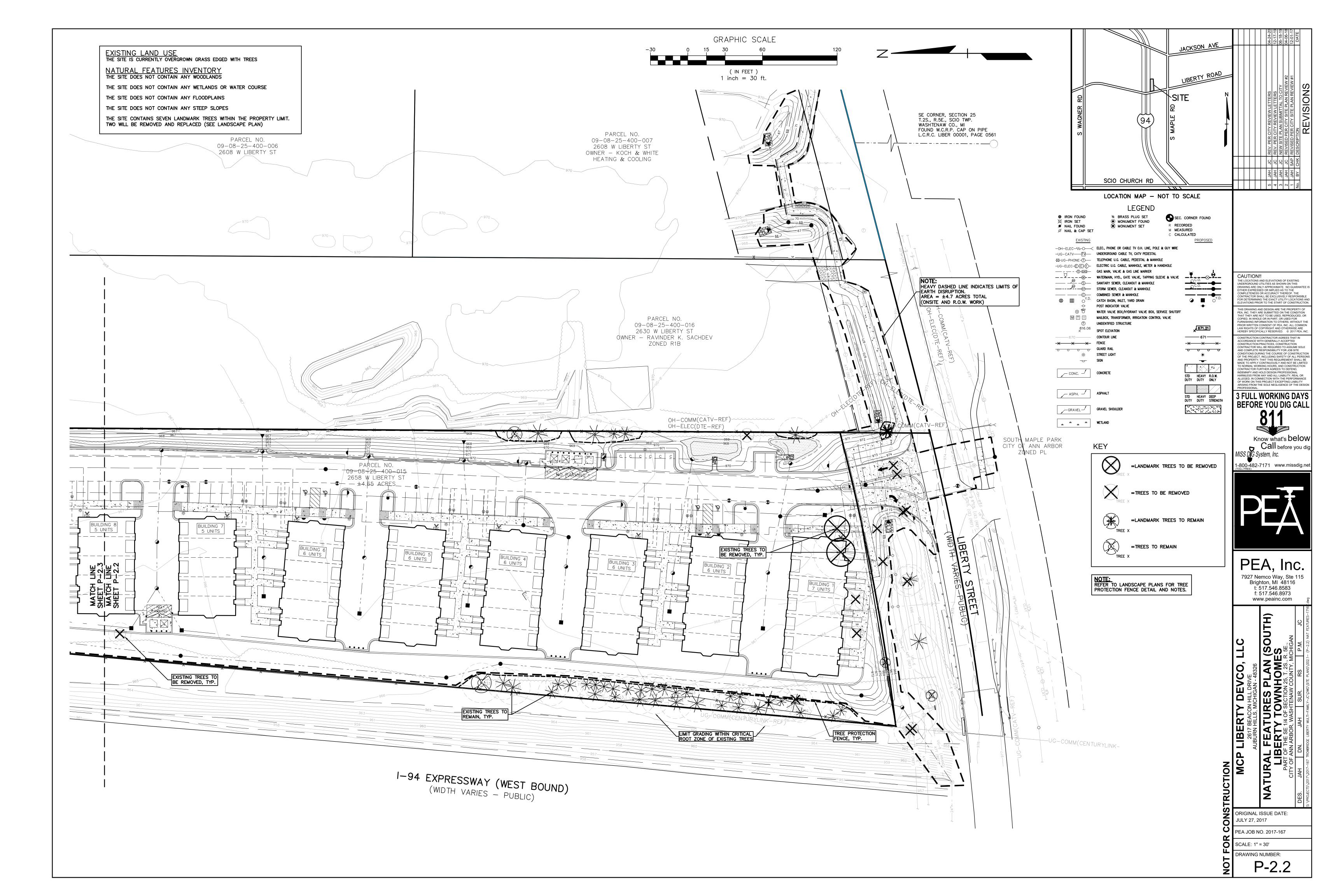
BEFORE YOU DIG CALL

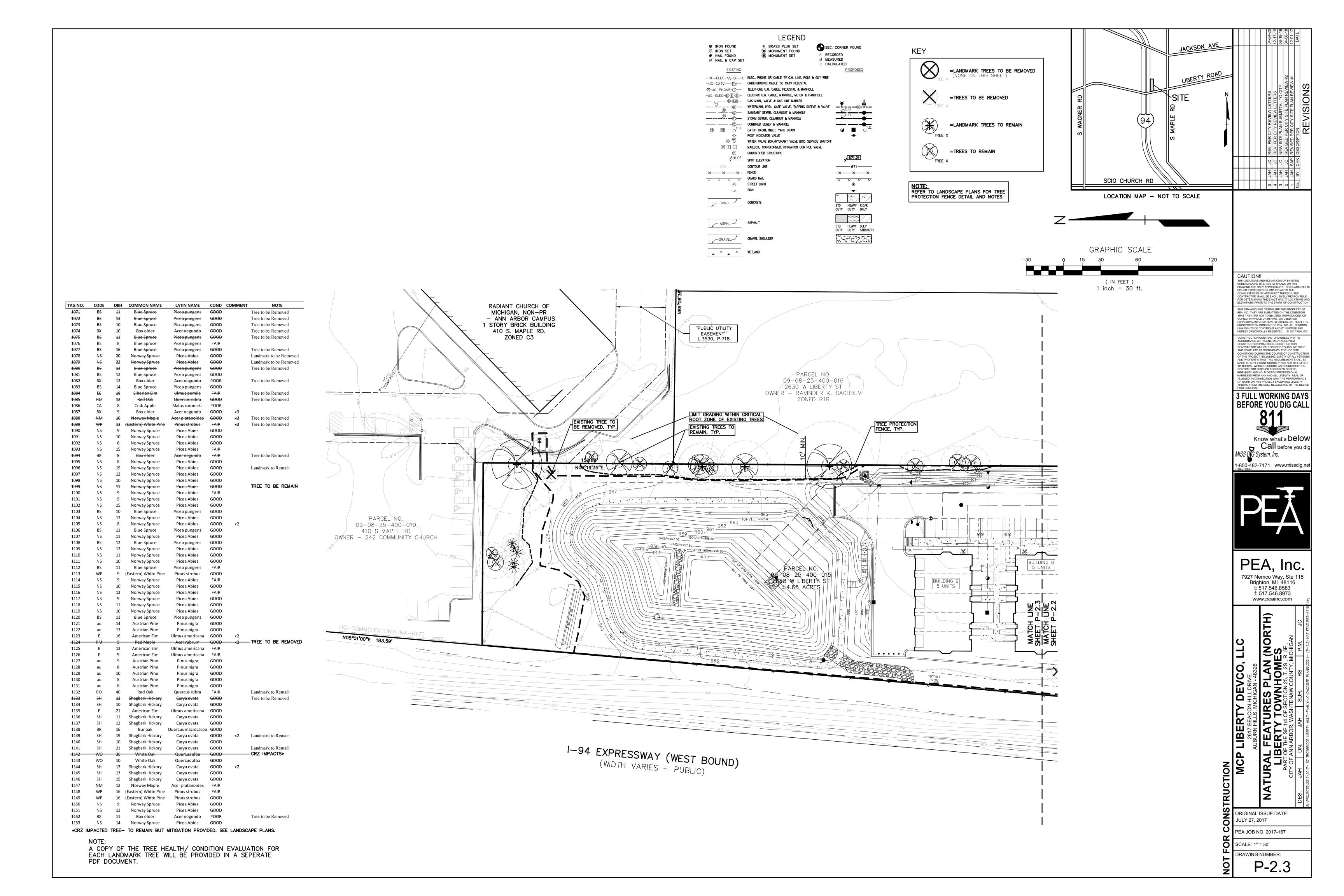
Know what's below

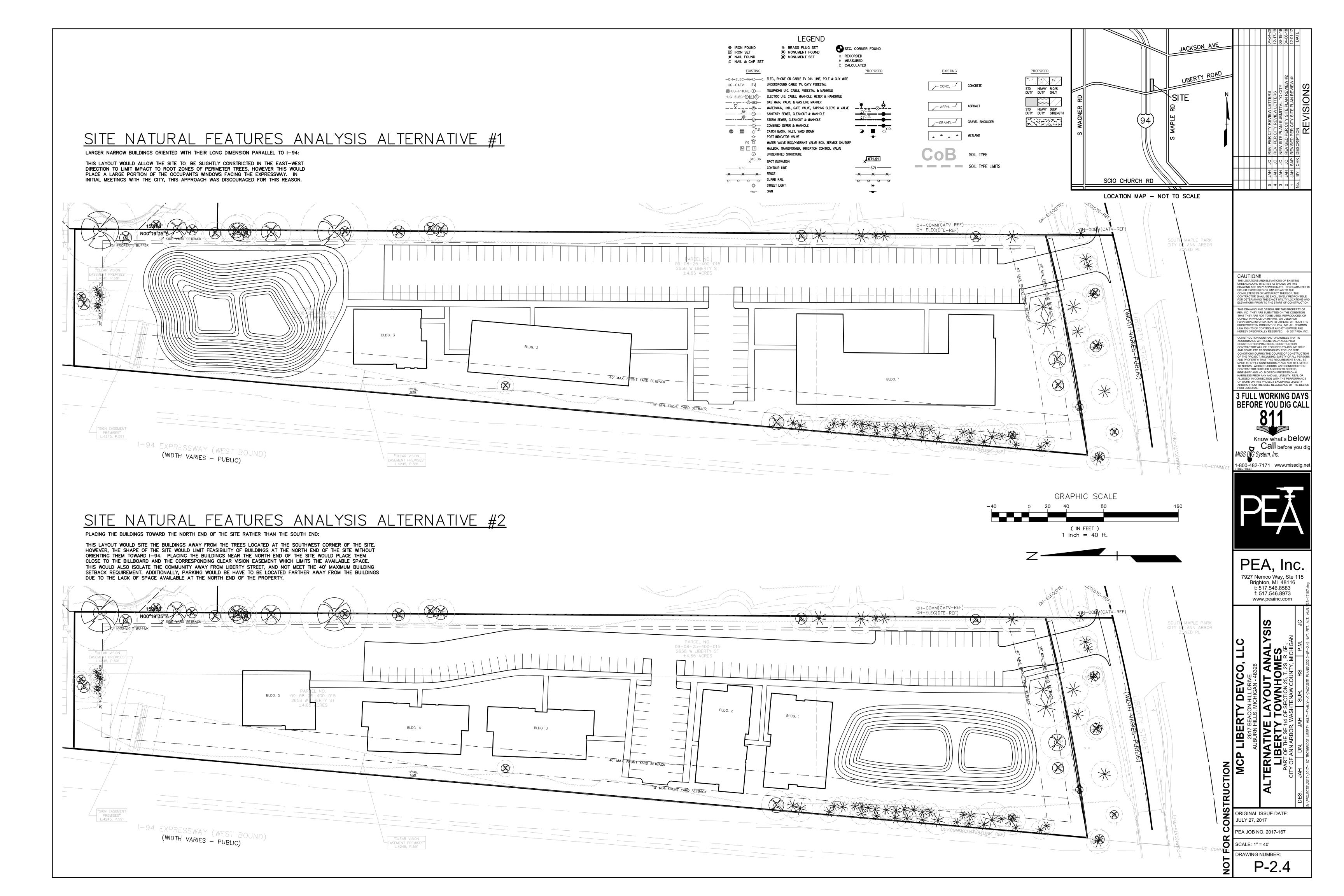
Call before you die

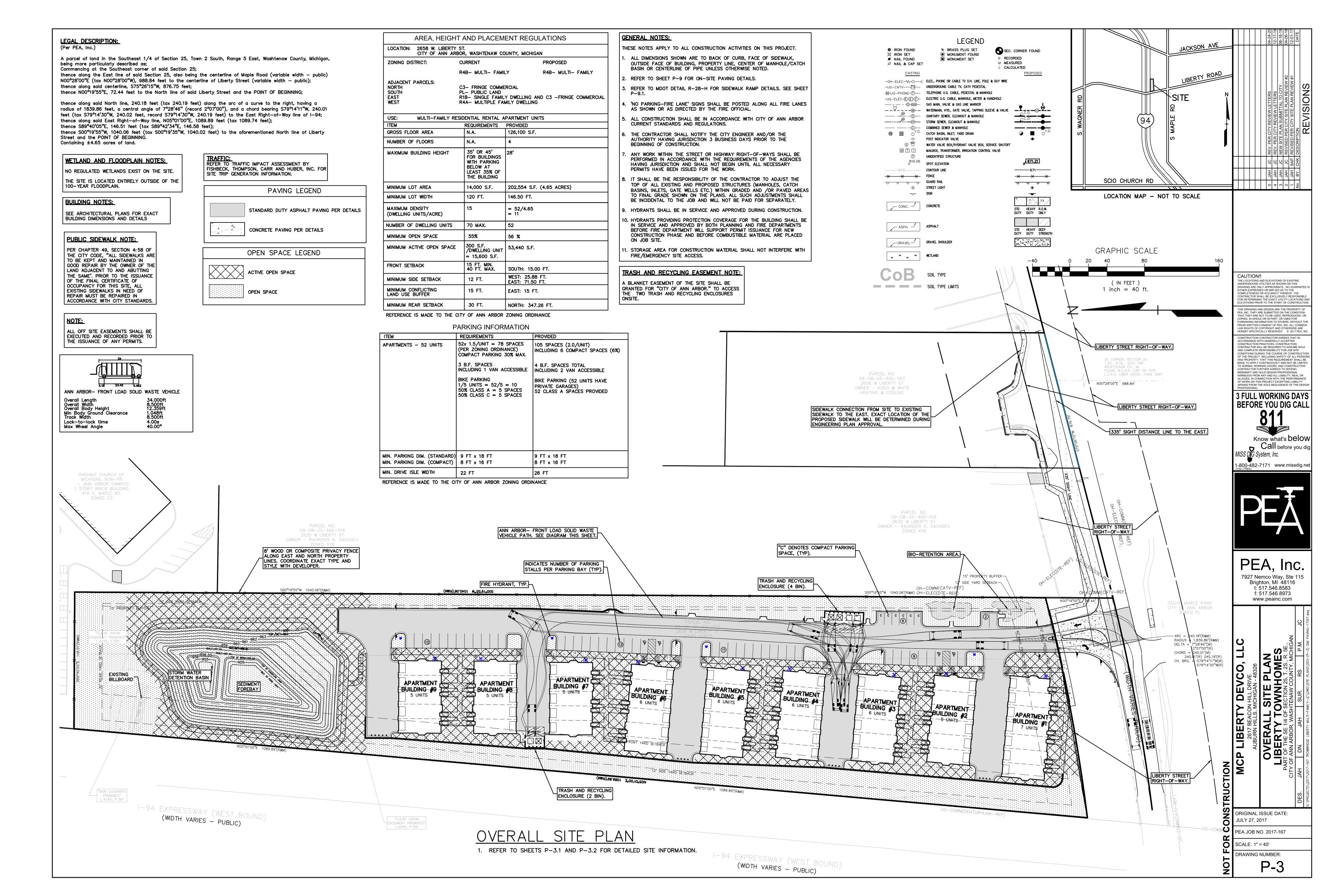
PEA, Inc.
7927 Nemco Way, Ste. 115
Brighton, MI 48116
t: 517.546.8583
f: 546.546.8973
www.peainc.com

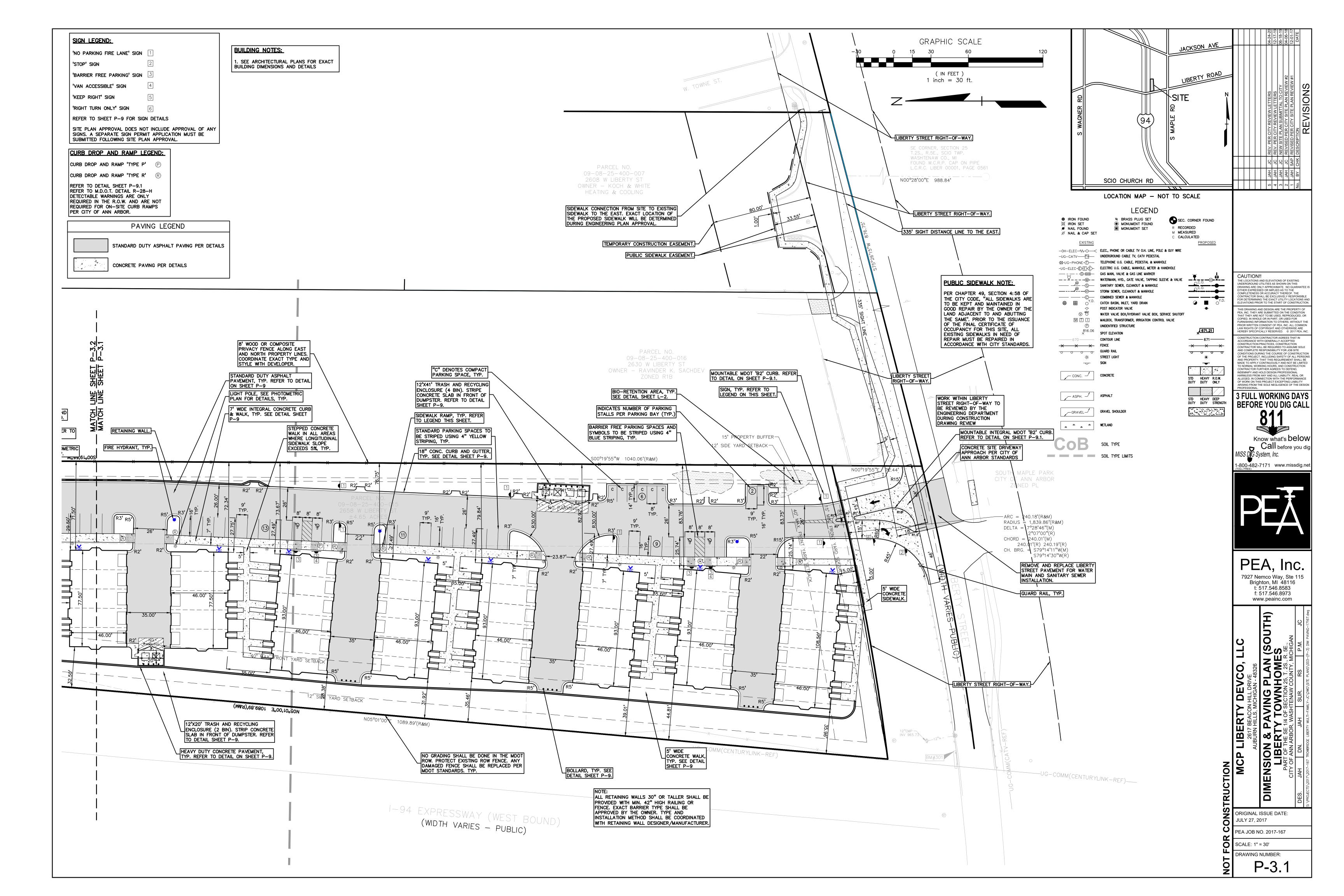

ALTA/NSPS LAND TITLE SURVI TROWBRIDGE LIBERTY FAMIL PART OF THE SE 1/4 OF SECTION 25, T. 2S., R. 5E., CITY OF ANN ARBOR, WASHTENAW COUNTY, MICHIGAN

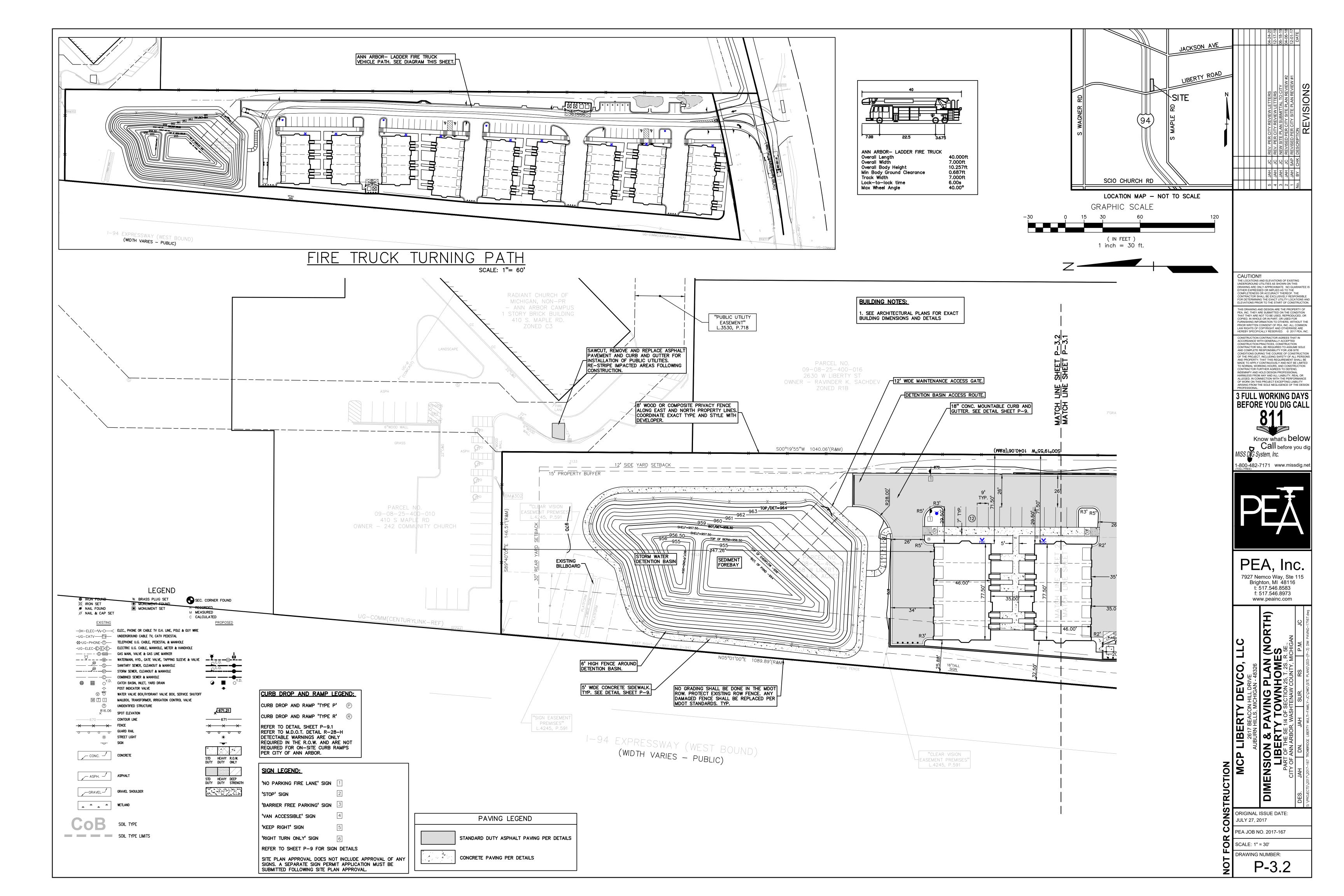

ORIGINAL ISSUE DATE: MAY 07, 2019

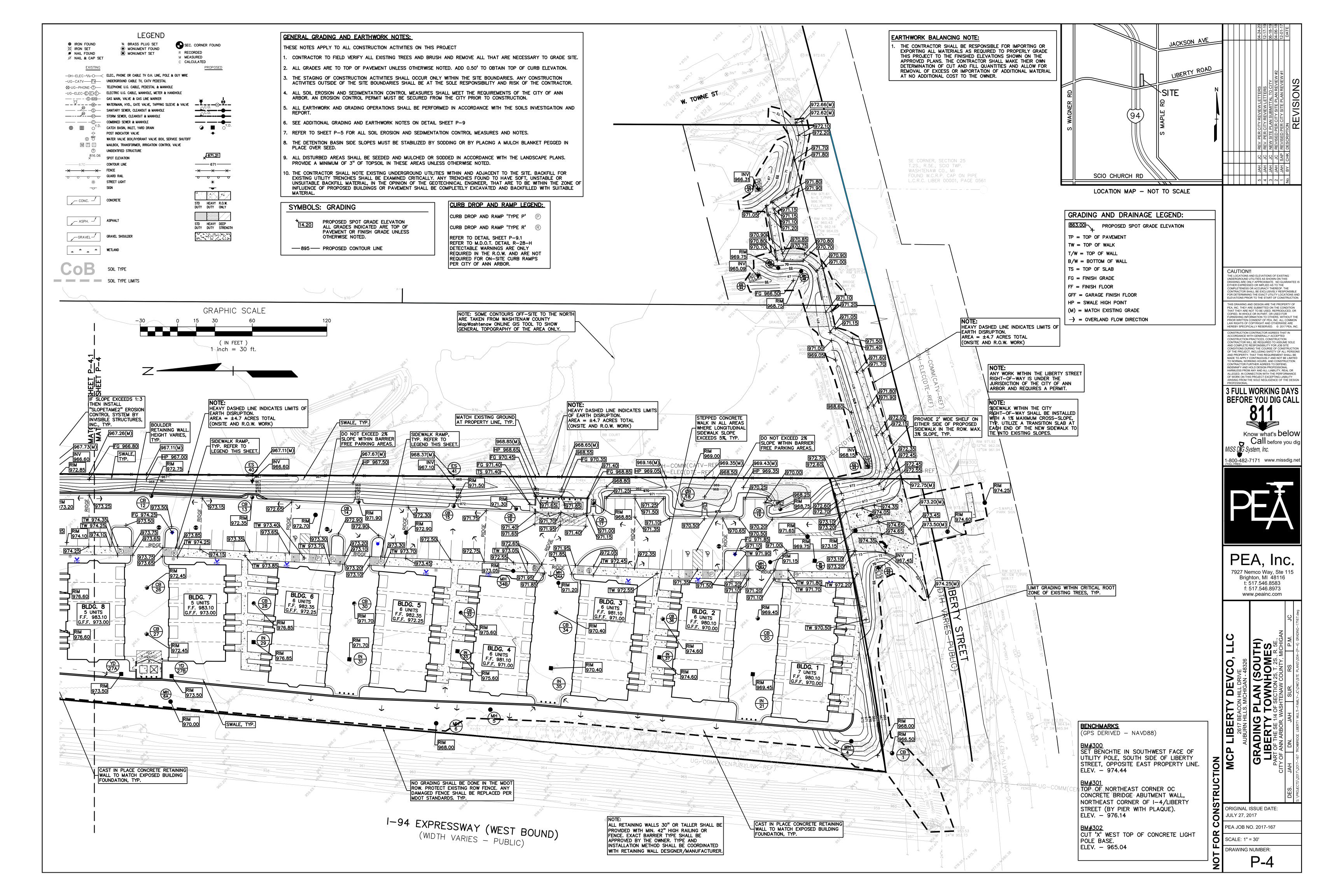

SCALE: 1" = 50'

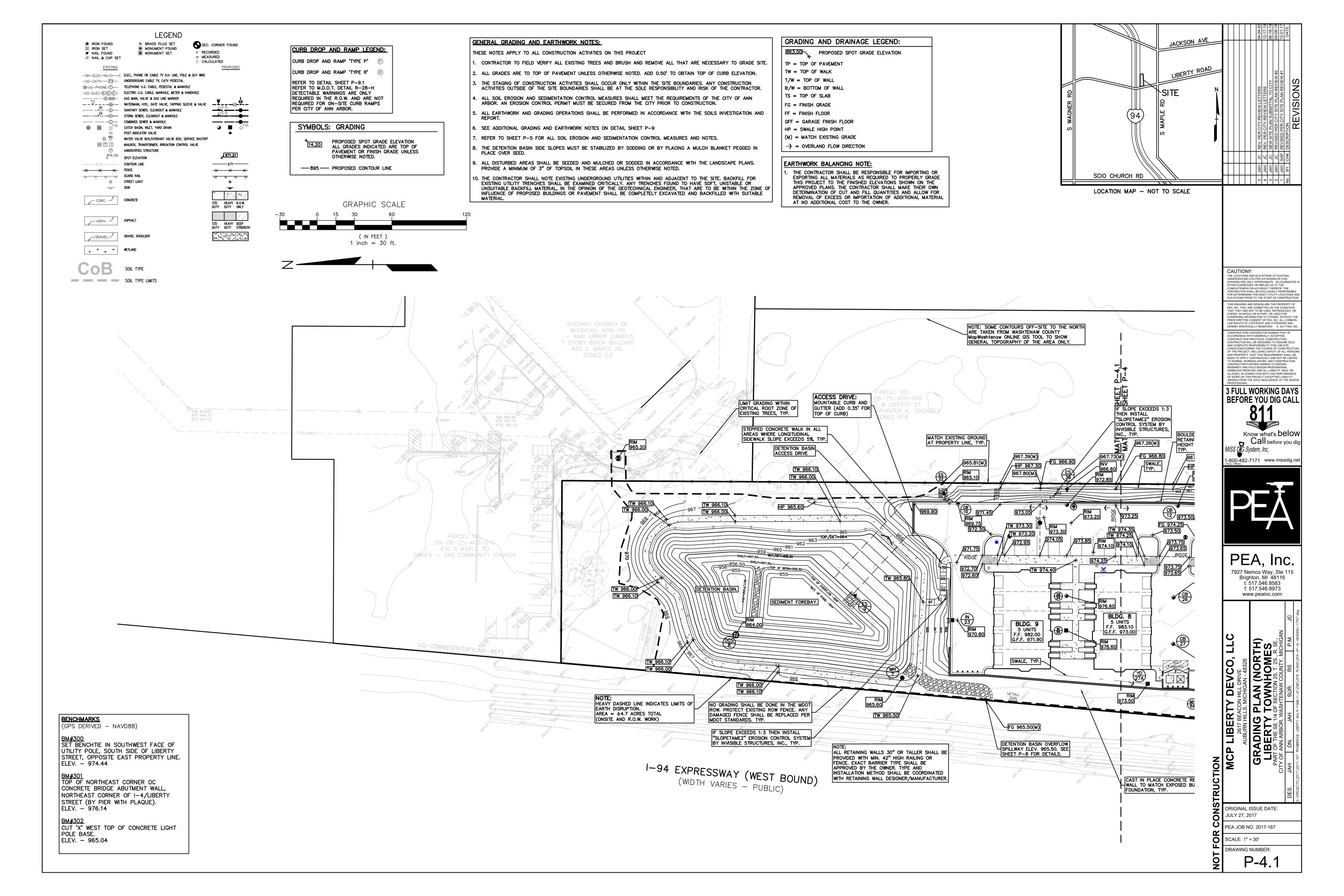

PEA JOB NO. 2017-167

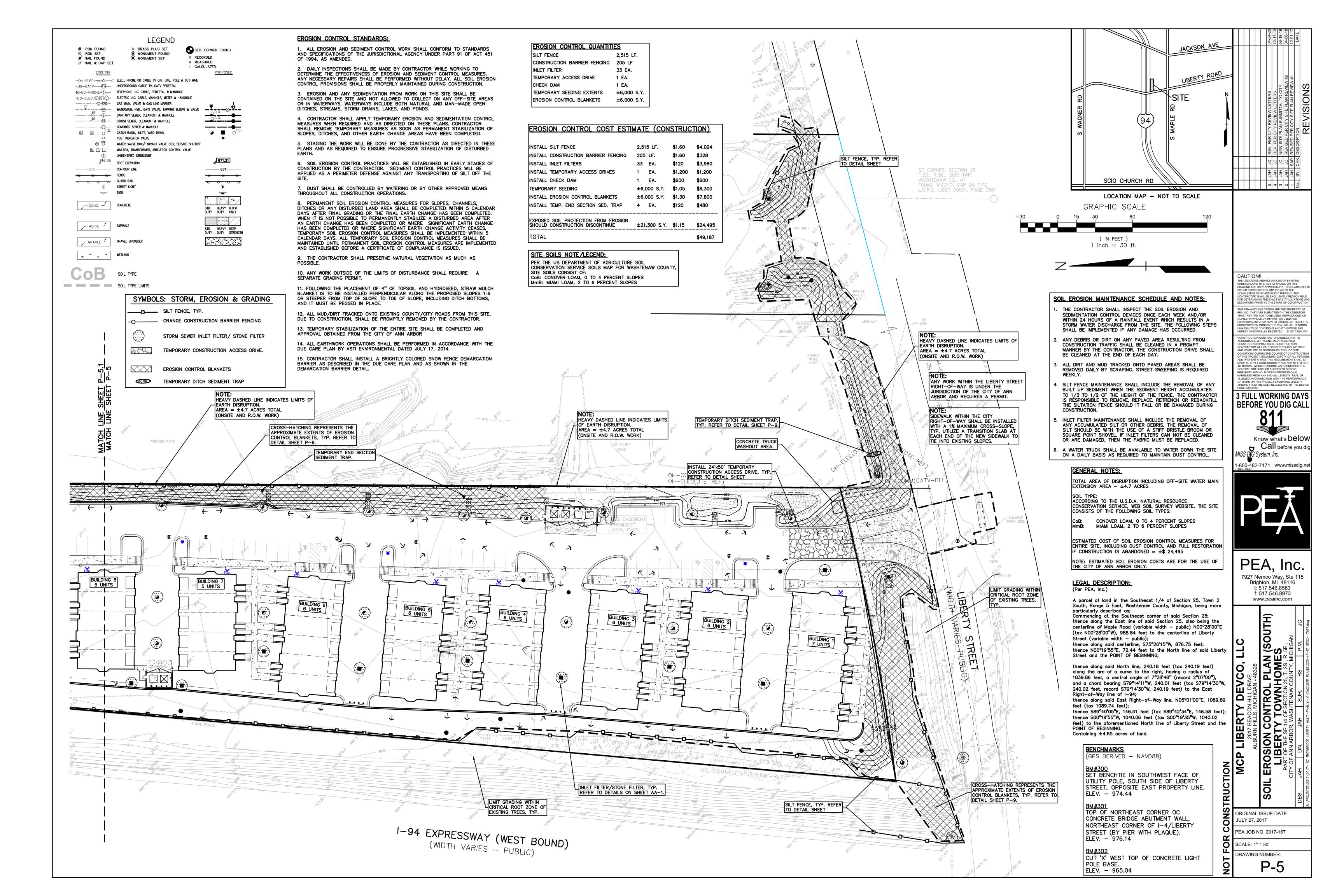

1 of 1

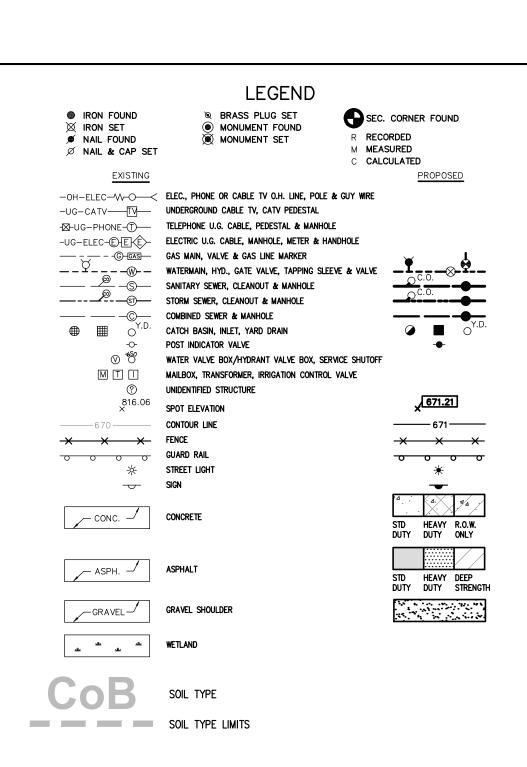






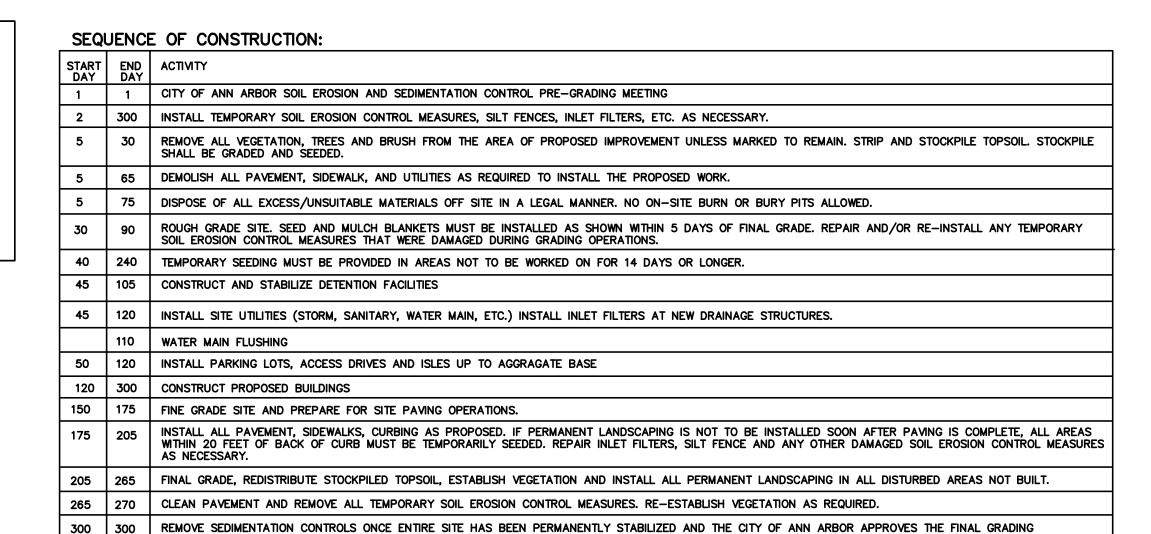


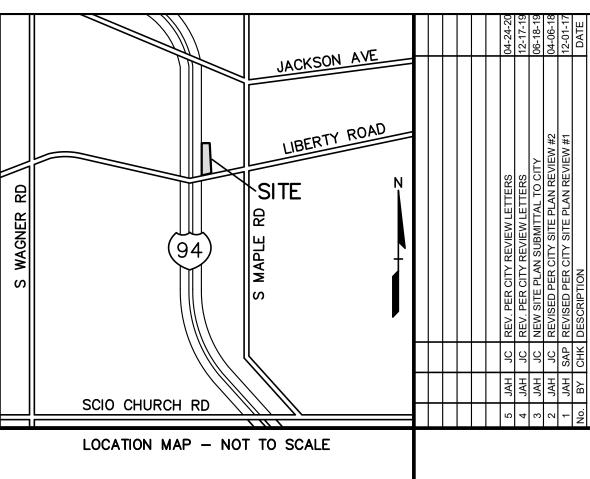




SYMBOLS: STORM, EROSION & GRADING

STORM SEWER INLET FILTER/ STONE FILTER


TEMPORARY CONSTRUCTION ACCESS DRIVE.


ORANGE CONSTRUCTION BARRIER FENCING

EROSION CONTROL BLANKETS

TEMPORARY CHECK DAM

_____ SILT FENCE, TYP.

CAUTION!!

DERGROUND UTILITIES AS SHOWN ON THIS

DRAWING ARE ONLY APPROXIMATE. NO GUARANTEE EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS OR ACCURACY THEREOF. THE CONTRACTOR SHALL BE EXCLUSIVELY RESPONSIBLE

LEVATIONS PRIOR TO THE START OF CONSTRUCTI

THIS DRAWING AND DESIGN ARE THE PROPERTY OF PEA, INC. THEY ARE SUBMITTED ON THE CONDITION THAT THEY ARE NOT TO BE USED, REPRODUCED, OR COPIED, IN WHOLE OR IN PART, OR USED FOR FURNISHING INFORMATION TO OTHERS, WITHOUT THE PRIOR WRITTEN CONSENT OF PEA, INC. ALL COMDULAW RIGHTS OF COPYRIGHT AND OTHERWISE ARE HEREBY SPECIFICALLY RESERVED. © 2017 PEA, INC.

CONSTRUCTION PRACTICES, CONSTRUCTION CONTRACTOR WILL BE REQUIRED TO ASSUME SOL AND COMPLETE RESPONSIBILITY FOR JOB SITE

CONDITIONS DURING THE COURSE OF CONSTRUCTION OF THE PROJECT, INCLUDING SAFETY OF ALL PERSON AND PROPERTY; THAT THIS REQUIREMENT SHALL BE MADE TO APPLY CONTINUOUSLY AND NOT BE LIMITED TO NORMAL WORKING HOURS, AND CONSTRUCTION CONTRACTOR ELIBITIES AGREES TO DEFEND

ISING FROM THE SOLE NEGLIGENCE OF THE DESIGN

Know what's **DeIOW**

PEA, Inc.

7927 Nemco Way, Ste 115

Brighton, MI 48116

t: 517.546.8583 f: 517.546.8973

www.peainc.com

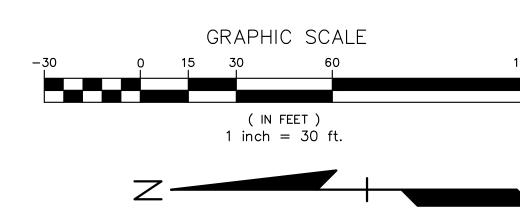
SSION CONTROL PLA
IBERTY TOWNHON

ORIGINAL ISSUE DATE:

PEA JOB NO. 2017-167

RAWING NUMBER:

JULY 27, 2017


SCALE: 1" = 30'

MC

Call before you dig

3 FULL WORKING DAYS **BEFORE YOU DIG CALL**

ONTRACTOR FURTHER AGREES TO DEFEND INDEMNIFY AND HOLD DESIGN PROFESSIONAL HARMLESS FROM ANY AND ALL LIABILITY, REAL OR ALLEGED, IN CONNECTION WITH THE PERFORMANC OF WORK ON THIS PROJECT EXCEPTING LIABILITY

SITE SOILS NOTE/LEGEND: PER THE US DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOILS MAP FOR WASHTENAW COUNTY, SITE SOILS CONSIST OF: CoB: CONOVER LOAM, 0 TO 4 PERCENT SLOPES MmB: MIAMI LOAM, 2 TO 6 PERCENT SLOPES

(GPS DERIVED - NAVD88)

BM#300 SET BENCHTIE IN SOUTHWEST FACE OF UTILITY POLE, SOUTH SIDE OF LIBERTY STREET, OPPOSITE EAST PROPERTY LINE. ELEV. – 974.44

BM#301 TOP OF NORTHEAST CORNER OC CONCRETE BRIDGE ABUTMENT WALL, NORTHEAST CORNER OF I-4/LIBERTY STREET (BY PIER WITH PLAQUE). ELEV. - 976.14

CUT 'X' WEST TOP OF CONCRETE LIGHT POLE BASE. ELEV. - 965.04

LEGAL DESCRIPTION: (Per PEA, Inc.)

A parcel of land in the Southeast 1/4 of Section 25, Town 2 South, Range 5 East, Washtenaw County, Michigan, being more particularly described as; Commencing at the Southeast corner of said Section 25; thence along the East line of said Section 25, also being the centerline of Maple Road (variable width - public) N00°28'00"E (tax

thence along said centerline, S75°26'15"W, 876.75 feet; thence N00°19'55"E, 72.44 feet to the North line of said Liberty Street and the POINT OF BEGINNING;

N00°28'00"W), 988.84 feet to the centerline of Liberty Street (variable

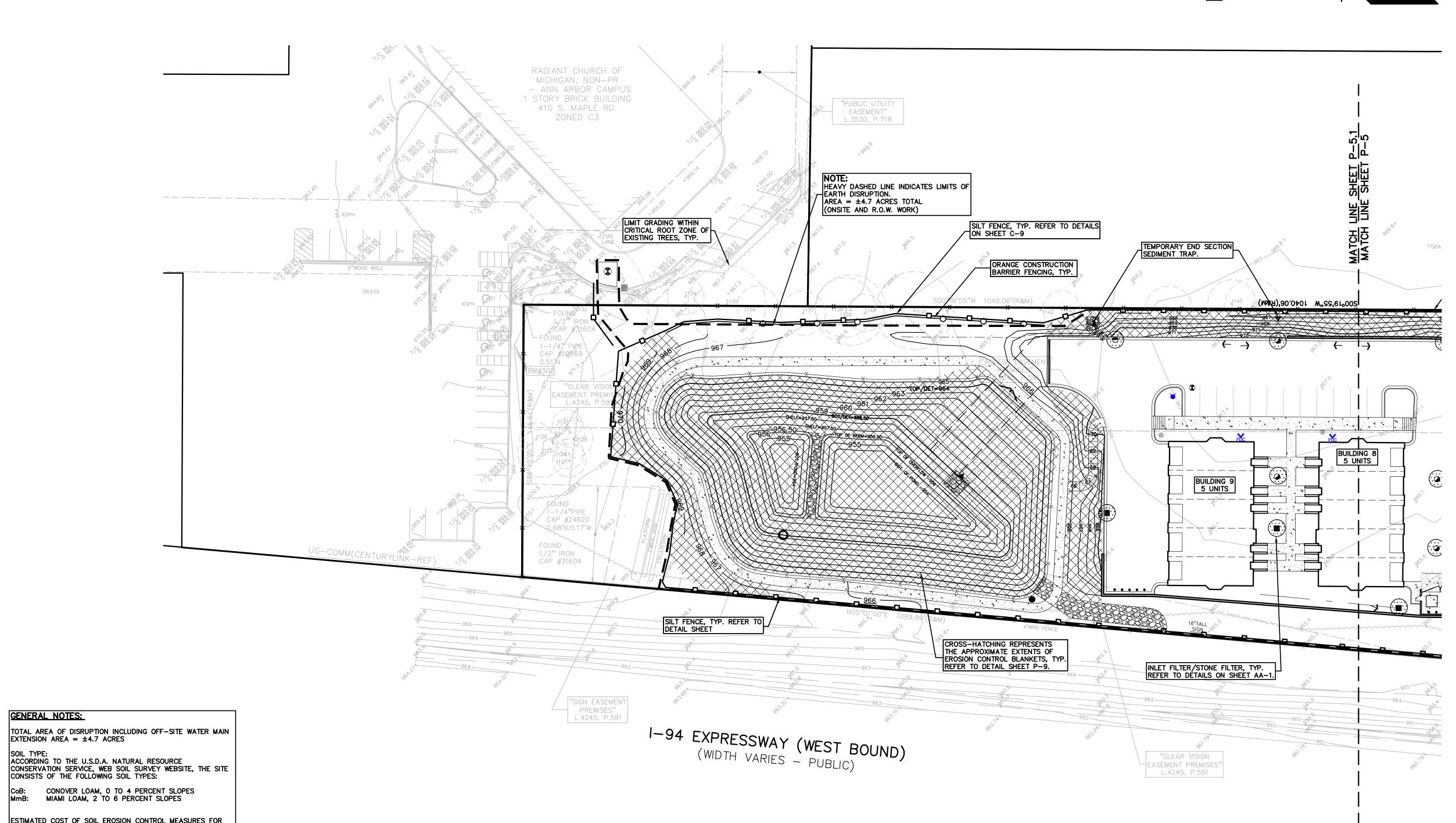
thence along said North line, 240.18 feet (tax 240.19 feet) along the arc of a curve to the right, having a radius of 1839.86 feet, a central angle of 7°28'46" (record 2°07'00"), and a chord bearing S79°14'11"W, 240.01 feet (tax S79°14'30"W, 240.02 feet, record S79°14'30"W, 240.19 feet) to the East Right-of-Way line of I-94; thence along said East Right-of-Way line, N05°01'00"E, 1089.89 feet (tax 1089.74 feet);

thence S89°40'05"E, 146.51 feet (tax S89°42'34"E, 146.58 feet); thence S00°19'55"W, 1040.06 feet (tax S00°19'35"W, 1040.02 feet) to the aforementioned North line of Liberty Street and the POINT OF

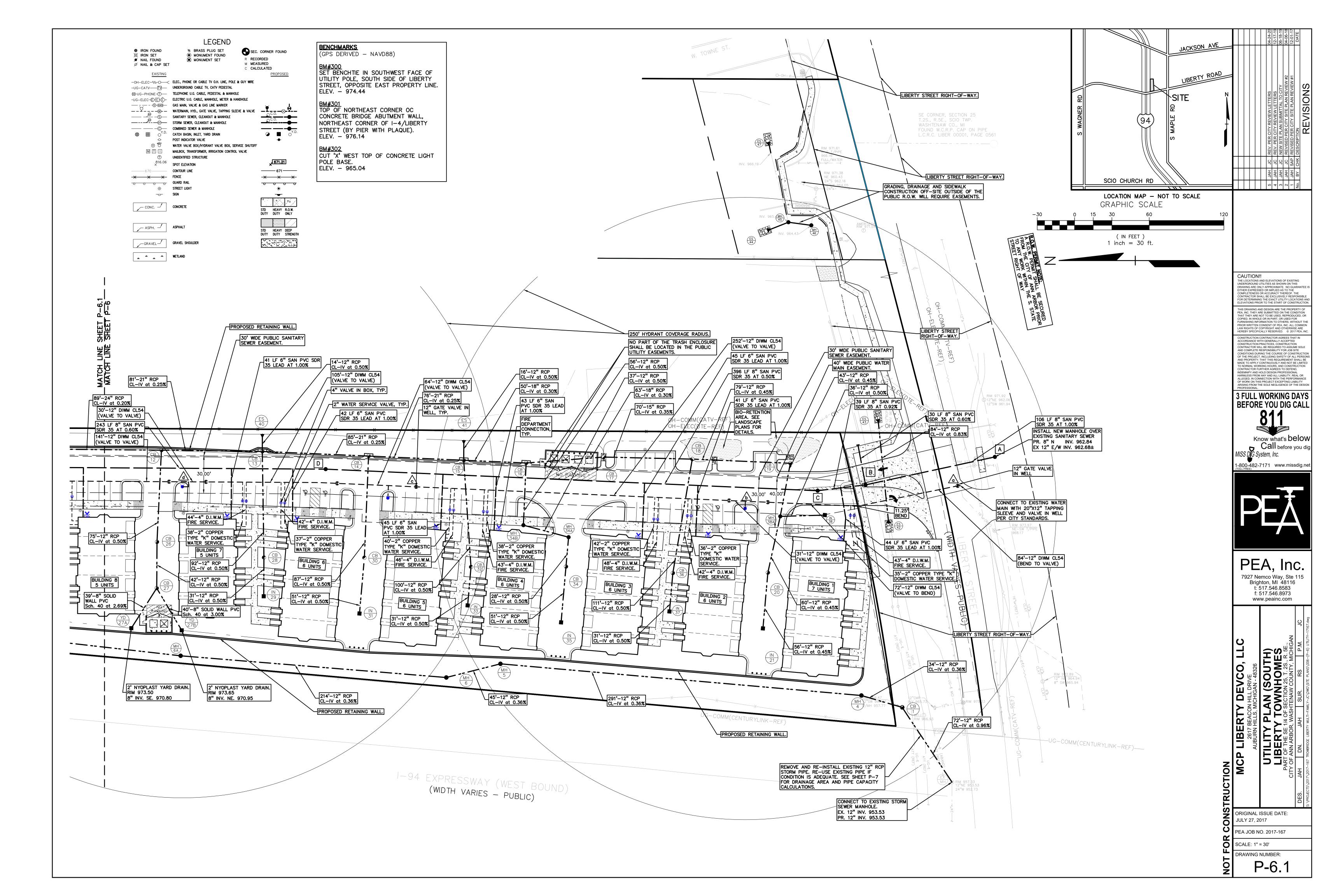
Containing ± 4.65 acres of land.

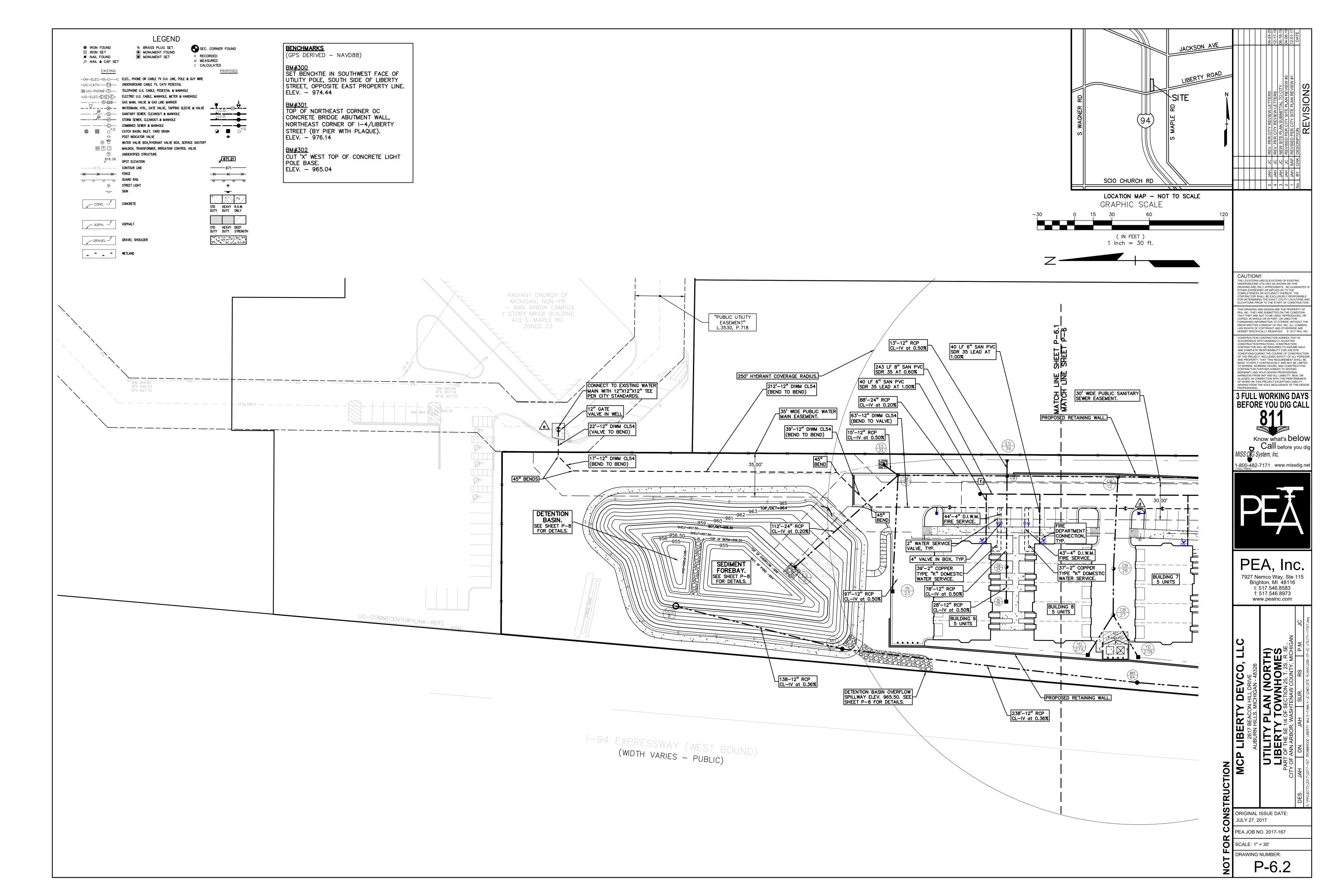
SOIL EROSION MAINTENANCE SCHEDULE AND NOTES:

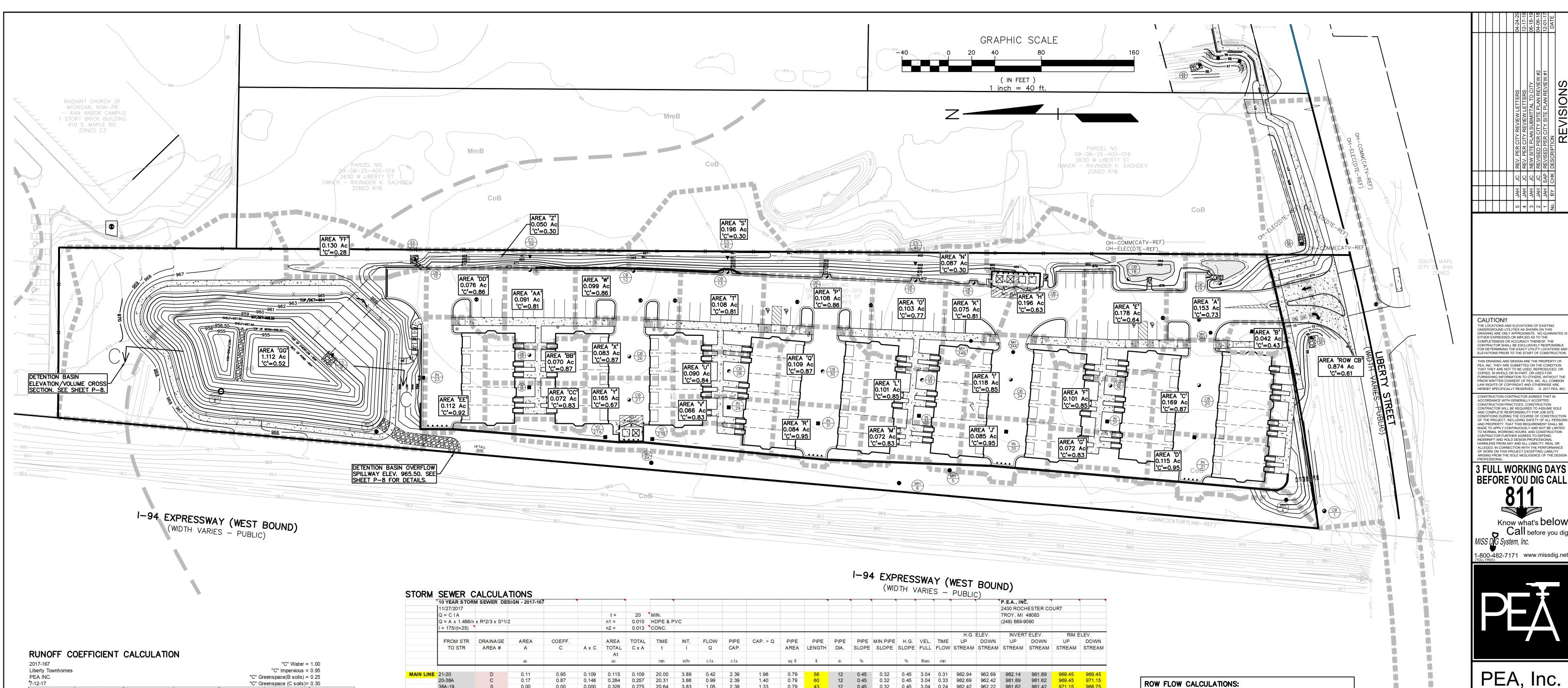
- THE CONTRACTOR SHALL INSPECT THE SOIL EROSION AND SEDIMENTATION CONTROL DEVICES ONCE EACH WEEK AND/OR WITHIN 24 HOURS OF A RAINFALL EVENT WHICH RESULTS IN A STORM WATER DISCHARGE FROM THE SITE. THE FOLLOWING STEPS SHALL BE IMPLEMENTED IF ANY DAMAGE HAS OCCURRED.
- 2. ANY DEBRIS OR DIRT ON ANY PAVED AREA RESULTING FROM CONSTRUCTION TRAFFIC SHALL BE CLEANED IN A PROMPT MANNER BY THE CONTRACTOR. THE CONSTRUCTION DRIVE SHALL BE CLEANED AT THE END OF EACH DAY.


GENERAL NOTES:


ENTIRE SITE, INCLUDING DUST CONTROL AND FULL RESTORATION


NOTE: ESTIMATED SOIL EROSION COSTS ARE FOR THE USE OF THE CITY OF ANN ARBOR ONLY.


IF CONSTRUCTION IS ABANDONED = \pm \$ 24,495


- 3. ALL DIRT AND MUD TRACKED ONTO PAVED AREAS SHALL BE REMOVED DAILY BY SCRAPING. STREET SWEEPING IS REQUIRED
- 4. SILT FENCE MAINTENANCE SHALL INCLUDE THE REMOVAL OF ANY BUILT UP SEDIMENT WHEN THE SEDIMENT HEIGHT ACCUMULATES TO 1/3 TO 1/2 OF THE HEIGHT OF THE FENCE. THE CONTRACTOR IS RESPONSIBLE TO REMOVE, REPLACE, RETRENCH OR REBACKFILL THE SILTATION FENCE SHOULD IT FALL OR BE DAMAGED DURING
- 5. INLET FILTER MAINTENANCE SHALL INCLUDE THE REMOVAL OF ANY ACCUMULATED SILT OR OTHER DEBRIS. THE REMOVAL OF SILT SHOULD BE WITH THE USE OF A STIFF BRISTLE BROOM OR SQUARE POINT SHOVEL. IF INLET FILTERS CAN NOT BE CLEANED OR ARE DAMAGED, THEN THE FABRIC MUST BE REPLACED.
- 6. A WATER TRUCK SHALL BE AVAILABLE TO WATER DOWN THE SITE ON A DAILY BASIS AS REQUIRED TO MAINTAIN DUST CONTROL.

17-167					"C" Water =	
erty Townhomes					"C" Impervious =	
A INC.					enspace(B soils) =	
2-17				"C" Gre	enspace (C soils)=	0.30
Drainage Area	Impervious (Acres)		Water (Acres)	Total Area (Acres)	Composite "C"	Area (ac.) x "
Α	0.100		0.000	0.153	0.73	0.
В	0.008		0.000	0.042	0.43	0.
С	0.149	0.020	0.000	0.169	0.87	0.
D	0.115	0.000	0.000	0.115	0.95	0.
E	0.093	0.084	0.000	0.178	0.64	0.
F	0.085	0.016	0.000	0.101	0.85	0.
G	0.058		0.000	0.072	0.83	0.
Н	0.098		0.000	0.196	0.63	0.
I	0.100		0.000	0.118	0.85	0.
J	0.085	0.000	0.000	0.085	0.95	0
K	0.059		0.000	0.075	0.81	0
L	0.085		0.000	0.101	0.85	0
M	0.058		0.000	0.072	0.83	0
N	0.001	0.086	0.000	0.087	0.30	0
0	0.075		0.000	0.103	0.77	0
Р	0.093		0.000	0.108	0.86	0
Q	0.096		0.000	0.109	0.87	0
R	0.084		0.000	0.084	0.95	0
S	0.000		0.000	0.196	0.30	0
Т	0.084	0.023	0.000	0.108	0.81	0
U	0.075		0.000	0.090	0.84	0
V	0.054	0.012	0.000	0.066	0.83	0
W	0.085	0.014	0.000	0.099	0.86	0
Х	0.073		0.000	0.083	0.87	0
Y	0.094	0.071	0.000	0.165	0.67	0
Z	0.000		0.000	0.050	0.30	0
AA	0.071	0.020	0.000	0.091	0.81	0
BB	0.061	0.009	0.000	0.070	0.87	0
CC	0.059	0.013	0.000	0.072	0.83	0
DD	0.065	0.010	0.000	0.076	0.86	0
EE	0.106	1000	0.000	0.112	0.92	0
FF	0.000		0.000	0.130	0.28	0
GG	0.077	0.733	0.301	1.112	0.52	0

Drainage AreaImpervious (Acres)Greenspace (Acres)Water (Acres)Total Area (Acres)Composite "C"Area (ac.)x "C"ROW CB0.4490.4250.0000.8740.610.533

AVG "C" = 0.682

TOPOGRAPHIC SURVEY DISCLAIMER:

SOME TOPOGRAPHIC CONTOUR LINES OUTSIDE OF THE PERIMETER OF THE SUBJECT PARCEL WERE TAKEN FROM THE WASHTENAW COUNTY MapWashtenaw ONLINE GIS MAP TOOL.

PEA, INC. WILL NOT BE HELD RESPONSIBLE FOR THE ACCURACY OF THE CONTOUR LINES OR FOR DESIGN ERRORS/OMISSIONS RESULTING FROM ANY INACCURACIES.

The color of the	SIURM	SEWER (JALCULA	IION2																		LOBIL	C)				
Color Colo		10 YEAR STOR	M SEWER DESI	IGN - 2017-16	7				1								,	,	,					P.E.A., IN	5 .		
A T		11/27/2017																						2430 ROCI	HESTER CO	DURT	
A A A A A A A A A A		Q = C I A					t =	20	MIN.															TROY, MI	48083		
Primary Prim		DOM: THE BEST P	x R^2/3 x S^1/2				n1 =	1000000	HDPF & F	PVC																	
Proof and Proo			1 1 1 2/3 / 0 1/2							V 0														(240) 000 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Principal Principal Principal Principal Principal		1 - 175/(1+25)					112 =	0.013	CONC.													шс	ELEV	INIVED:	TELEV	DIM	ELEV
TO SITE ASPER A C A		EDOM CTD	DDAINAGE	ADEA	COFFE		ADEA	TOTAL	TIME	INIT	EL OW	DIDE	CAD > O	DIDE	DIDE	DIDE	DIDE	MINI DIDE	11.0	VEL	TIME						
MAIL LEE - 10 - 10 - 10 - 10 - 10 - 10 - 10 -							- 10-31 Day	14 70 45 700	TIIVIE	IN I .		10. 10 11-0	CAP. > Q	100 100 100 100		–	15. 98. 2				P. D. A. M. P. C.		12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				
MAIL ME (120) 15		IUSIK	AREA #	А	C	AXC		CXA	τ	ļ.	Q	CAP.		AKEA	LENGIA	DIA.	SLOPE	SLOPE	SLOPE	FULL	FLOVV	SIKEAM	SIKEAW	SIREAM	SIREAW	SIREAM	STREAM
## PACE C. C. C. C. C. C. C.																	0.1										
DALAM C C C C C C C C C C C C C C C C C C C				ac.			ac.		min.	in/hr	c.f.s.	c.f.s.		sq. ft.	ft.	in.	%		%	ft/sec	min.						
2-NAME C C C C T T OST C 48 OST C C C C T T OST C C C C C C C C C C C C C C C C C C C	MAINI LINIE	24.20	D	0.11	0.05	0.100	0.115	0.100	20.00	2.00	0.42	2.20	1.06	0.70	EG	10	0.45	0.22	0.45	2.04	0.21	062.04	062.60	062.14	061.80	060.45	060.45
Self-19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	MAIN LINE																										
1945 A 345 C.77 311 C.87 C.38 2.67 2.65 1.47 2.50 3.20 7.70 7.9 2.66 0.32 C.82 3.61 0.48 3.62 0.18 2.64 2.64 0.35 0.18 2.64 2.64 0.35 0.18																				(0.010.101							
HEAT BE C.18 0.46 0.144 0.265 0.46 21.05 0.76 2.44 3.82 1.38 1.38 1.38 1.03 70 15 0.58 0.24 2.81 1.1 0.77 0.16 0.20 0.20 0.20 0.20 0.20 1.38 1.40 1.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2																											
17-16																											
19-15 K 20 0.031 0.067 2.032 2.072 2.78			<u>-</u>																								
16 16 C			H																								
H-13 P 11 088 C00 1467 1529 2249 367 667 7462 239 240 87 867 867 7462 239 240 87 82 82 82 82 82 82 82 82 82 82 82 82 82			K																-								
18-12 T 0.11 0.81 0.92 1.247 1.801 2.07 2.64 0.57 7.42 1.35 2.40 1.240 1.240 1.250 2.34 0.41 0.25 2.38 0.41 98.08 96.08 98.40 96.22 92.79 2.72 1.240 1.250 1			_							I I MARKET MILLON																	
1211 V1			Р																								
11-10			Т																								
LATERAL 30-06 DG 0.06 0.06 0.06 0.07 0.09 0.09 0.09 0.09 0.00 0.09 0.00 0.09 0.00		12-11	W		0.86	0.085	2.774		23.48		7.48	-2-4-0-011		3.14			0.20		0.17		0.46						
LATERAL 3838 B 0 0.07 0.83 0.680 0.77 0.69 2300 3.80 0.77 0.76 230 0.80 0.77 0.70 0.80 0.77 0.70 0.80 0.77 0.70 0.80 0.8		11-10	AA	0.09	0.81	0.073	3.056	2.281	23.94	3.58	8.15	10.11	1.95	3.14	88	24	0.20	0.13	0.13	3.22	0.46	960.53	960.42	958.90	958.72	972.85	969.75
LATERAL \$3.58 G 0.07 0.13 0.095 0.072 0.006 0.000 188 0.22 2.55 198 0.79 111 12 0.55 0.32 0.55 2.1 0.1 80.58 802.42 881.87 881.82 874.65 894.65 894.8		10-9	DD	0.08	0.86	0.065	3.374	2.485	24.40	3.54	8.80	10.11	1.31	3.14	112	24	0.20	0.13	0.28	3.22	0.58	960.42	960.10	958.72	958.50	969.75	ES
LATERAL \$3.58 G 0.07 0.13 0.095 0.072 0.006 0.000 188 0.22 2.55 198 0.79 111 12 0.55 0.32 0.55 2.1 0.1 80.58 802.42 881.87 881.82 874.65 894.65 894.8																											
LATERAL 39-18 F 0-10 0-88 0-086 0-172 0-145 2058 3.84 0.36 2.22 1 580 0.79 111 12 0.50 0.22 0.50 3.21 0.58 500-22 06167 59-10 974-80 990.00 LATERAL 35-14 J 0.00 0.85 0.00 0.081 0.081 2000 3.89 0.31 2.22 2.20 0.79 21 12 0.50 0.32 0.00 3.21 0.15 0.00 181 2015 3.88 0.70 2.22 1 181 0.79 20 12 0.50 0.32 0.00 3.21 0.15 0.00 181 2015 3.88 0.70 2.22 1 181 0.79 20 12 0.50 0.32 0.00 3.21 0.15 0.00 181 2015 3.88 0.70 2.22 1 181 0.79 20 12 0.50 0.32 0.00 3.21 0.15 0.00 181 2015 3.88 0.70 2.22 1 181 0.79 20 12 0.50 0.32 0.00 3.21 0.15 0.00 181 2015 90-15 0.00 181 2015 3.88 0.70 2.22 1 182 0.79 20 12 0.50 0.32 0.00 3.21 0.15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 90-15 0.00 181 2015 90-15	LATERAL	38-38A	В	0.04	0.43	0.018	0.042	0.018	20.00	3.89	0.07	2.52	2.45	0.79	36	12	0.50	0.32	0.50	3.21	0.19	962.60	962.42	961.80	961.62	969.75	971.15
LATERAL 39-18 F 0-10 0-88 0-086 0-172 0-145 2058 3.84 0.36 2.22 1 580 0.79 111 12 0.50 0.22 0.50 3.21 0.58 500-22 06167 59-10 974-80 990.00 LATERAL 35-14 J 0.00 0.85 0.00 0.081 0.081 2000 3.89 0.31 2.22 2.20 0.79 21 12 0.50 0.32 0.00 3.21 0.15 0.00 181 2015 3.88 0.70 2.22 1 181 0.79 20 12 0.50 0.32 0.00 3.21 0.15 0.00 181 2015 3.88 0.70 2.22 1 181 0.79 20 12 0.50 0.32 0.00 3.21 0.15 0.00 181 2015 3.88 0.70 2.22 1 181 0.79 20 12 0.50 0.32 0.00 3.21 0.15 0.00 181 2015 3.88 0.70 2.22 1 181 0.79 20 12 0.50 0.32 0.00 3.21 0.15 0.00 181 2015 90-15 0.00 181 2015 3.88 0.70 2.22 1 182 0.79 20 12 0.50 0.32 0.00 3.21 0.15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 0.00 181 2015 90-15 90-15 0.00 181 2015 90-15																											
LATERAL 3-5-4 J 0.06 0.08 0.08 0.08 0.08 0.08 0.08 0.08	LATERAL	37-36	G	0.07	0.83	0.059	0.072	0.059	20.00	3.89	0.23	2.52	2.29	0.79	31	12	0.50	0.32	0.50	3.21	0.16	962.58	962.42	961.78	961.62	974.60	974.60
LATERAL 3-5-4 J 0.06 0.08 0.08 0.08 0.08 0.08 0.08 0.08																											
34-348 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.																, , ,											
343-348 0 0.00 0.00 0.00 0.00 0.203 0.181 20.34 3.86 0.70 2.62 1.82 0.79 69 12 0.50 0.32 0.50 3.21 0.10 66150 661,71 680,91 971.30 071.30 071.30 0.00 0.00 0.00 0.203 0.181 20.54 3.86 0.70 2.62 1.82 0.79 69 12 0.50 0.32 0.50 3.21 0.10 66150 661,71 680,91 971.30 071.30 071.30 0.00 0.00 0.00 0.203 0.181 20.54 3.86 0.70 0.71 31 12 0.50 0.32 0.50 3.21 0.10 66150 661,71 680,41 90.001 971.30 071.30 0.00 0.00 0.00 0.00 0.203 0.181 20.54 3.86 0.70 0.71 31 12 0.50 0.32 0.50 3.21 0.16 66140 664.28 963,14 083.86 0.70 0.70 0.83 0.050 0.70 0.146 20.52 3.84 0.88 0.23 2.52 1.56 0.79 0.70 12 0.50 0.32 0.50 3.21 0.15 664.4 664.28 963,84 083.86 0.70 0.70 0.85 0.70 0.70 0.85 0.70 0.70 0.88 0.70 0.70 0.88 0.20 0.58 0.20 0.58 0.20 0.58 0.20 0.58 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.7	LATERAL	35-34	J			0.081	0.085	0.081	20.00		0.31		2.20	0.79			0.50	0.32	0.50	3.21	0.27		962.04	961.49	961.24	970.45	
98-16 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00		34-34A	1	0.12	0.85	0.100	0.203	0.181	20.15	3.88	0.70	2.52	1.81	0.79	28	12	0.50	0.32	0.50	3.21	0.15	962.04	961.90	961.24	961.10	970.45	971.20
LATERAL 33-22 M		34A-34B	0	0.00	0.00	0.000	0.203	0.181	20.34	3.86	0.70	2.52	1.82	0.79	37	12	0.50	0.32	0.50	3.21	0.19	961.90	961.71	961.10	960.91	971.20	974.50
22-15 L 0.10 0.85 0.086 0.172 0.145 20.52 3.84 0.56 2.52 1.96 0.79 100 12 0.50 0.32 0.50 3.21 0.52 964.28 663.78 963.48 962.08 975.60 971.50 110 0.00 110 0.		34B-16	0	0.00	0.00	0.000	0.203	0.181	20.63	3.84	0.69	2.52	1.82	0.79	56	12	0.50	0.32	0.50	3.21	0.29	961.71	961.43	960.91	960.63	974.50	971.30
22-15 L 0.10 0.85 0.086 0.172 0.145 20.52 3.84 0.56 2.52 1.96 0.79 100 12 0.50 0.32 0.50 3.21 0.52 964.28 663.78 963.48 962.08 975.60 971.50 110 0.00 110 0.	LATERAL	22.22	M	0.07	0.02	0.050	0.072	0.050	20.00	2.00	0.22	2.52	2.20	0.70	21	10	0.50	0.22	0.50	2 24	0.16	064.44	064.20	062.64	062.40	075.60	075.60
LATERAL 31:00 R 0.08 0.95 0.080 0.084 0.080 2000 3.89 0.31 2.52 2.21 0.79 51 12 0.50 0.32 0.50 3.21 0.27 661.78 661.53 660.79 690.79 971.70 97	LATERAL																				0.00		5/3/00 (3/00LL)A-90				
30-14 Q 0.11 0.87 0.095 0.193 0.175 20.45 3.85 0.67 2.52 1.84 0.79 87 12 0.50 0.32 0.50 3.21 0.45 961.53 961.09 980.73 980.29 971.70 971.90 1.00 LATERAL 29-28 V 0.07 0.83 0.055 0.086 0.055 0.086 0.055 0.00 0.389 0.21 0.50 0.090 0.79 0.090 0.79 0.090 0.090 0.84 0.076 0.156 0.130 0.090 0		32-15	L	0.10	0.85	0.086	0.172	0.145	20.52	3.84	0.56	2.52	1.96	0.79	100	12	0.50	0.32	0.50	3.21	0.52	964.28	963.78	963.48	962.98	9/5.60	9/1.50
30-14 Q 0.11 0.87 0.095 0.193 0.175 20.45 3.85 0.67 2.52 1.84 0.79 87 12 0.50 0.32 0.50 3.21 0.45 961.53 961.09 980.73 980.29 971.70 971.90 1.00 LATERAL 29-28 V 0.07 0.83 0.055 0.086 0.055 0.086 0.055 0.00 0.389 0.21 0.50 0.090 0.79 0.090 0.79 0.090 0.090 0.84 0.076 0.156 0.130 0.090 0	LATERAL	31-30	R	0.08	0.95	0.080	0.084	0.080	20.00	3.89	0.31	2.52	2.21	0.79	51	12	0.50	0.32	0.50	3.21	0.27	961.78	961.53	960.98	960.73	971.70	971.70
28-13 U 0.09 0.84 0.076 0.156 0.130 20.48 3.85 0.50 2.52 2.02 0.79 92 12 0.50 0.32 0.50 3.21 0.48 965.34 964.88 964.64 964.89 964.55 972.35 LATERAL 27-26 Y 0.17 0.67 0.111 0.165 0.111 20.00 3.89 0.43 2.52 2.09 0.79 42 12 0.50 0.32 0.50 3.21 0.22 961.26 961.05 960.48 960.25 972.45 972.45 972.75 LATERAL 25-24 CC 0.07 0.83 0.060 0.072 0.060 2.000 3.89 0.23 2.52 2.29 0.79 76 12 0.50 0.32 0.50 3.21 0.39 961.05 960.88 964.89 964.69 963.00 976.60 976.60 976.60 972.65 LATERAL 23-10 EE 0.11 0.92 0.103 0.112 0.103 20.00 3.89 0.40 2.52 2.12 0.79 97 12 0.50 0.32 0.50 3.21 0.50 960.81 960.32 969.01 959.52 970.80 969.75 LATERAL 22-10 FF 0.13 0.28 0.096 0.130 0.096 2.000 3.89 0.14 2.52 2.38 0.79 15 12 0.50 0.32 0.50 3.21 0.09 960.50 960.80 960.25 999.80 969.75 LATERAL 40-13 S 0.20 0.30 0.059 0.196 0.069 20.00 3.89 0.23 2.52 2.29 0.79 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 14 12 0.10 12 0.10 12 0.10 12 0.10 13 12 0.10 13 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 14 12 0.10 12 0.10 12 0.10 12 0.10 13 12 0.10 13 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 14 12 0.10 12 0.10 12 0.10 13 12 0.10 12 0.10 13 12 0.10 13 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.35 14 14 12 0.10 1																											
28-13 U 0.09 0.84 0.076 0.156 0.130 20.48 3.85 0.50 2.52 2.02 0.79 92 12 0.50 0.32 0.50 3.21 0.48 965.34 964.88 964.64 964.89 964.55 972.35 LATERAL 27-26 Y 0.17 0.67 0.111 0.165 0.111 20.00 3.89 0.43 2.52 2.09 0.79 42 12 0.50 0.32 0.50 3.21 0.22 961.26 961.05 960.48 960.25 972.45 972.45 972.75 LATERAL 25-24 CC 0.07 0.83 0.060 0.072 0.060 2.000 3.89 0.23 2.52 2.29 0.79 76 12 0.50 0.32 0.50 3.21 0.39 961.05 960.88 964.89 964.69 963.00 976.60 976.60 976.60 972.65 LATERAL 23-10 EE 0.11 0.92 0.103 0.112 0.103 20.00 3.89 0.40 2.52 2.12 0.79 97 12 0.50 0.32 0.50 3.21 0.50 960.81 960.32 969.01 959.52 970.80 969.75 LATERAL 22-10 FF 0.13 0.28 0.096 0.130 0.096 2.000 3.89 0.14 2.52 2.38 0.79 15 12 0.50 0.32 0.50 3.21 0.09 960.50 960.80 960.25 999.80 969.75 LATERAL 40-13 S 0.20 0.30 0.059 0.196 0.069 20.00 3.89 0.23 2.52 2.29 0.79 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 14 12 0.10 12 0.10 12 0.10 12 0.10 13 12 0.10 13 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 14 12 0.10 12 0.10 12 0.10 12 0.10 13 12 0.10 13 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.85 14 14 12 0.10 12 0.10 12 0.10 13 12 0.10 12 0.10 13 12 0.10 13 12 0.50 0.32 0.50 3.21 0.07 960.95 960.80 960.15 960.08 ES 972.35 14 14 12 0.10 1																											
LATERAL 27-26 Y 0.17 0.67 0.111 0.165 0.111 2.000 3.89 0.43 2.52 2.09 0.79 42 12 0.50 0.32 0.50 3.21 0.22 961.26 961.05 960.46 960.25 972.45 9	LATERAL																										
26-12 X 0.08 0.87 0.072 0.248 0.183 20.39 3.86 0.71 2.52 1.81 0.79 75 12 0.50 0.32 0.50 3.21 0.39 961.05 960.68 960.25 959.88 972.45 972.75 LATERAL 25-24 CC 0.07 0.83 0.060 0.072 0.060 20.00 3.89 0.23 2.52 2.29 0.79 78 12 0.50 0.32 0.50 3.21 0.15 965.03 964.89 964.23 964.09 976.60 976.60 978.60 972.85 LATERAL 23-10 EE 0.11 0.92 0.103 0.112 0.103 20.00 3.89 0.40 2.52 2.12 0.79 97 12 0.50 0.32 0.50 3.21 0.50 960.81 960.32 969.01 959.52 970.80 969.75 LATERAL 22-10 FF 0.13 0.28 0.036 0.130 0.036 20.00 3.89 0.14 2.52 2.38 0.79 15 12 0.50 0.32 0.50 3.21 0.06 960.40 960.32 959.60 959.52 965.10 969.75 LATERAL 39-11 Z 0.05 0.30 0.015 0.050 0.015 20.00 3.89 0.06 2.52 2.46 0.79 13 12 0.50 0.32 0.50 3.21 0.07 960.57 960.50 959.77 959.70 ES 972.85 LATERAL 40-13 S 0.20 0.30 0.059 0.196 0.059 20.00 3.89 0.23 2.52 2.29 0.79 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.88 960.15 960.08 ES 972.35		28-13	U	0.09	0.84	0.076	0.156	0.130	20.48	3.85	0.50	2.52	2.02	0.79	92	12	0.50	0.32	0.50	3.21	0.48	965.34	964.88	964.54	964.08	976.85	972.35
26-12 X 0.08 0.87 0.072 0.248 0.183 20.39 3.86 0.71 2.52 1.81 0.79 75 12 0.50 0.32 0.50 3.21 0.39 961.05 960.68 960.25 959.88 972.45 972.75 LATERAL 25-24 CC 0.07 0.83 0.060 0.072 0.060 20.00 3.89 0.23 2.52 2.29 0.79 78 12 0.50 0.32 0.50 3.21 0.15 965.03 964.89 964.23 964.09 976.60 976.60 978.60 972.85 LATERAL 23-10 EE 0.11 0.92 0.103 0.112 0.103 20.00 3.89 0.40 2.52 2.12 0.79 97 12 0.50 0.32 0.50 3.21 0.50 960.81 960.32 969.01 959.52 970.80 969.75 LATERAL 22-10 FF 0.13 0.28 0.036 0.130 0.036 20.00 3.89 0.14 2.52 2.38 0.79 15 12 0.50 0.32 0.50 3.21 0.06 960.40 960.32 959.60 959.52 965.10 969.75 LATERAL 39-11 Z 0.05 0.30 0.015 0.050 0.015 20.00 3.89 0.06 2.52 2.46 0.79 13 12 0.50 0.32 0.50 3.21 0.07 960.57 960.50 959.77 959.70 ES 972.85 LATERAL 40-13 S 0.20 0.30 0.059 0.196 0.059 20.00 3.89 0.23 2.52 2.29 0.79 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.88 960.15 960.08 ES 972.35		27.00	V	0.47	0.07	0.444	0.405	0.444	20.00	2.00	0.40	2.52	2.00	0.70	40	40	0.50	0.00	0.50	2.24	0.00	004.00	004.05	000.40	000.05	072.45	070.45
LATERAL 25-24 CC 0.07 0.83 0.060 0.072 0.060 20.00 3.89 0.23 2.52 2.29 0.79 28 12 0.50 0.32 0.50 3.21 0.15 965.03 964.89 964.23 964.09 978.60 978.60 978.60 24.11 BB 0.07 0.87 0.061 0.142 0.120 20.41 3.85 0.46 2.52 2.05 0.79 78 12 0.50 0.32 0.50 3.21 0.41 964.89 964.50 964.09 963.70 976.60 972.85 LATERAL 23-10 EE 0.11 0.92 0.103 0.112 0.103 20.00 3.89 0.40 2.52 2.12 0.79 97 12 0.50 0.32 0.50 3.21 0.50 960.81 960.32 960.01 959.52 970.80 969.75 LATERAL 22-10 FF 0.13 0.28 0.036 0.130 0.036 20.00 3.89 0.14 2.52 2.38 0.79 15 12 0.50 0.32 0.50 3.21 0.08 960.40 960.32 959.60 959.52 965.10 969.75 LATERAL 39-11 Z 0.05 0.30 0.015 0.050 0.015 20.00 3.89 0.06 2.52 2.46 0.79 13 12 0.50 0.32 0.50 3.21 0.07 960.57 960.50 959.77 959.70 ES 972.85 LATERAL 40-13 S 0.20 0.30 0.059 0.196 0.059 20.00 3.89 0.23 2.52 2.29 0.79 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.88 960.15 960.08 ES 972.35	LATERAL																										
24-11 BB 0.07 0.87 0.061 0.142 0.120 20.41 3.85 0.46 2.52 2.05 0.79 78 12 0.50 0.32 0.50 3.21 0.41 964.89 964.50 964.09 963.70 976.60 972.85 LATERAL 23-10 EE 0.11 0.92 0.103 0.112 0.103 20.00 3.89 0.40 2.52 2.12 0.79 97 12 0.50 0.32 0.50 3.21 0.50 960.81 960.32 960.01 959.52 970.80 969.75 LATERAL 22-10 FF 0.13 0.28 0.036 0.130 0.036 20.00 3.89 0.14 2.52 2.38 0.79 15 12 0.50 0.32 0.50 3.21 0.08 960.40 960.32 959.60 959.52 965.10 969.75 LATERAL 39-11 Z 0.05 0.30 0.015 0.050 0.015 20.00 3.89 0.06 2.52 2.46 0.79 13 12 0.50 0.32 0.50 3.21 0.07 960.57 960.50 959.77 959.70 ES 972.85 LATERAL 40-13 S 0.20 0.30 0.059 0.196 0.059 20.00 3.89 0.23 2.52 2.29 0.79 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.88 960.15 960.08 ES 972.35		20-12	X	0.08	0.87	0.072	0.248	0.183	20.39	3.86	0.71	2.52	1.81	0.79	/5	12	0.50	0.32	0.50	3.21	0.39	961.05	900.08	960.25	959.88	972.45	972.75
24-11 BB 0.07 0.87 0.061 0.142 0.120 20.41 3.85 0.46 2.52 2.05 0.79 78 12 0.50 0.32 0.50 3.21 0.41 964.89 964.50 964.09 963.70 976.60 972.85 LATERAL 23-10 EE 0.11 0.92 0.103 0.112 0.103 20.00 3.89 0.40 2.52 2.12 0.79 97 12 0.50 0.32 0.50 3.21 0.50 960.81 960.32 960.01 959.52 970.80 969.75 LATERAL 22-10 FF 0.13 0.28 0.036 0.130 0.036 20.00 3.89 0.14 2.52 2.38 0.79 15 12 0.50 0.32 0.50 3.21 0.08 960.40 960.32 959.60 959.52 965.10 969.75 LATERAL 39-11 Z 0.05 0.30 0.015 0.050 0.015 20.00 3.89 0.06 2.52 2.46 0.79 13 12 0.50 0.32 0.50 3.21 0.07 960.57 960.50 959.77 959.70 ES 972.85 LATERAL 40-13 S 0.20 0.30 0.059 0.196 0.059 20.00 3.89 0.23 2.52 2.29 0.79 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.88 960.15 960.08 ES 972.35	LATERAL	25.24	00	0.07	0.02	0.000	0.070	0.000	20.00	2.00	0.00	2.52	2.20	0.70	20	12	0.50	0.22	0.50	2 24	0.15	065.00	064.00	064.33	064.00	076.60	076.60
LATERAL 23-10 EE 0.11 0.92 0.103 0.112 0.103 20.00 3.89 0.40 2.52 2.12 0.79 97 12 0.50 0.32 0.50 3.21 0.50 960.81 960.32 960.01 959.52 970.80 969.75 LATERAL 22-10 FF 0.13 0.28 0.036 0.130 0.036 20.00 3.89 0.14 2.52 2.38 0.79 15 12 0.50 0.32 0.50 3.21 0.08 960.40 960.32 959.60 959.52 965.10 969.75 LATERAL 39-11 Z 0.05 0.30 0.015 0.050 0.015 20.00 3.89 0.06 2.52 2.46 0.79 13 12 0.50 0.32 0.50 3.21 0.07 960.57 960.50 959.77 959.70 ES 972.85 LATERAL 40-13 S 0.20 0.30 0.059 0.196 0.059 20.00 3.89 0.23 2.52 2.29 0.79 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.88 960.15 960.08 ES 972.35	LAIEKAL																								200000000000000000000000000000000000000		
LATERAL 22-10 FF 0.13 0.28 0.036 0.130 0.036 20.00 3.89 0.14 2.52 2.38 0.79 15 12 0.50 0.32 0.50 3.21 0.08 960.40 960.32 959.60 959.52 965.10 969.75 LATERAL 39-11 Z 0.05 0.30 0.015 0.050 0.015 20.00 3.89 0.06 2.52 2.46 0.79 13 12 0.50 0.32 0.50 3.21 0.07 960.57 960.50 959.77 959.70 ES 972.85 LATERAL 40-13 S 0.20 0.30 0.059 0.196 0.059 20.00 3.89 0.23 2.52 2.29 0.79 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.88 960.15 960.08 ES 972.35		24-11	ВВ	0.07	0.87	0.061	0.142	0.120	20.41	3.85	0.46	2.52	2.05	0.79	78	12	0.50	0.32	0.50	3.21	0.41	964.89	964.50	964.09	963.70	976.60	972.85
LATERAL 22-10 FF 0.13 0.28 0.036 0.130 0.036 20.00 3.89 0.14 2.52 2.38 0.79 15 12 0.50 0.32 0.50 3.21 0.08 960.40 960.32 959.60 959.52 965.10 969.75 LATERAL 39-11 Z 0.05 0.30 0.015 0.050 0.015 20.00 3.89 0.06 2.52 2.46 0.79 13 12 0.50 0.32 0.50 3.21 0.07 960.57 960.50 959.77 959.70 ES 972.85 LATERAL 40-13 S 0.20 0.30 0.059 0.196 0.059 20.00 3.89 0.23 2.52 2.29 0.79 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.88 960.15 960.08 ES 972.35	LATERAI	23-10	FF	0 11	0.92	0.103	0.112	0.103	20.00	3 89	0.40	2 52	2 12	0.79	97	12	0.50	0.32	0.50	3 21	0.50	960.81	960 32	960.01	959 52	970.80	969.75
LATERAL 39-11 Z 0.05 0.30 0.015 0.050 0.015 20.00 3.89 0.06 2.52 2.46 0.79 13 12 0.50 0.32 0.50 3.21 0.07 960.57 960.50 959.77 959.70 ES 972.85 LATERAL 40-13 S 0.20 0.30 0.059 0.196 0.059 20.00 3.89 0.23 2.52 2.29 0.79 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.88 960.15 960.08 ES 972.35				J. 1.1	0.02	3.100	5.112	5.100		3.30	5. 10	2.52	2.12	5.76		,,_	3.30	5.52	3.50	J.E.I	3.50	200.01	200.02	200.01		3,0.00	
LATERAL 40-13 S 0.20 0.30 0.059 0.196 0.059 20.00 3.89 0.23 2.52 2.29 0.79 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.88 960.15 960.08 ES 972.35	LATERAL	22-10	FF	0.13	0.28	0.036	0.130	0.036	20.00	3.89	0.14	2.52	2.38	0.79	15	12	0.50	0.32	0.50	3.21	0.08	960.40	960.32	959.60	959.52	965.10	969.75
LATERAL 40-13 S 0.20 0.30 0.059 0.196 0.059 20.00 3.89 0.23 2.52 2.29 0.79 14 12 0.50 0.32 0.50 3.21 0.07 960.95 960.88 960.15 960.08 ES 972.35																											
	LATERAL	39-11	Z	0.05	0.30	0.015	0.050	0.015	20.00	3.89	0.06	2.52	2.46	0.79	13	12	0.50	0.32	0.50	3.21	0.07	960.57	960.50	959.77	959.70	ES	972.85
	LATERAL	40-13	S	0.20	0.30	0.059	0.196	0.059	20.00	3.89	0.23	2.52	2.29	0.79	14	12	0.50	0.32	0.50	3,21	0.07	960.95	960.88	960.15	960.08	ES	972.35
LATERAL 41-15 N 0.09 0.30 0.026 0.087 0.026 20.00 3.89 0.10 2.52 2.41 0.79 16 12 0.50 0.32 0.50 3.21 0.08 961.36 961.28 960.56 960.48 ES 971.50			-	3.23	2.30	2.500	2,,00	2,500	25.00	2.30	5.20			5.76			3,30	5.52	2.30	2. .	3.01			233.10			
	LATERAL	41-15	N	0.09	0.30	0.026	0.087	0.026	20.00	3.89	0.10	2.52	2.41	0.79	16	12	0.50	0.32	0.50	3.21	0.08	961.36	961.28	960.56	960.48	ES	971.50

PROPOSED FLOW TO CB1= (EXISTING SHEET FLOW) + (POND OUTFALL) = (0.87 ACRES AT 'C'=0.61) + (0.67 CFS)

= (0.87)(3.89 IN/HR)(0.61) + 0.67 CFS = 2.06 + 0.67

= 2.73 CFS

CAPACITY OF A $12^{"}$ PIPE AT 0.96% = 3.49 CFS 3.49 CFS > 2.73 CFS (OK!)

PROPOSED & EXISTING RUNOFF TO SITE OUTLET

EXISTING RUNOFF
OFF-SITE AND ON-SITE (UNRESTRICTED)

A = 3.90 AC.C = 0.30TC = 20 MIN.

I(100-YEAR) = 175/(T+25) = 175/(20+25) = 3.89 in/hr Q(100-YEAR) = CIA = 0.30 X 3.89 X 3.90 = 4.55 CFS

PROPOSED RUNOFF (OFF-SITE, ON SITE, AND BASIN)
OFF-SITE AND ON-SITE (UNRESTRICTED)

A = 0.87 AC.C = 0.61TC = 20 MIN.

I(100-YEAR) = 175/(T+25) = 175/(20+25) = 3.89 in/hr $Q(100-YEAR) = CIA = 0.61 \times 3.89 \times 0.87 = 2.06 \text{ CFS}$ Q (BASIN) = 0.67 CFS (FROM CALCS ON SHEET P-8)PROPOSED Q (TOTAL) = 2.06 + 0.67 = 2.73 CFS

2.73 CFS (PROPOSED) < 4.55 CFS (EXISTING) STORM WATER NARRATIVE
THE EXISTING PARCEL CURRENTLY DRAINS UN-DETAINED VIA SHEET FLOW TO THE I-94

HIGHWAY RIGHT-OF-WAY, THE EXISTING LIBERTY STREET STORM SEWER SYSTEM, AND THE ADJACENT PARCEL TO THE EAST. INFILTRATION TESTING WAS PERFORMED ON THE SUBJECT PARCEL IN ACCORDANCE WITH THE WASHTENAW COUNTY WATER RESOURCES COMMISSIONER RULES AND GUIDELINES. SOILS PROVED TO BE UNSUITABLE FOR INFILTRATION. THE PROPOSED DEVELOPMENT INCLUDES A NEW DETENTION BASIN (OVERSIZED TO COMPENSATE FOR NO INFILTRATION) WITH A SEDIMENT FOREBAY AND A NEW ON-SITE ENCLOSED STORM SEWER SYSTEM DESIGNED PER THE WASHTENAW COUNTY WATER RESOURCES COMMISSIONER STANDARDS. THE DETENTION BASIN WILL CAPTURE STORM WATER RUNOFF FROM EXISTING ON-SITE AND OFF-SITE TRIBUTARY DRAINAGE AREAS. THE DETENTION BASIN WILL DISCHARGE TO THE EXISTING STORM SEWER SYSTEM IN THE LIBERTY STREET RIGHT-OF-WAY. PLEASE REFER TO THE CALCULATIONS PROVIDED ON SHEET P-8 FOR RELEASE RATES.

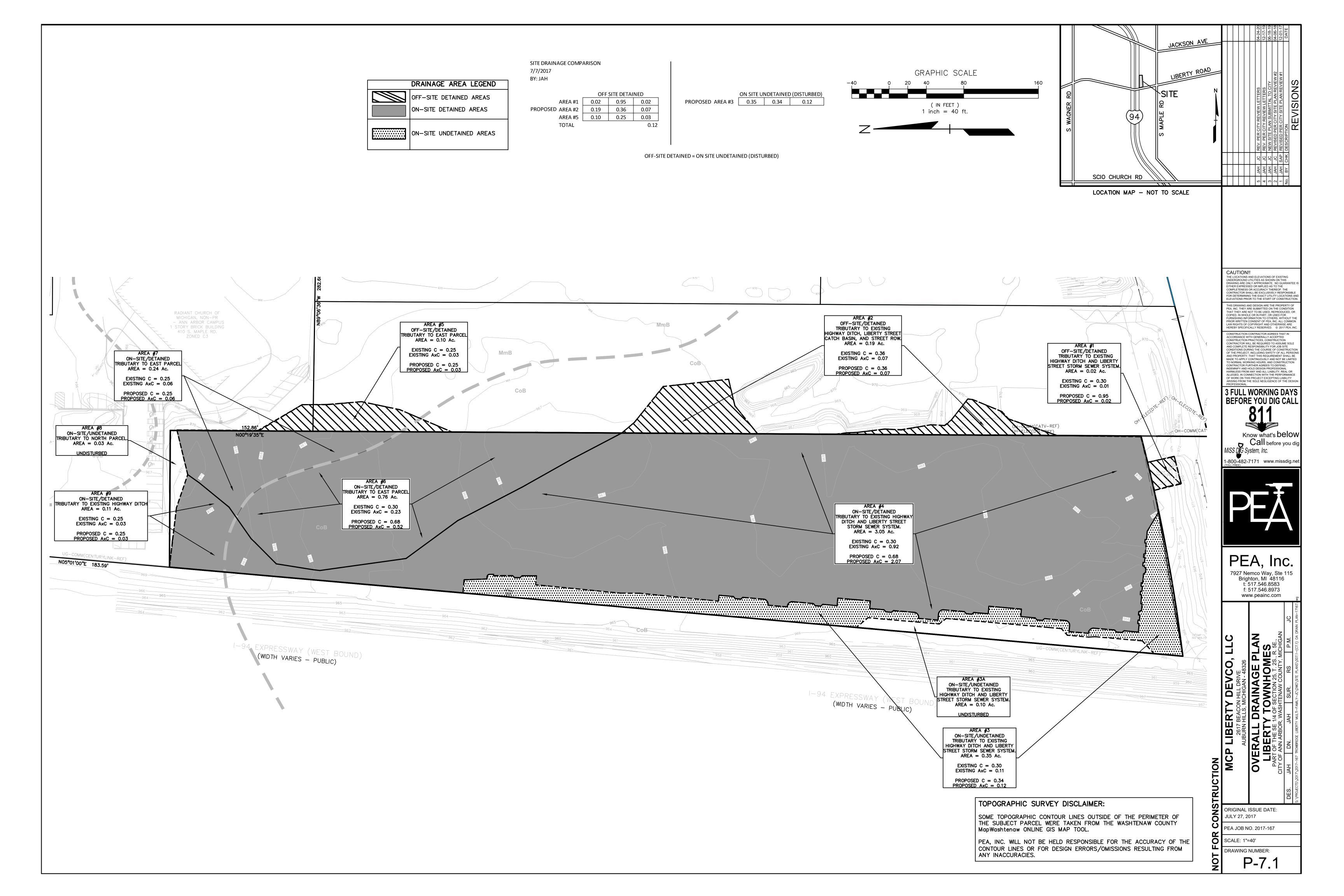
SOME ON-SITE AREAS AROUND THE PERIMETER OF THE PARCEL CURRENTLY DISCHARGE OFF-SITE, UN-DETAINED. SOME OF THESE AREAS CONTAIN EXISTING TREES AND VEGETATION THAT ARE TO BE LEFT UNDISTURBED AND ARE LOCATED OUTSIDE OF THE PROPOSED GRADING LIMITS. PLEASE REFER TO SHEET P-7.1 FOR AN ANALYSIS OF OFF-SITE AND ON-SITE DETAINED AND UN-DETAINED AREAS.

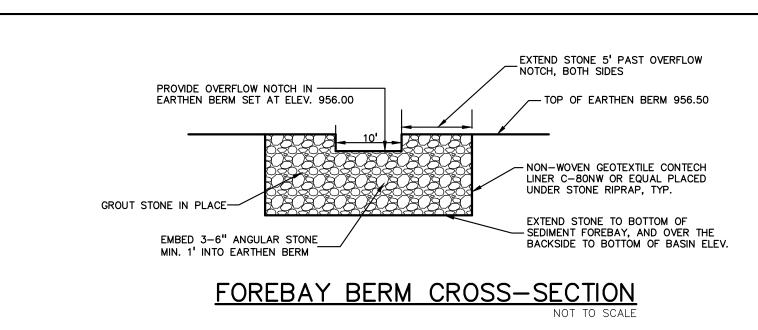
ν 4 ε 2 τ N

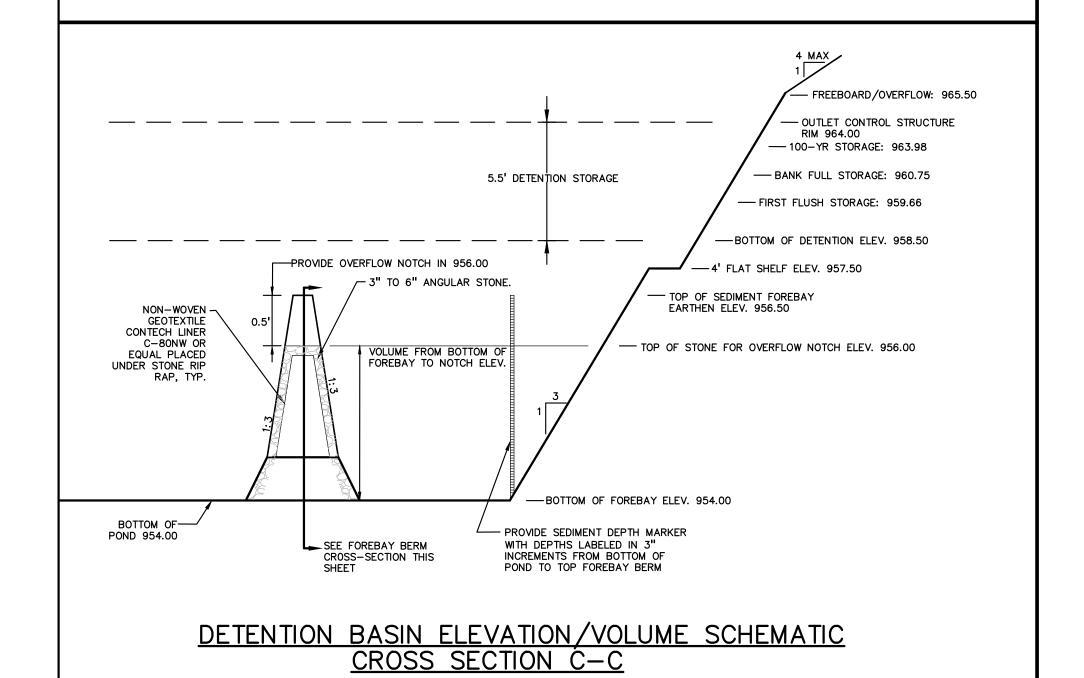
CAUTION!! THE LOCATIONS AND ELEVATIONS OF EXISTING UNDERGROUND UTILITIES AS SHOWN ON THIS DRAWING ARE ONLY APPROXIMATE. NO GUARANTEE EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS OR ACCURACY THEREOF. THE CONTRACTOR SHALL BE EXCLUSIVELY RESPONSIBLE. CONSTRUCTION CONTRACTOR AGREES THAT IN ACCORDANCE WITH GENERALLY ACCEPTED CONSTRUCTION PRACTICES, CONSTRUCTION CONTRACTOR WILL BE REQUIRED TO ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THE COURSE OF CONSTRUCTION OF THE PROJECT, INCLUDING SAFETY OF ALL PERSONS AND PROPERTY; THAT THIS REQUIREMENT SHALL BE MADE TO APPLY CONTINUOUSLY AND NOT BE LIMITED TO NORMAL WORKING HOURS, AND CONSTRUCTION CONTRACTOR FURTHER AGREES TO DEFEND, INDEMNIFY AND HOLD DESIGN PROFESSIONAL HARMLESS FROM ANY AND ALL LIABILITY, REAL OR ALLEGED, IN CONNECTION WITH THE PERFORMANCE OF WORK ON THIS PROJECT EXCEPTING LIABILITY ARISING FROM THE SOLE NEGLIGENCE OF THE DESIGN PROFESSIONAL.

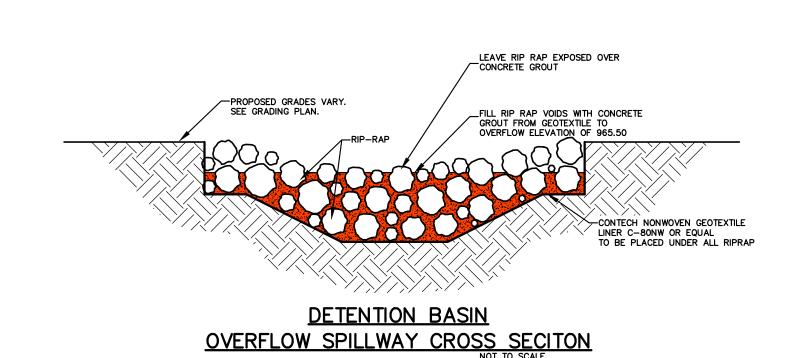
BEFORE YOU DIG CALL Know what's below Call before you dig

PEA, Inc. 7927 Nemco Way, Ste 115 Brighton, MI 48116 t: 517.546.8583 f: 517.546.8973

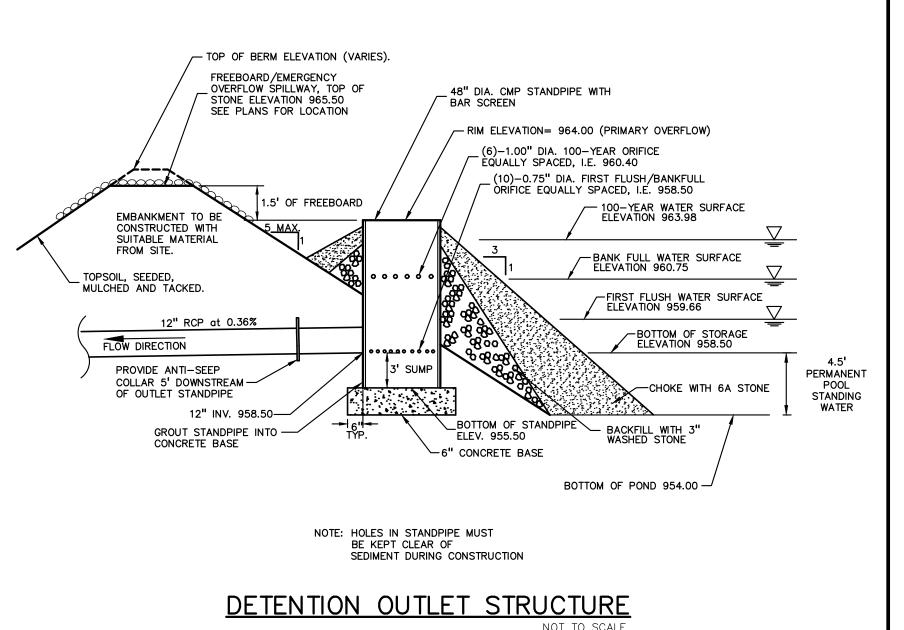

www.peainc.com

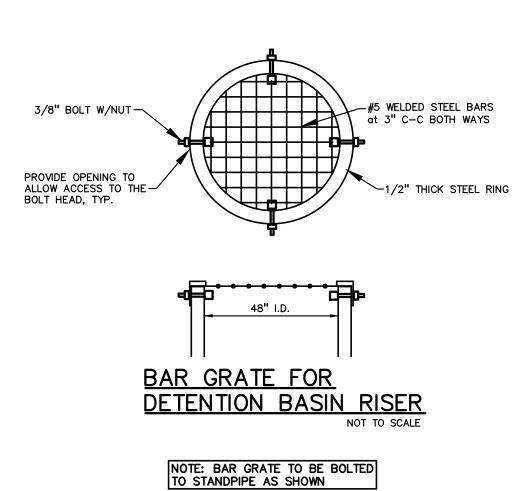

MANAGEMENT F TOWNHOMES 14 OF SECTION 25, T. 28., R. 5E., DEVCO,


MCP LIBERTY I WATER | STOI


ORIGINAL ISSUE DATE: JULY 27, 2017 PEA JOB NO. 2017-167

SCALE: 1" = 40' RAWING NUMBER:


	PEA, INC.							
		LOTODAMA	DE TENTION DAG	JK1				
PEAL	Purpose: NATURA	LSTORMWATER	R DETENTION BAS	in				
. —	Project No: 2017-	167			By: JAH	Ck:	Date: 11/16/17	
	DETENTION PO	OND:	Natural Detent	ion Basin				
	DESIGN STORI	M EVENT:	100	YEAR STO	RM	PO	ND OUTLET:	ORIFICE
	ALLOWABLE C	UTFLOW:	0.15	CFS/AC.				
	Input Paramete	rs						
	-		NAGE AREA:		195,386	SF		
	Α	TOTAL DRAI	NAGE AREA:		4.49 Ac.			
		NET IMPERV	OUS AREA:		2.35 ac.	at 'C' = 0.95		
		PERVIOUS (E	Soils) AREA:		.42 ac.	at 'C' = 0.25		
		WATER			.30 ac.	at 'C' = 1.00		
		PERVIOUS (C	Soils) AREA		1.41 ac.	at 'C' = 0.30		
	С	COMPOUND	C:		0.68			
					4.49 ac.			
	DETENTION CA	LCS						
	Q, =	OUTFLOW	(.15 CFS/AC.) :	=		0.673	CFS	
		Qa/(AREA×C)				0.22	CFS/ACRE IN	MPERVIOLI
	₩ ₀ =	≪a / (AREAXC)	_			0.22	J. O/ACKE II	LIVIOU
	TOTAL VOLUME		E DEOLIDED					
	V _{det} =	(Per WCWRC	(Worksheets)			63,368	CF	
	NET REQUIRED			1 20% PENA	ALTY)			
	V _{NET} =	(Per WCWRC	(Worksheets)			72,442	CF	
	FIDOT FLUOUS	OLUME						
	FIRST FLUSH V							
	V _{F.F.} =	(Per WCWRC	Worksheets)			11,112	CF	
	BANK FULL VO	LUME						
	V _{BF-POST} =	(Per WCWRC	Worksheets)			23,428	CF	
	SEDIMENT FOR	REBAY VOLUM	<u>//E</u>					
	V _{SED.} =	5% of V _{det}				3,622	CF	
	D 4 0 11 0 17 11 10							
	BASIN SIZING					CONTOUR	NTERPOLATIO	ON CALCS.
	CONTOUR	DETENTION	INOD	01111111		400 1/2	DANK	FIDAT
	CONTOUR	DETENTION	INCR.	CUMUL.		100-YR	BANK	FIRST
	ELEV	<u>AREA</u>	VOLUME	VOLUME		HWL	FULL	FLUSH
						72,442	23,428	11,11
TOP OF DET.	964	18,205	17,276	72,774		963.98	-	-
	704		15,440	55,498		963.98	-	-
TOP OF DET.		16 3/17	10.440			-	-	
TOP OF DET.	963	16,347		10 0E0		_	-	-
TOP OF BET.	963 962	14,532	13,644	40,058			060 75	
TOP OF BET.	963 962 961	14,532 12,755	13,644 11,881	26,415		-	960.75	959.6
TOP OF BET.	963 962 961 960	14,532 12,755 11,007	13,644 11,881 10,150	26,415 14,534		-	-	959.6
	963 962 961 960 959	14,532 12,755 11,007 9,293	13,644 11,881 10,150 4,384	26,415 14,534 4,384		-	-	959.6
BOT. OF DET.	963 962 961 960	14,532 12,755 11,007	13,644 11,881 10,150	26,415 14,534		-	-	959.6
	963 962 961 960 959	14,532 12,755 11,007 9,293	13,644 11,881 10,150 4,384	26,415 14,534 4,384		-	-	959.6
	963 962 961 960 959	14,532 12,755 11,007 9,293	13,644 11,881 10,150 4,384	26,415 14,534 4,384		-	-	959.6
	963 962 961 960 959	14,532 12,755 11,007 9,293	13,644 11,881 10,150 4,384	26,415 14,534 4,384		-	-	959.6
	963 962 961 960 959	14,532 12,755 11,007 9,293	13,644 11,881 10,150 4,384	26,415 14,534 4,384		-	-	959.6
	963 962 961 960 959	14,532 12,755 11,007 9,293	13,644 11,881 10,150 4,384	26,415 14,534 4,384		-	-	959.6
BOT. OF DET.	963 962 961 960 959 958.5	14,532 12,755 11,007 9,293 8,242	13,644 11,881 10,150 4,384	26,415 14,534 4,384		-	-	959.6
BOT. OF DET.	963 962 961 960 959	14,532 12,755 11,007 9,293 8,242	13,644 11,881 10,150 4,384	26,415 14,534 4,384		-	-	959.6
BOT. OF DET.	963 962 961 960 959 958.5	14,532 12,755 11,007 9,293 8,242	13,644 11,881 10,150 4,384	26,415 14,534 4,384		-	-	959.6
BOT. OF DET.	963 962 961 960 959 958.5 SEDIMENT FOR	14,532 12,755 11,007 9,293 8,242 REBAY	13,644 11,881 10,150 4,384	26,415 14,534 4,384 -		-	-	959.6
BOT. OF DET.	963 962 961 960 959 958.5	14,532 12,755 11,007 9,293 8,242	13,644 11,881 10,150 4,384	26,415 14,534 4,384		-	-	959.6
BOT. OF DET.	963 962 961 960 959 958.5 SEDIMENT FOR	14,532 12,755 11,007 9,293 8,242 REBAY CONTOUR AREA	13,644 11,881 10,150 4,384 -	26,415 14,534 4,384 -		-	-	959.6
BOT. OF DET.	963 962 961 960 959 958.5 SEDIMENT FOR CONTOUR ELEV	14,532 12,755 11,007 9,293 8,242 REBAY CONTOUR AREA 2,740	13,644 11,881 10,150 4,384	26,415 14,534 4,384 - CUMUL. VOLUME		-	-	959.6
BOT. OF DET.	963 962 961 960 959 958.5 SEDIMENT FOR CONTOUR ELEV 956	14,532 12,755 11,007 9,293 8,242 REBAY CONTOUR AREA	13,644 11,881 10,150 4,384 - - INCR. <u>VOLUME</u>	26,415 14,534 4,384 - - CUMUL. VOLUME 4,194		-	-	959.6
BOT. OF DET.	963 962 961 960 959 958.5 SEDIMENT FOR CONTOUR ELEV 956 955	14,532 12,755 11,007 9,293 8,242 REBAY CONTOUR AREA 2,740 2,079	13,644 11,881 10,150 4,384 - - INCR. <u>VOLUME</u> 2,410 1,785	26,415 14,534 4,384 - CUMUL. VOLUME 4,194 1,785		-	-	959.6
BOT. OF DET.	963 962 961 960 959 958.5 SEDIMENT FOR CONTOUR ELEV 956 955	14,532 12,755 11,007 9,293 8,242 REBAY CONTOUR AREA 2,740 2,079	13,644 11,881 10,150 4,384 - - INCR. <u>VOLUME</u> 2,410 1,785	26,415 14,534 4,384 - CUMUL. VOLUME 4,194 1,785		-	-	959.6


First Flush Cald				140		
Total First Flush Sto Elevation of First Flu		ff) =		1,112 59.66	CF	
Outlet Sizing for Fire	st Flush: = V(ff)/86,400 se	c			0.129	CFS
-ave	1 (1)/ 52 132 52				51.25	
Average Head for O		U-1 F1			4.40	
Elevation Differenc h _{ave=} 2/3 * (elev diff)		ilet Elevation			1.16 0.77	FT
Orifice Area Require	ed Q/(0.62*sqrt(2gh	\\\\			0.0294	SF
	W (0.02 Sqrt(2gii))			0.0294	OF .
Number of Orifice H	oles Required					
Hole Diameter Holes	=A/.0031	.75"		Hole Area =	0.0031 9.58	HOLES
				therefore, use	9	HOLES
Actual Release Rate	۵.					
The state of the s	# holes * (hole ar	rea)			0.0276	SF
Q _{act}	= 0.62*A*sqrt(2g	h))			0.121	CFS
Actual Holding Time	<u> </u>					
	= V/Q _{act}				25.55	HR
					(Tact>	24 OK!)
Bank Full Calcu	ulations					
Bank Full Storage V	30.40.00 P20.01.0 (4.4 P10.0)			3,428	CF	
Elevation of Bank Fu	ull, X(bf-actual) =		96	0.75		
Average Head for O	rifice Equation:					
Elevation Difference	e from X(bf) to Out	tlet Elevation			2.25	FT
h _{ave}	= 2/3 * (elev diff)				1.50	FT
Release Rate thru E	Bottom of Det. Ori	fices:				
Q	= 0.62*A(ff)*sqrt(2gh))			0.168	CFS
Actual Holding Time	.					
	= V/Q _{act}				38.68	HR
				(No - 1 PC		ng Time < 48)
100-Year Storm	ı Calculations			(NO additiona	I holes require	u for Bankfull)
100-yr Detention Vo					72,442	CF
Elevation of 100-Year Design Rim Elevation	, ,				963.98 964.00	
Allowable Outflow R					0.673	CFS
			400 -			
Actual Release Rate A(ff)		t riush Onfices for	100-yr Storm:		0.0276	SF
	= X(100) - X(botto	om)			5.50	FT
Q(ff)	= 0.62*A(ff)*sqrt(2gh))			0.32	CFS
Q(max) = Q(allow) -	- Q(ff) =				0.351	CFS
Maximum Head for Elevation Difference		(RF)			3.25	FT
Listation Difference		(-,)			0.20	
Orifice Area Require		\\\\\			0.000	CE.
A =	Q/(0.62*sqrt(2gh))			0.039	SF
Number of Orifice H	oles Required					
Hole Diameter	=A/.0055	1.000"		Hole Area =	0.0055 7.17	SF HOLES
inoles	711.0000			therefore, use	6	HOLES
Actual Release Rate A(100) =	e: # holes * (hole ar	rea)			0.0327	SF
	= 0.62*A*sqrt(2g				0.29	CFS
0(0.11) = 0(4.00)	O(ff)-				0.00	CES
Q(out) = Q(100) + 0	ع(۱۱)=				0.62	CFS
Q(out) < Q(allow):		0.62	<=	0.67	OK!	
Discharge through			irst flush and 1	00 year holes ar	re contributing 4.416666667	FT
h(all ave)= (2/3)(X10	orifi*/A # a-fi*	(2*a*hava all\			0.289	CFS
	July (A II OII) Sqrt	(z y nave-an)			0.208	OFO
h(all ave)= (2/3)(X10 Q (all)= (0.62)*(# ff c			n the other ori	fices are contrib		
Q (all)= (0.62)*(# ff c		oo yr ornices whe			2.17	FT
Q (all)= (0.62)*(# ff c		oo yr ornices wne				
Q (all)= (0.62)*(# ff c	(100-Xbf)		100ave))		0.240	CFS
Q (all)= (0.62)*(# ff of all o	(100-Xbf) (#100 orif)*(A 100	orif)* sqrt(2*32.2*(h			0.240	CFS
Q (all)= (0.62)*(# ff control of the	(100-Xbf) (#100 orif)*(A 100	orif)* sqrt(2*32.2*(h			0.240	
Q (all)= (0.62)*(# ff of all o	(100-Xbf) (#100 orif)*(A 100 storm volume is	orif)* sqrt(2*32.2*(h				CFS CFT

First Flush Cald	culations					
Total First Flush Sto		ff) =	11	,112	CF	
Elevation of First Flu		,		9.66	OI .	
Outlet Sizing for Fire					no 2007-14	
Q _{ave}	= V(ff)/86,400 se	C			0.129	CFS
Average Head for O		lat Elevation			1.16	ГТ
Elevation Differenc h _{ave=} 2/3 * (elev diff)		let Elevation			1.16 0.77	FT
nave= 2/3 (elev dill)					0.77	П
Orifice Area Require	d					
	Q/(0.62*sqrt(2gh))			0.0294	SF
Number of Orifice H	oles Required					
Hole Diameter		.75"		Hole Area =	0.0031	SF
Holes	=A/.0031				9.58	HOLES
				therefore, use	9	HOLES
Actual Release Rate						
7 10 10 00 7 10 10 10 10 10 10 10 10 10 10 10 10 10	=. # holes * (hole ar	rea)			0.0276	SF
	= 0.62*A*sqrt(2g	•			0.0276	CFS
Q act	- 0.02 A 3q11(2g	11))			0.121	010
Actual Holding Time						
	= V/Q _{act}				25.55	HR
·act						24 OK!)
					(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Bank Full Calcu	ulations					
Bank Full Storage V	olume, V(bf) =		23	3,428	CF	
Elevation of Bank Fu	ull, X(bf-actual) =		96	0.75		
Average Head for Or						
Elevation Difference		let Elevation			2.25	FT
h _{ave}	= 2/3 * (elev diff)				1.50	FT
Data and an arrangement						
Release Rate thru B					0.400	CEC
Q	= 0.62*A(ff)*sqrt(2gh))			0.168	CFS
Astual Holding Time						
Actual Holding Time	= V/Q _{act}				38.68	HR
lact	v/ ≺act					ng Time < 48)
				(No additions		d for Bankfull)
100-Year Storm	Calculations			t-to a dulidolla	require	
100-yr Detention Vo					72,442	CF
Elevation of 100-Yea		ctual) =			963.98	
Design Rim Elevation					964.00	
Allowable Outflow R					0.673	CFS
Actual Release Rate	e Provided by Firs	t Flush Orifices for	100-yr Storm:			
A(ff)					0.0276	SF
h _{peak}	= X(100) - X(botto	om)			5.50	FT
Q(ff)	= 0.62*A(ff)*sqrt(2gh))			0.32	CFS
Q(max) = Q(allow) -	Q(ff) =				0.351	CFS
	0:5 =					
Maximum Head for		(DE)			0.05	FT
Elevation Difference	e πom X(100) to X	(RF)			3.25	FT
Orifico Area Bassiss	d					
Orifice Area Require	d Q/(0.62*sqrt(2gh))			0.039	SF
A =	w (U.UZ SYII(ZYII	,,			0.008	OI .
Number of Orifice H	oles Required					
Hole Diameter	o.oo noquiieu	1.000"		Hole Area =	0.0055	SF
41000.00.00.00.00.00.00.00.00.00	=A/.0055	555			7.17	HOLES
				therefore, use	6	HOLES
Actual Release Rate	e:					
A(100) =	# holes * (hole ar	rea)			0.0327	SF
Q(100)	= 0.62*A*sqrt(2g	h))			0.29	CFS
Q(out) = Q(100) + 0	Q(ff)=				0.62	CFS
Q(out) < Q(allow):		0.62	<=	0.67	OK!	
Disease of the control of the contro	4L = 10			00 1/2 - 1 1		
Discharge through			irst tiush and 1	ບບ year holes ar	e contributing 4.416666667	
h(all ave)= (2/3)(X10	u- ADI)+(XDI - XDO	u)			4.41000007	FI
0 (311)- (0 62)*/# # -	orifi*(A ff arfi*ard	(2*a*have all)			0.289	CES
Q (all)= (0.62)*(# ff o	лп) (A поп)"sqrt	(∠ y nave-all)			0.203	CFS
Average Discharge	e Through the 1	00 vr orifices who	n the other ori	fices are contrib	utina	
h(100-ave)= (2/3)*(X		oo yi oiinices wile	ii uie ouiel oll	noce are contrib	uung 2.17	FT
11(100-ave)- (2/3) (A	. 50 / 301)					
Q(100-ave)= (0.62)*((#100 orif)*(A 100	orif)* sart(2*32 2*/h	100ave))		0.240	CFS
=(100 arc)=(0.02)		, Sqrt(2 02.2 (II				
Check the 100 yr s	torm volume is	dicharged in less	than 72 hrs			
Vrem= V100-Vbf					49,014	CFT
7.6						
T100= Tbf +(Vrem/(Qall+Q100ave))				64.44	HRS

Area Required $A = Q/(0.62*sqrt(2gh))$		0.0294	SF
per of Orifice Holes Required			
Diameter .75"	Hole Ar	rea = 0.0031	SF
Holes =A/.0031		9.58	HOLES
	therefore,	use 9	HOLES
al Release Rate:			
A(ff) = # holes * (hole area)			SF
$Q_{act} = 0.62*A*sqrt(2gh))$		0.121	CFS
al Holding Time			
$T_{act} = V/Q_{act}$		25.55	HR
		(Tact>	24 OK!)
k Full Calculations			
Full Storage Volume, V(bf) =	23,428	CF	
tion of Bank Full, X(bf-actual) =	960.75		
ge Head for Orifice Equation:			
ation Difference from X(bf) to Outlet Elevation		2.25	FT
$h_{ave} = 2/3 * (elev diff)$			FT
nave 25 (Sist dill)		1.50	
ise Rate thru Rottom of Dot Orificas			
se Rate thru Bottom of Det. Orifices:		0.460	CES
Q = 0.62*A(ff)*sqrt(2gh))		0.168	CFS
d Halding Time			
al Holding Time		00.00	ПВ
T _{act} = V/Q _{act}			HR
		·	g Time < 48)
	(No addit	tional holes require	d for Bankfull)
Year Storm Calculations			
r Detention Volume, V(100) =		72,442	CF
tion of 100-Year Storm, X(100-actual) =		963.98	
n Rim Elevation for 100-Yr Storm, X(100) =		964.00	
able Outflow Rate, Q(allow) = 0.15 cfs/acre =		0.673	CFS
al Release Rate Provided by First Flush Orifices for	100-yr Storm:		
A(ff) =		0.0276	SF
$h_{peak} = X(100) - X(bottom)$		100000000000000000000000000000000000000	FT
Q(ff) = 0.62*A(ff)*sqrt(2gh))		0.32	CFS
a(ii) = 0.02 A(ii) sqrt(29ii))		0.02	5, 5
x) = O(allow) - O(ff) -		0.251	CES
x) = Q(allow) - Q(ff) =		0.351	CFS
num Head for Orifice Equation:			
ition Difference from X(100) to X (BF)		3.25	FT
e Area Required			
A = Q/(0.62*sqrt(2gh))		0.039	SF
per of Orifice Holes Required			
Diameter 1.000"	Hole Ar	rea = 0.0055	SF
Holes =A/.0055	TIGIC AI	7.17	HOLES
	therefore,		HOLES
	uiciciole,		
al Release Rate:			
A(100) = # holes * (hole area)		0.0327	SF
Q(100) = 0.62*A*sqrt(2gh))		0.29	CFS
0/100) + 0/2			050
) = Q(100) + Q(ff)=		0.62	CFS
) < Q(allow) : 0.62	<= 0.67	OK!	
arge through the first flush orifices when the t	irst flush and 100 year hole	es are contributing	
ave)= (2/3)(X100- Xbf)+(Xbf - Xbot)	January John Holl	4.416666667	FT
)= (0.62)*(# ff orif)*(A ff orf)*sqrt (2*g*have-all)		0.289	CFS
, (S.SE) (A in Still) (A in Still) Sylic (2 y liave-all)		2.230	5, 5
age Discharge Through the 100 yr orifices whe	n the other orifices are as	ntributing	
	n are outer offlices are co	ntributing 2.17	FT
-ave)= (2/3)*(X100-Xbf)		2.17	Г
	100 '''	0.040	050
0-ave)= (0.62)*(#100 orif)*(A 100 orif)* sqrt(2*32.2*(h	iTu∪ave))	0.240	CFS
k the 100 yr storm volume is dicharged in less	than 72 hrs		
= V100-Vbf		49,014	CFT
: Tbf +(Vrem/(Qall+Q100ave))		64.44	HRS
		(T100 <	72 OK!)
	,		

STORMWATER MANAGEMENT SYSTEM MAINTENANCE TASKS AND SCHEDULE POST CONSTRUCTION (RESPONSIBILITY OF OWNER) ON	n Sewer System	Catch Basin Sumps	Catch Basin Inlet castings	Channels & Ditches	Detention System and Bioswales	Outlet Control Structure					
TASKS NAME OF TASKS	Storm	Catch	Catch	Chan	Deter	Outle	SCHEDULE	ESTIMATE 1st year	D ANNUAL 2nd year		SES TAS
Inspect for accumulated sediment	x	x		x	×	×	Annually	\$100	\$100	\$100	
Removal of accumulated sediment > 1' deep	x	x		x	x	x	5 years or as required	\$300	\$100	\$ 0	
Inspection for erosion				х	х		Annually	\$125	\$100	\$100	
Re-establish permanent controls, eroded areas				х	х		As required	\$250	\$100	\$100	
Inspect for floatables and debris	х	х	х	х	х	х	Annually	\$ 75	\$75	\$100	
Remove floatables and debris	х	х	х	х	х	х	Annually	\$150	\$50	\$ 0	
Replace stone check dams				х			As required	\$150	\$0	\$300	
Mowing				х	х		2X A YEAR	\$2,500	\$1,750	\$300	
Vegetation and animal control				х	х		Annually, or as required	\$50	\$50	\$100	
Clean Streets							As required	\$250	\$250	\$250	
Inspect storm water system and components during wet weather and compare to as—built plans (by professional engineer, reporting to maintenance financing company)	х	x	x	x	x	x	Annually	\$ 75	\$ 75	\$100	
Make adjustments or replacements as determined by annual wet weather inspection.	х	х	х	х	х	х	As required	\$300	\$300	\$300	
Keep records of all inspections and maintenance activities and report to maintenance financing provider.							Annually	\$0	\$ 0	\$0	
Keep records of all costs for inspections, maintenance and repairs. Report to maintenance financing provider.							Annually	\$0	\$0	\$ 0	
Professional engineer, emergency observations							As required	\$0	\$250	\$ 0	
							Total Budget:	\$4,325	\$3,200	\$1,750	
							SESC Budget:	\$1,175	\$650	\$850	

STORMWATER MANAGEMENT SYSTEM MAINTENANCE TASKS AND SCHEDULE. DURING CONSTRUCTION (RESPONSIBILITY OF DEVELOPER AND HIS CONTRACTOR)	Storm Sewer System	Catch Basin Sumps	Catch Basin Inlet castings	Channels & Ditches	Detention System and Bioswales	Outlet Control Structure	
<u>TASKS</u>	, "	Ϊ,	0 =	Ι °		٦٥%	SCHEDULE
Install & maintain soil erosion control measures			x	×			Per plans or as required
Inspect for accumulated sediment	x	х	x	x	х	х	Weekly or after rain even
Removal of accumulated sediment > 1' deep	×	x		×	x		As required
Inspect for erosion				x	x	х	Weekly or after rain even
Re-establish permanent & temporary controls			×	×	х	х	As required
Inspect for floatables and debris	×	х		×	х	х	Weekly or after rain even
Remove floatables and debris	х	х		х	х	х	As required
Replace stone check dams				х			As required
Mowing				х			As required
Certified Stormwater Manager inspections	×	х	×	×	х	х	Weekly or after rain even
Professional engineer, reporting to developer, construction observations	х	х	х	х	х	х	As required
Modifications per engineering recommendation	х	х	х	х	х	х	Monthly
Certified Stormwater Manager maintenance and inspection records							Weekly
Street Sweeping							Weekly or as needed
Inspect storm water system and components during wet weather and compare to as—built plans (by professional engineer, reporting to maintenance financing company)	x	x	х	х	х	х	Annually
Make adjustments or replacements as determined by annual wet weather inspection.	×	T _x	x	x	×	×	As required

CHEMICAL APPLICATION NOTE:

NO CHEMICALS ARE ALLOWED IN STORMWATER FEATURES OR BUFFER ZONES WITH THE FOLLOWING EXCEPTIONS: INVASIVE SPECIES MAY BE TREATED WITH CHEMICALS BY A CERTIFIED APPLICATOR.

SCALE: NONE

DRAWING NUMBER:

P-8

THE LOCATIONS AND ELEVATIONS OF EXISTING UNDERGROUND UTILITIES AS SHOWN ON THIS DRAWING ARE ONLY APPROXIMATE. NO GUARANTEE IS EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS OR ACCURACY THEREOF. THE CONTRACTOR SHALL BE EXCLUSIVELY RESPONSIBLE FOR DETERMINING THE EXACT UTILITY LOCATIONS AND ELEVATIONS PRIOR TO THE START OF CONSTRUCTION.

THIS DRAWING AND DESIGN ARE THE PROPERTY OF PEA, INC. THEY ARE SUBMITTED ON THE CONDITION THAT THEY ARE NOT TO BE USED, REPRODUCED, OR COPIED, IN WHOLE OR IN PART, OR USED FOR FURNISHING INFORMATION TO OTHERS, WITHOUT THE PRIOR WRITTEN CONSENT OF PEA, INC. ALL COMMON LAW RIGHTS OF COPYRIGHT AND OTHERWISE ARE HEREBY SPECIFICALLY RESERVED. © 2017 PEA, INC.

BEFORE YOU DIG CALL Know what's **below** Call before you dig

PEA, Inc. 7927 Nemco Way, Ste 115 Brighton, MI 48116

GENERAL NOTES:

- ALL CONSTRUCTION AND MATERIALS SHALL BE IN ACCORDANCE WITH THE CURRENT STANDARDS AND SPECIFICATIONS OF THE CITY OF ANN ARBOR.
- 2. ALL NECESSARY PERMITS, BONDS AND INSURANCES ETC., SHALL BE PAID FOR BY THE CONTRACTOR. THE OWNER SHALL PAY FOR ALL CITY AND COUNTY INSPECTION
- 3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR DUST CONTROL DURING THE PERIODS OF CONSTRUCTION. THIS SHALL BE CONSIDERED INCIDENTAL TO THE JOB.
- 4. PRIOR TO ANY EXCAVATION, THE CONTRACTOR SHALL CONTACT MISS DIG (1-800-482-7171) TO VERIFY THE LOCATION OF ANY EXISTING UNDERGROUND UTILITIES AND SHALL NOTIFY OTHER REPRESENTATIVES OF OTHER UTILITIES IN THE
- 5. ALL PROPERTIES OR FACILITIES IN THE SURROUNDING AREAS, PUBLIC OR PRIVATE, DESTROYED OR OTHERWISE DISTURBED DUE TO CONSTRUCTION, SHALL BE REPLACED AND/OR RESTORED TO THE ORIGINAL CONDITION BY THE CONTRACTOR.
- 6. MANHOLE, CATCH BASIN, GATE VALVES AND HYDRANT FINISH GRADES MUST BE CLOSELY CHECKED AND APPROVED BY THE ENGINEER BEFORE THE CONTRACTOR'S WORK IS CONSIDERED COMPLETE.
- 7. CONTRACTOR SHALL REMOVE AND DISPOSE OF OFF-SITE ANY TREES, BRUSH, STUMPS, TRASH OR OTHER UNWANTED DEBRIS AT THE OWNER'S DIRECTION, INCLUDING OLD BUILDING FOUNDATIONS AND FLOORS. BURNING OF TRASH, STUMPS OR OTHER DEBRIS SHALL NOT BE PERMITTED.
- 8. THE CONTRACTOR SHALL PROVIDE ALL NECESSARY BARRICADING, LIGHTS AND TRAFFIC CONTROL DEVICES TO PROTECT THE WORK AND SAFELY CONTAIN TRAFFIC IN
- 9. ALL EXCAVATIONS SHALL BE SLOPED, SHORED OR BRACED IN ACCORDANCE WITH MI-OSHA REQUIREMENTS. THE CONTRACTOR SHALL PROVIDE AN ADEQUATELY CONSTRUCTED AND BRACED SHORING SYSTEM FOR EMPLOYEES WORKING IN AN EXCAVATION THAT MAY EXPOSE EMPLOYEES TO THE DANGER OF MOVING GROUND.
- 10. ALL REFERENCES TO M.D.O.T. SPECIFICATIONS ARE TO BE IN ACCORDANCE WITH THE CURRENT STANDARD SPECIFICATIONS FOR CONSTRUCTION.

PAVING NOTES:

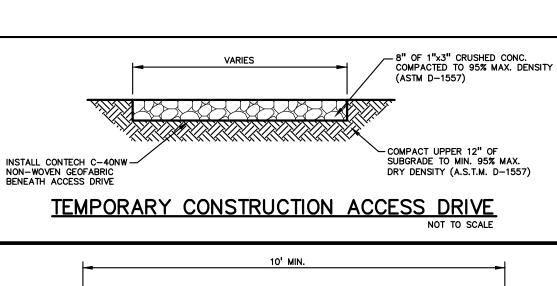
- ALL WORKMANSHIP AND MATERIALS SHALL BE IN ACCORDANCE WITH THE CURRENT STANDARDS AND SPECIFICATIONS OF WASHTENAW COUNTY, CITY OF ANN ARBOR, AND
- 2. IN AREAS WHERE NEW PAVEMENTS ARE BEING CONSTRUCTED, THE TOPSOIL AND SOIL CONTAINING ORGANIC MATTER SHALL BE REMOVED PRIOR TO PAVEMENT CONSTRUCTION.
- 3. SUBGRADE UNDERCUTTING, INCLUDING BACKFILLING SHALL BE PERFORMED TO REPLACE MATERIALS SUSCEPTIBLE TO FROST HEAVING AND UNSTABLE SOIL CONDITIONS. ANY EXCAVATIONS THAT MAY BE REQUIRED BELOW THE TOPSOIL IN FILL SECTIONS OR BELOW SUBGRADE IN CUT SECTIONS, WILL BE CLASSIFIED AS SUBGRADE UNDERCUTTING.
- 4. SUBGRADE UNDERCUTTING SHALL BE PERFORMED WHERE NECESSARY AND THE EXCAVATED MATERIAL SHALL BECOME THE PROPERTY OF THE CONTRACTOR. ANY SUBGRADE UNDERCUTTING SHALL BE BACKFILLED WITH SAND OR OTHER SIMILAR APPROVED MATERIAL. BACKFILL SHALL BE COMPACTED TO 95% OF THE MAXIMUM UNIT WEIGHT (PER ASTM D-1557) UNLESS OTHERWISE SPECIFIED.
- 5. BACKFILL UNDER PAVED AREAS SHALL BE AS SPECIFIED ON DETAILS.
- 6. ANY SUB-GRADE WATERING REQUIRED TO ACHIEVE REQUIRED DENISTY SHALL BE CONSIDERED INCIDENTAL TO THE JOB.

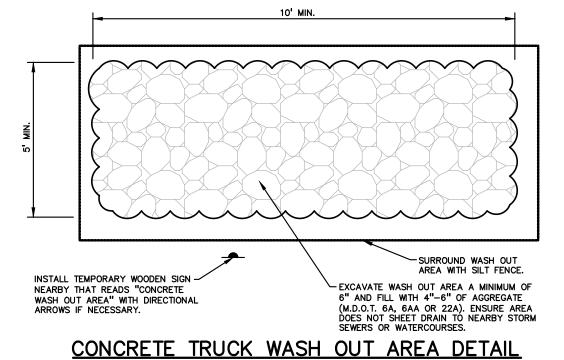
GENERAL UTILITY NOTES:

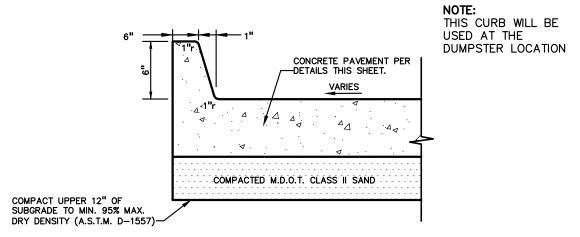
- 1. ALL WORKMANSHIP AND MATERIALS SHALL BE IN ACCORDANCE WITH THE STANDARDS AND SPECIFICATIONS OF THE CITY OF ANN ARBOR AND WASHTENAW COUNTY.
- 2. IT SHALL BE THE CONTRACTORS RESPONSIBILITY TO VERIFY AND/OR OBTAIN ANY INFORMATION NECESSARY REGARDING THE PRESENCE OF UNDERGROUND UTILITIES, WHICH MIGHT AFFECT THIS JOB.
- 3. ALL TRENCHES UNDER OR WITHIN THREE (3) FEET OR THE FORTY-FIVE (45) DEGREE ZONE OF INFLUENCE LINE OF EXISTING AND/OR PROPOSED PAVEMENT, BUILDING PAD OR DRIVE APPROACH SHALL BE BACKFILLED WITH SAND COMPACTED TO AT LEAST NINETY—FIVE (95) PERCENT OF MAXIMUM UNIT WEIGHT (ASTM D—1557). ALL OTHER TRENCHES TO BE COMPACTED TO 90% OR BETTER.
- 4. WHENEVER EXISTING MANHOLES OR SEWER PIPE ARE TO BE TAPPED, DRILL HOLES 4" CENTER TO CENTER, AROUND PERIPHERY OF OPENING TO CREATE A PLANE OF WEAKNESS JOINT BEFORE BREAKING SECTION OUT.
- 5. EXACT GRADES AND DEPTHS OF UTILITIES ARE TO BE CHECKED CLOSELY WITH THE FIELD ENGINEER PRIOR TO INSTALLATION.
- 6. REFER TO CITY OF ANN ARBOR STANDARD DETAIL SHEETS AND SPECIFICATIONS FOR

ADDITIONAL INFORMATION. STORM SEWER NOTES:

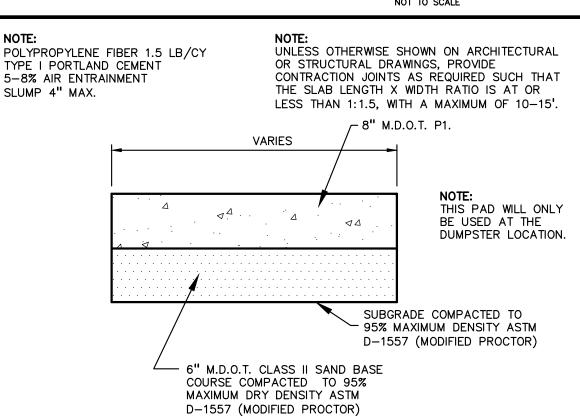
- 1. ALL RCP CL-IV STORM SEWER SHALL BE INSTALLED ON CLASS 'B' BEDDING OR BETTER. SEE DETAILS FOR PVC PIPE BEDDING.
- 2. JOINTS FOR ALL STORM SEWER 12" AND LARGER SHALL BE TONGUE AND GROOVE JOINT WITH RUBBER GASKETS UNLESS SPECIFIED OTHERWISE.
- 3. ALL STORM SEWER 12" AND LARGER SHALL BE RCP CLASS IV UNLESS OTHERWISE NOTED.
- 4. REFER TO THE CITY OF ANN ARBOR STORM SEWER STANDARD DETAILS AND SPECIFICATIONS FOR ADDITIONAL INFORMATION.

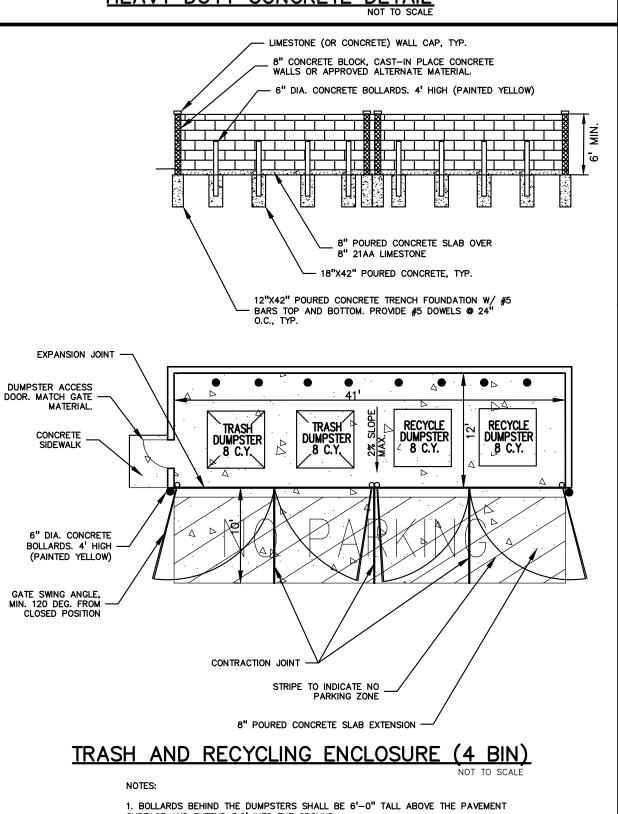

WATER MAIN NOTES:


- 1. ALL WATER MAIN SHALL BE INSTALLED WITH A MINIMUM COVER OF 5.5' BELOW FINISH GRADE. WHEN WATER MAINS MUST DIP TO PASS UNDER A STORM SEWER OR SANITARY SEWER, THE SECTIONS WHICH ARE DEEPER THAN NORMAL SHALL BE KEPT TO A MINIMUM LENGTH BY THE USE OF VERTICAL TWENTY TWO AND A HALF (22.5°) DEGREE BENDS, PROPERLY ANCHORED.
- 2. ALL WORKMANSHIP AND MATERIALS SHALL BE IN ACCORDANCE WITH THE CURRENT STANDARDS AND SPECIFICATIONS OF THE CITY OF ANN ARBOR.
- 3. ALL TRENCHES UNDER OR WITHIN THREE (3) FEET OR THE FORTY-FIVE (45) DEGREE ZONE OF INFLUENCE LINE OF EXISTING AND/OR PROPOSED PAVEMENT, BUILDING PAD OR DRIVE APPROACH SHALL BE BACKFILLED WITH SAND COMPACTED TO AT LEAST NINETY-FIVE (95) PERCENT OF MAXIMUM UNIT WEIGHT (ASTM D-1557). ALL OTHER TRENCHES TO BE COMPACTED TO 90% OR BETTER.
- 4. ALL TEE'S, BENDS, CONNECTIONS, ETC. ARE CONSIDERED INCIDENTAL TO THE JOB.
- 5. PHYSICAL CONNECTIONS SHALL NOT BE MADE BETWEEN EXISTING AND NEW WATER MAINS UNTIL TESTING IS SATISFACTORILY COMPLETED.
- MAINTAIN 10' HORIZONTAL CLEARANCE BEWTEEN OUTER EDGE OF WATER MAIN
- 7. ALL WATER MAIN SHALL BE DUCTILE IRON CLASS 54 WITH POLYETHYLENE WRAP.
- 8. REFER TO THE CITY OF ANN ARBOR STANDARD WATER MAIN DETAILS AND SPECIFICATIONS FOR ADDITIONAL INFORMATION.

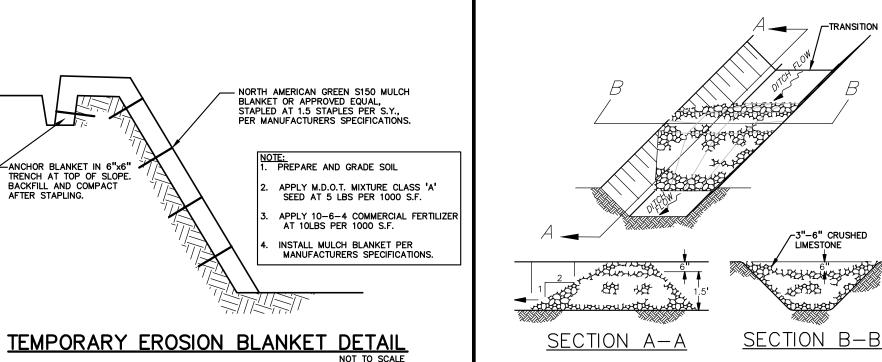

SANITARY SEWER NOTES:

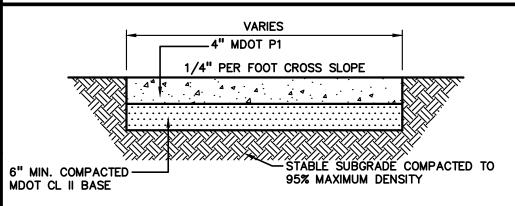
AND ANY SANITARY SEWER OR STRUCTURE.


- 1. DOWNSPOUTS, WEEP TILE, FOOTING DRAINS OR ANY CONDUIT THAT CARRIES STORM OR GROUND WATER SHALL NOT BE ALLOWED TO DISCHARGE INTO A SANITARY SEWER.
- 2. ALL SANITARY LEADS SHALL BE CONSTRUCTED OF PVC SDR 23.5 AT 1.00% MINIMUM SLOPE.
- 3. ALL SANITARY SEWER SHALL BE CONSTRUCTED OF PVC SDR 35 PIPE WITH A MINIMUM DIAMETER OF 8" PER CITY REQUIREMENTS.
- 4. JOINTS FOR P.V.C. SOLID WALL PIPE SHALL BE ELASTOMERIC (RUBBER GASKET) AS SPECIFIED IN A.S.T.M. DESIGNATION D-3212.
- 5. REFER TO THE CITY OF ANN ARBOR SANITARY SEWER DETAIL SHEETS AND SPECIFICATIONS FOR ADDITIONAL INFORMATION.

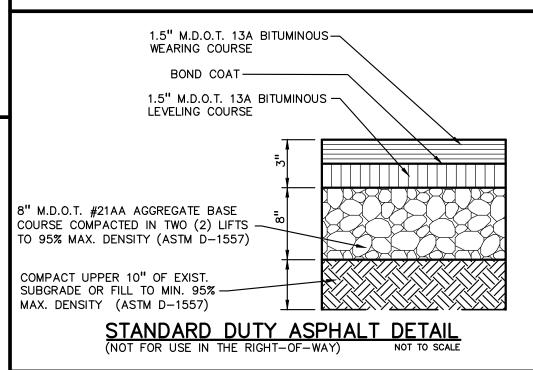


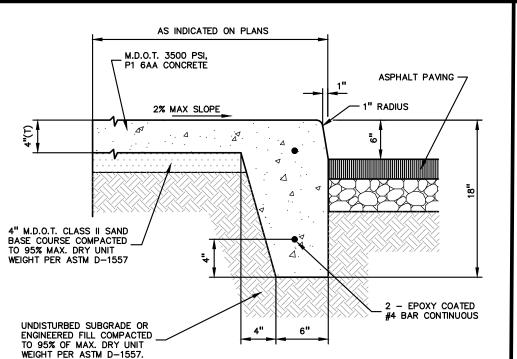
CONCRETE PAVEMENT WITH INTEGRAL CURB




HEAVY DUTY CONCRETE DETAIL

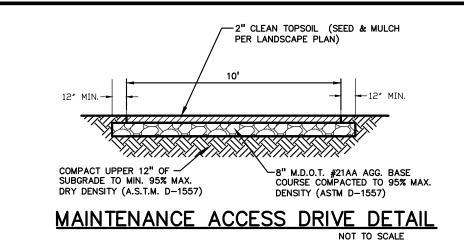
SURFACE AND EXTEND 5.0' INTO THE GROUND.


2. SITE OWNER IS RESPONSIBLE FOR OPENING AND CLOSING ENCLOSURES ON SERVICE DAYS.



PLACE 1/4" CONTRACTION JOINTS AT INTERVALS EQUAL TO WIDTH OF SIDEWALK OR 6' MAX. PLACE 1/2" EXPANSION JOINTS AT 30' INTERVALS (MAX.)

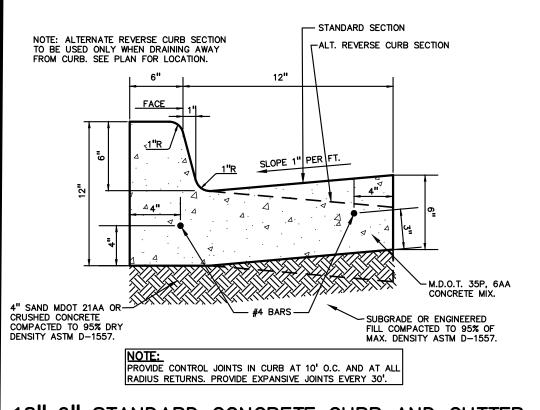
ON-SITE CONCRETE SIDEWALK


CONTRACTION JOINTS TO BE T/4 DEEP. SPACED AT INTERVALS TO MATCH SIDEWALK WIDTH (SAWCUT). 1/2-INCH PRE-MOLDED FILLER EXPANSION JOINTS WITH JOINT SEALANT SHALL BE PLACED ONLY WHERE SIDEWALK ABUTS A STRUCTURE. INTEGRAL CURB AND SIDEWALK

6"ø CONCRETE BOLLARDS 4' HIGH

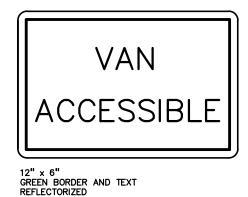
(PAINTED YELLO)

8" POURED — ;ONCRETE SLAB OVER 8" 21AA LIMESTONE

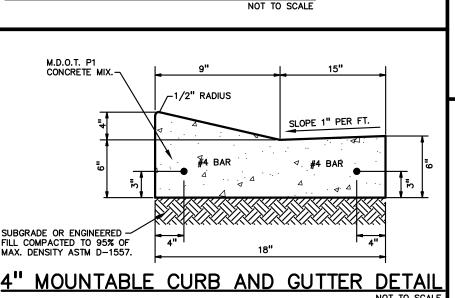

SIDEWAL

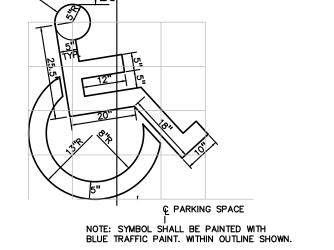
TEMPORARY STONE CHECK DAM DETAIL

18"x6" STANDARD CONCRETE CURB AND GUTTER


ALUMINUM .08" THICK MIN.

SHAPE AND SIZE VARIES


3/8" DRILLED HOLES


7'-0" MOUNTING HEIGHT RIGHT TURN ONLY SIGN DETAIL

MOUNT UNDERNEATH (R7-8) <u>VAN ACCESSIBLE SIGN DETAII</u>

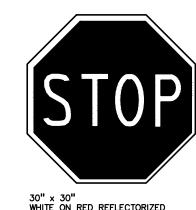
6'-8" MOUNTING HEIGHT **BARRIER FREE**

STANDARD "BARRIER FREE" SYMBOL FOR PARKING SPACE

FINISHED

✓ GRADE

SIGN AND POST INSTALLATION


IN LANDSCAPED AREAS

RED ON WHITE REFLECTORIZED 6'-8" MOUNTING HEIGHT NO PARKING SIGN **DETAIL**

GREEN BORDER AND LEGEND WHITE SYMBOL, BLUE BACKGROUND. REFLECTORIZED <u>PARKING SIGN DETAIL</u>

WHITE ON RED REFLECTORIZED 6'-8" MOUNTING HEIGHT

CAUTION!!

RGROUND UTILITIES AS SHOWN ON THIS

NOW THE WAY AS A SHOWN ON THE MEAN THE MO GUARANT WITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS OR ACCURACY THEREOF. THE

TRACTOR SHALL BE EXCLUSIVELY RESPON

EVATIONS PRIOR TO THE START OF CONSTRUCTION

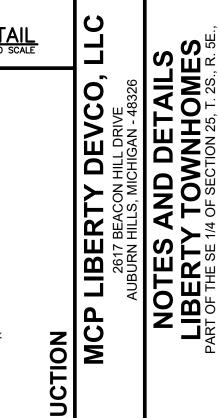
URNISHING INFORMATION TO OTHERS, WITHOUT THE PRIOR WRITTEN CONSENT OF PEA, INC. ALL COMMON AW RIGHTS OF COPYRIGHT AND OTHERWISE ARE IEREBY SPECIFICALLY RESERVED. © 2017 PEA, INC

DITIONS DURING THE COURSE OF CONSTRUC CONDITIONS DURING THE COURSE OF CONSTRUCTION
OF THE PROJECT, INCLUDING SAFETY OF ALL PERSOI
AND PROPERTY: THAT THIS REQUIREMENT SHALL BE
MADE TO APPLY CONTINUOUSLY AND NOT BE LIMITED
TO NORMAL WORKING HOURS, AND CONSTRUCTION
CONTRACTOR FURTHER AGREES TO DEFEND,
INDEPLINIES, AND LOOL DE DETOIL PROFESSIONAL

NDEMNIFY AND HOLD DESIGN PROFESSIONAL HARMLESS FROM ANY AND ALL LIABILITY, REAL OR ALLEGED, IN CONNECTION WITH THE PERFORMANC OF WORK ON THIS PROJECT EXCEPTING LIABILITY

SING FROM THE SOLE NEGLIGENCE OF THE DESIG

B FULL WORKING DAYS


BEFORE YOU DIG CALL

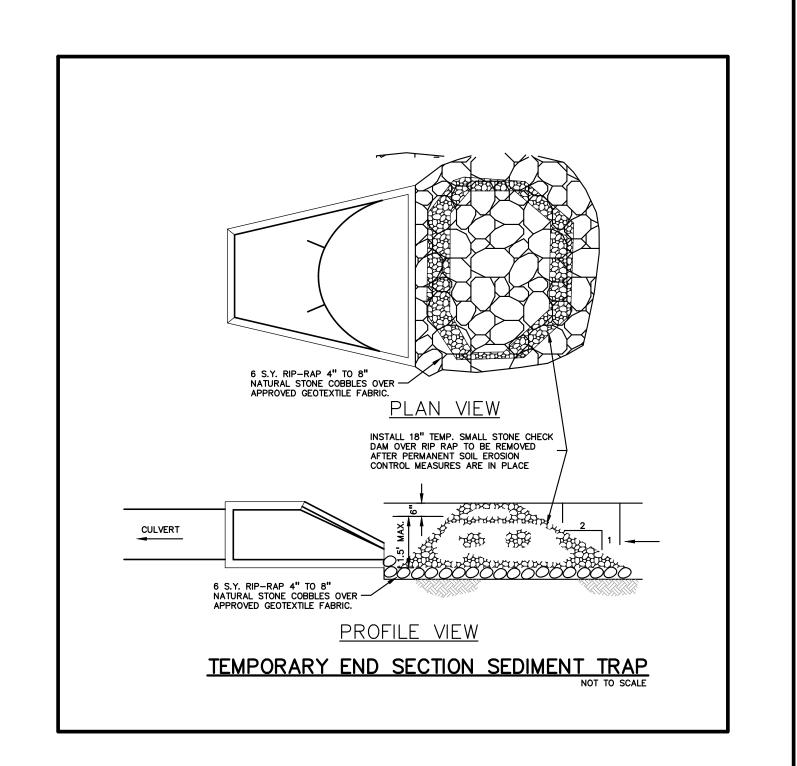
ИISS DIG System, Inc.

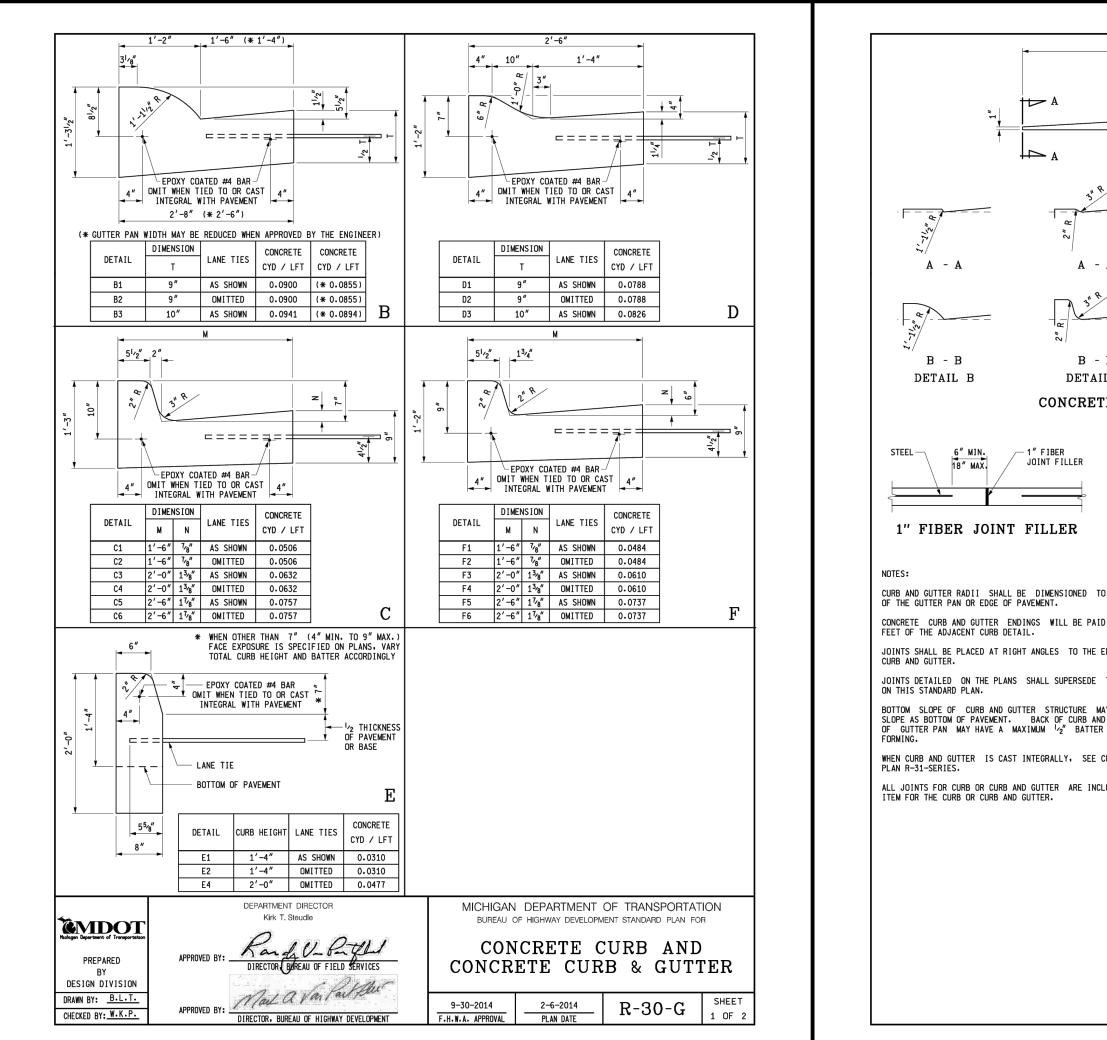
Know what's **DeIOW**

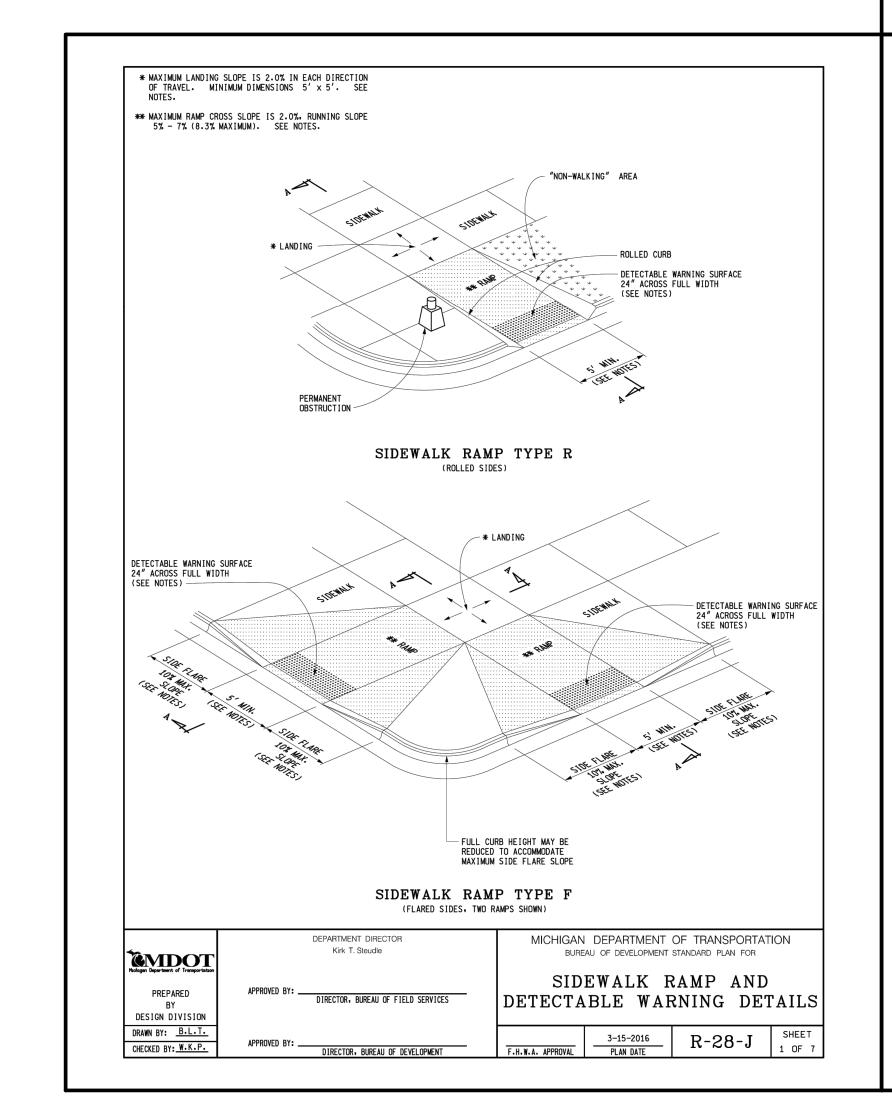
Call before you dig

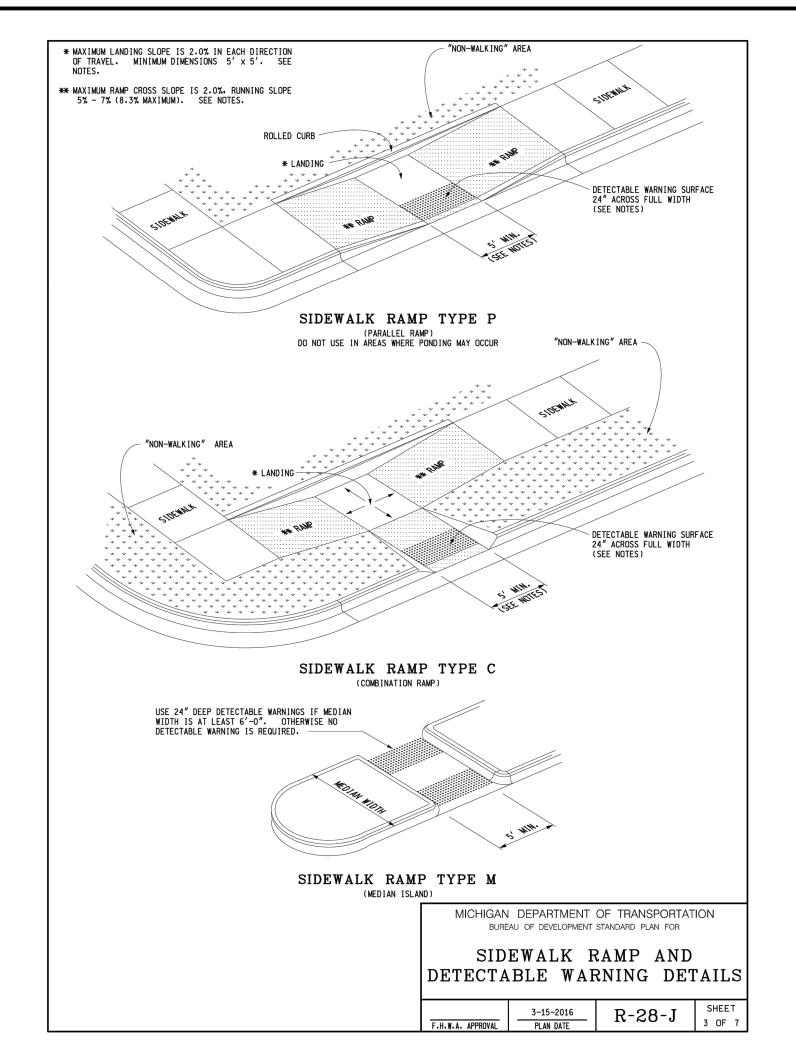
STOP SIGN DETAIL NOT TO SCALE

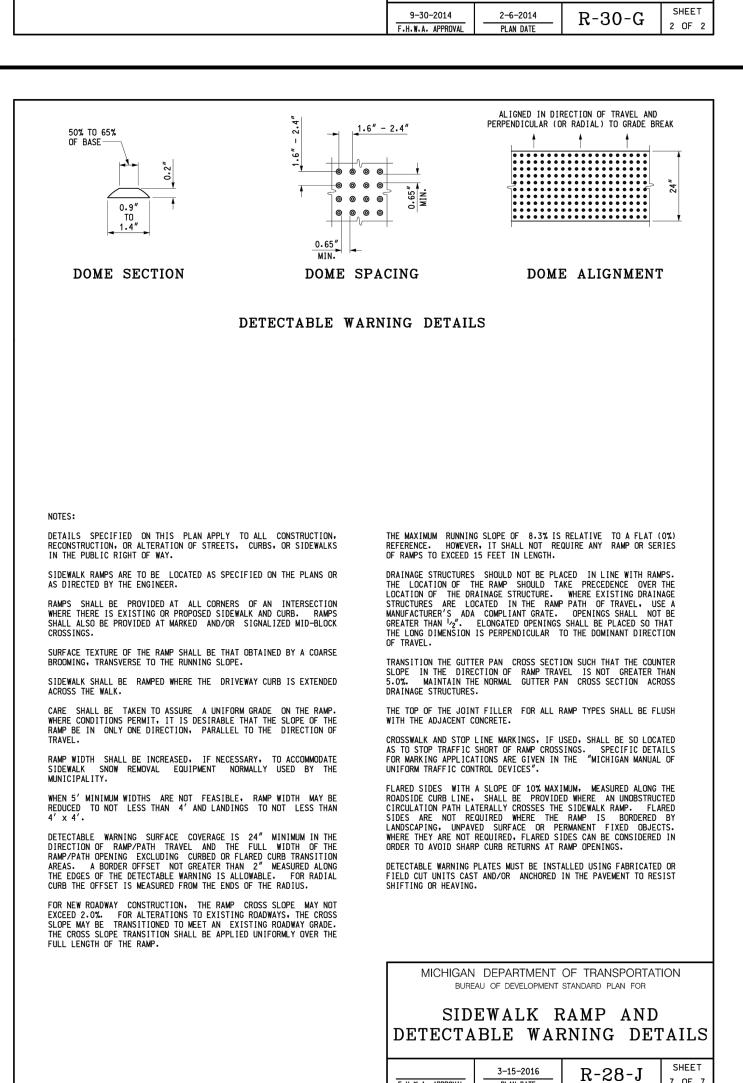
ORIGINAL ISSUE DATE: JULY 27, 2017

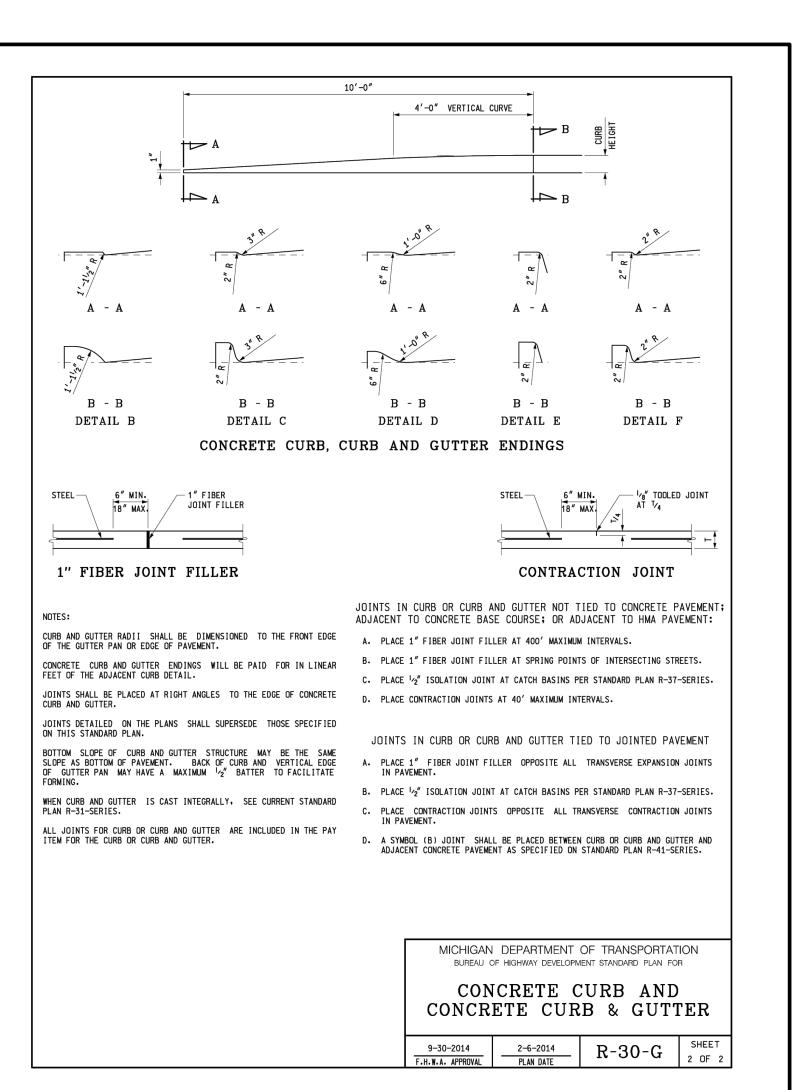

PEA JOB NO. 2017-167 SCALE: AS NOTED RAWING NUMBER:


TEMPORARY DITCH SEDIMENT TRAP


PERMEABLE FILTER -- MATERIA PLAN VIEW BRACING (TYP.)


GATES ON BIN ENCLOSURES MUST BE DESIGNED TO OPEN A MINIMUM OF 120 DEGREES FROM THE CLOSED POSITION. THE GATES SHOULD NOT IMPEDE ON THE REQUIRED BIN ENCLOSURE OPENING WIDTH, SHOULD NOT BLOCK ADJACENT PARKING SPOTS, AND NOT BE IMPEDED BY ADJACENT CURBS OR **ELEVATION** GATES SHALL BE DESIGNED TO BE FREE STANDING WITHOUT CENTER POLE DESIGN. IF CENTER POLE DESIGN IS NECESSARY, 12—INCHES SHALL BE ADDED TO THE OVERALL WIDTH OF THE ENCLOSURE. SIGN POST GATE DESIGN SHALL INCLUDE A RELIABLE MEANS TO SECURE THE DOOR IN BOTH THE OPEN AND CLOSED POSITIONS. GALVANIZED STEEL CHANNEL POST THE CONCRETE SLAB IN FRONT OF THE BIN ENCLOSURE SHALL HAVE PAVEMENT MARKINGS TO INDICATE NO PARKING", AS APPROVED BY CITY. REFER TO ASSOCIATED STANDARD DETAILS FOR REQUIREMENTS ON SINGLE AND DOUBLE WIDE SOLID WASTE BIN ENCLOSURE LAYOUT AND DESIGN CRITERIA. THE CITY SHALL HAVE THE ABILITY TO MODIFY OR INTERPRET INESS DETAILS AS NECESSARY, TO ACCOMMODATE THE CITY OR CITY CONTRACTOR NEEDS IN REGARDS TO SOLID WASTE PICK-UP. 3. REFUSE EQUIPMENT ACCESS ROADS AND SERVICE AREA SURFACES SHALL BE DESIGNED AND MAINTAINED TO SUPPORT THE IMPOSED LOADS OF COLLECTION TRUCKS WEIGHING UP TO 66,000 LBS GROSS VEHICLE WEIGHT (GWW) AND SHALL BE PROVIDED WITH AN APPROVED SURFACE SO AS TO PROVIDE ALL WEATHER DRIVING CAPABILITIES, PROPERTY OWNER SHALL BE RESPONSIBLE FOR ALL SNOW AND ICE REMOVAL REQUIRED FOR SAFE ACCESS OF SOLID WASTE VEHICLES. 30" FROM FACE OF CURB, TYP. THE SOLID WASTE ENCLOSURE SHALL BE LOCATED A MINUMUM OF TEN (10) FEET AWAY FROM MAJOR ELECTRICAL EQUIPMENT, ABOVE GROUND UTILITY SERVICES, TREE BRANCHES OR OTHER OVERHEAD ORSTRUCTIONS. - TOP OF CURB <u>PLAN</u> SOLID WASTE
STANDARD DETAILS SOLID WASTE STANDARD DETAILS


A CLEAR SPACE MUST BE MAINTAINED DIRECTLY IN FRONT OF THE SOLID WASTE ENCLOSURE. THE CLEAR SPACE SHALL BE A MINIMUM OF FIFTY (50) FEET LONG BY THE WIDTH OF THE INSIDE DIMENSION OF THE ENCLOSURE PLUS FIPE (5) FEET ON BOTH SIDES. ALONG THE ENTIRE SOLID WASTE VEHICLE ROUTE A VERTICAL CLEARANCE OF AT LEAST TWENTY—FIVE (25) FEET MUST BE PROVIDED.



CAUTION!!

THE LOCATIONS AND ELEVATIONS OF EXISTING UNDERGROUND UTILITIES AS SHOWN ON THIS DRAWING ARE ONLY APPROXIMATE. NO GUARANTEE I EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS OR ACCURACY THEREOF. THE CONTRACTOR SHALL BE EXCLUSIVELY RESPONSIBLE FOR DETERMINING THE EXACT UTILITY LOCATIONS AN ELEVATIONS PRIOR TO THE START OF CONSTRUCTION.

ELEVATIONS PRIOR TO THE START OF CONSTRUCTION

THIS DRAWING AND DESIGN ARE THE PROPERTY OF PEA, INC. THEY ARE SUBMITTED ON THE CONDITION THAT THEY ARE NOT TO BE USED, REPRODUCED, OR COPIED, IN WHOLE OR IN PART, OR USED FOR FURNISHING INFORMATION TO OTHERS, WITHOUT THE PRIOR WRITTEN CONSENT OF PEA, INC. ALL COMMON LAW RIGHTS OF COPYRIGHT AND OTHERWISE ARE HEREBY SPECIFICALLY RESERVED. © 2017 PEA, INC.

CONSTRUCTION CONTRACTOR AGREES THAT IN ACCORDANCE WITH GENERALLY ACCEPTED CONSTRUCTION PRACTICES, CONSTRUCTION CONTRACTOR WILL BE REQUIRED TO ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THE COURSE OF CONSTRUCTION OF THE PROJECT, INCLUDING SAFETY OF ALL PERSONS AND PROPERTY, THAT THIS REQUIREMENT SHALL BE MADE TO APPLY CONTINUOUSLY AND NOT BE LIMITED TO NORMAL WORKING HOURS, AND CONSTRUCTION CONTRACTOR FURTHER AGREES TO DEFEND, INDEMNIFY AND HOLD DESIGN PROFESSIONAL

INDEMNIFY AND HOLD DESIGN PROFESSIONAL HARMLESS FROM ANY AND ALL LIABILITY, REAL OR ALLEGED, IN CONNECTION WITH THE PERFORMANCE OF WORK ON THIS PROJECT EXCEPTING LIABILITY

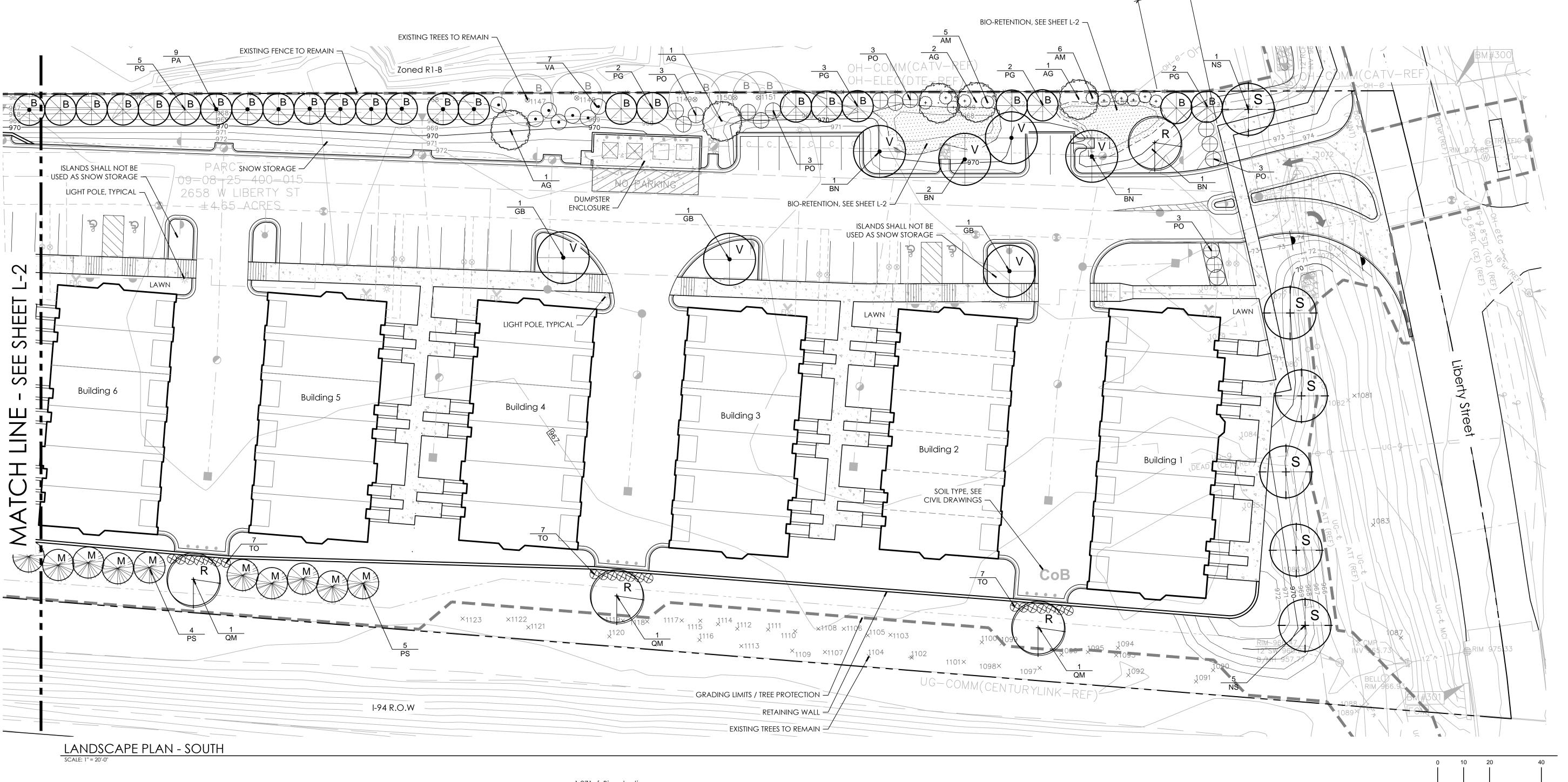
3 FULL WORKING DAYS

RISING FROM THE SOLE NEGLIGENCE OF THE DESIGN

PEA, Inc. 7927 Nemco Way, Ste 115 Brighton, MI 48116 t: 517.546.8583 f: 517.546.8973 www.peainc.com

T DETAILS

TOWNHOMES


14 OF SECTION 25, T. 2S., R. 5E. Ó

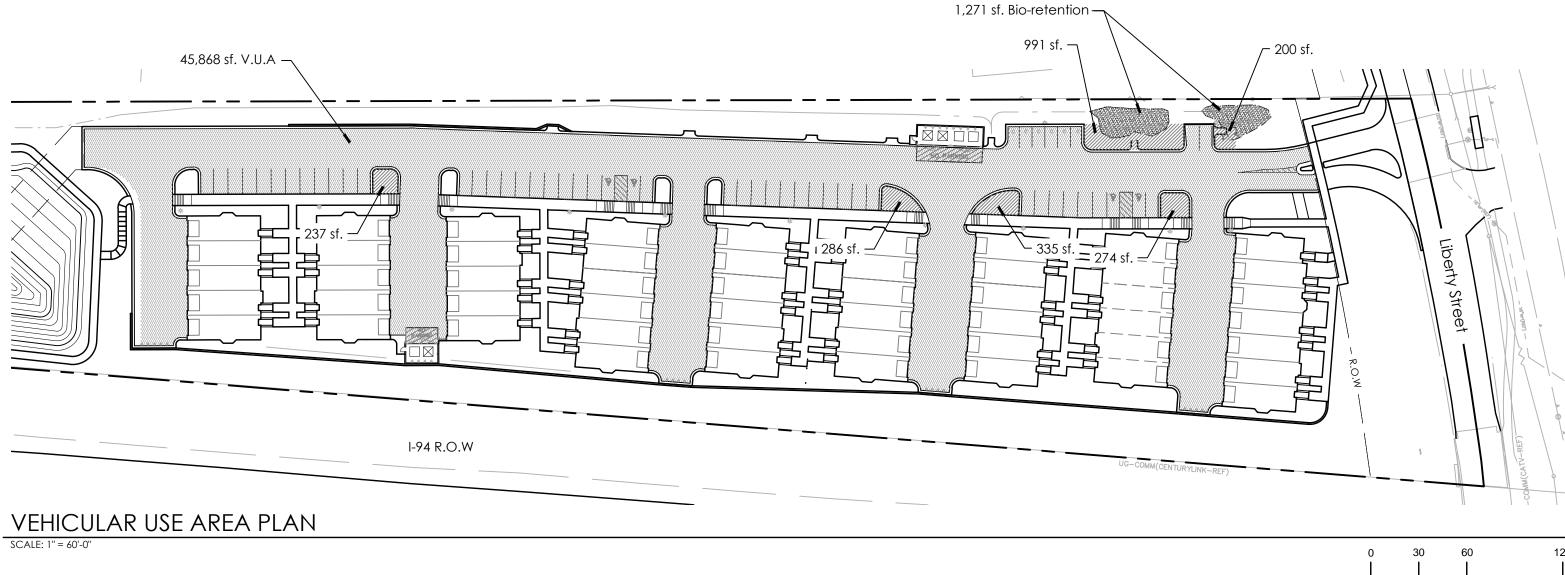
MDO BERTY OF THE SE 1/4

ORIGINAL ISSUE DATE: JULY 27, 2017

PEA JOB NO. 2017-167 SCALE: NONE

RAWING NUMBER:

12.12.2019 Revised Site Plan


04.23.2020 Revision

Liberty Townhomes Ann Arbor, MI

Project Sponsor:

Trowbridge Homes 2617 Beacon Hill Drive Auburn Hills, MI 48326

Landscape Plan South

Site Landscape Calculations

RIGHT OF WAY SCREENING: (R)

1 Deciduous shade or evergreen tree is required per 30 If or fraction thereof of public R.O.W street frontage of the

vehicular use area

Visible Vehicular Use Length: 139 lf.

Trees Required: 4.6 (139'/30')
Trees Provided: 5

VEHICULAR USE AREA: (V)

Required Landscape Area: 1sf. per 20 sf. of VUA
Vehicular Use Area: 45,868 sf.

Landscape Area Required: 2,293 sf. (1,147 sf. must be Bio-retention)

Landscape Area Provided: 2,323 sf. (See use area plan)

Bio-retention Area Provided: 1,271 sf.**
Total Provided: 3,798 sf.

storm water management of the site.

** The Applicant requests a modification to have portions of the bio-retention areas outside of interior landscape islands. All attempts have been made to incorporate as much as possible in to the proposed islands but due to limited space and required easements for other utilities this was not possible. The proposed areas exceed the sf. requirement, still retain water from the vehicular use area and are logically placed to work with the overall

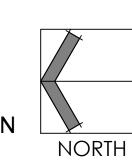
Trees Required: 9 (2,293 sf. / 250) Trees Provided:

CONFLICTING LAND USE BUFFER: (B)

Minimum of 1 deciduous or evergreen tree / 15 lf. of buffer
Total Conflicting Land Use Buffer: 725 lf.

Total Trees Required: 48.3 (725 / 15) Total Trees Provided: **49**

STREET TREE REQUIREMENT: (S) 1 Deciduous shade tree / 45 If of R.O.W length is required Row of Way Length - 240 If

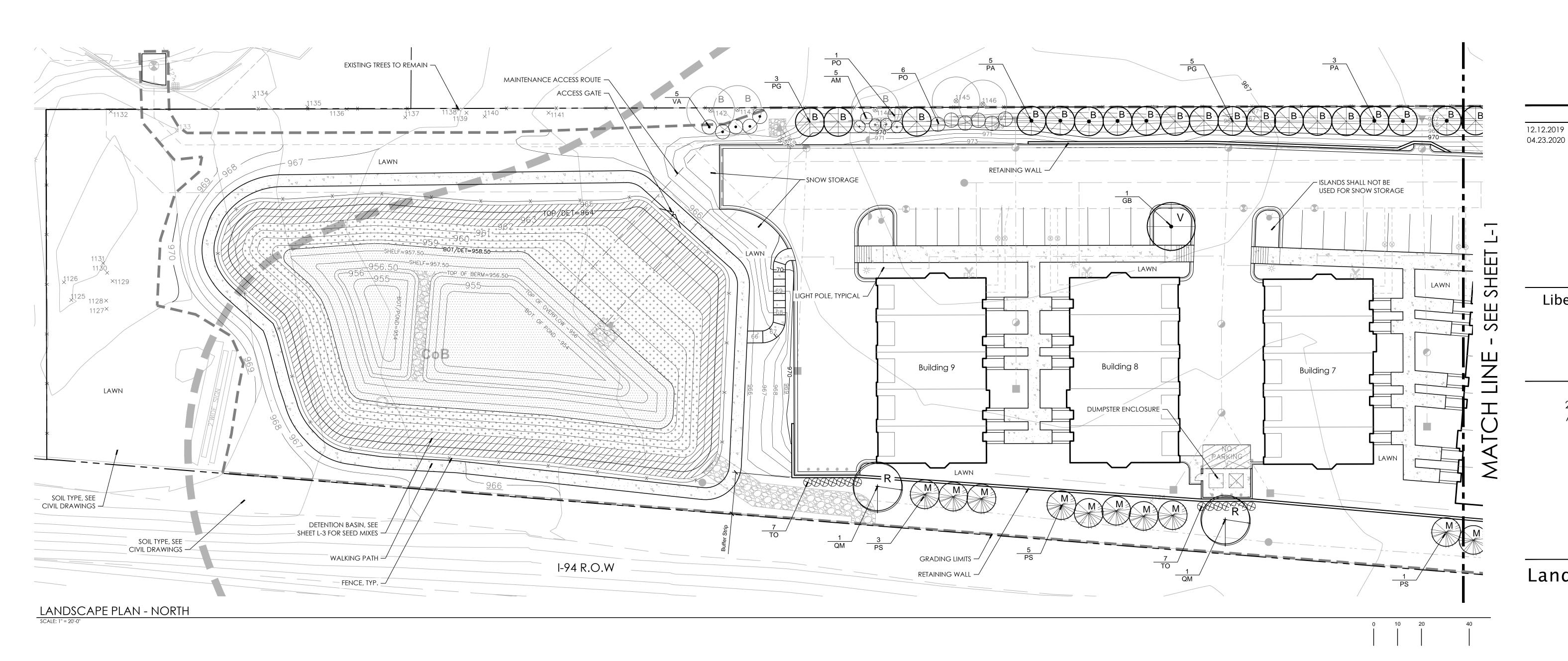

Street Trees Required: 5.3 (240 lf / 45)

Street Trees Provided: 6

Street Tree Escrow Required: \$312.00 (240 x \$1.30)
The street tree escrow must be paid prior to issuing building

LANDMARK TREE MITIGATION: (M)
Mitigation Required: 13 Trees ((78.5" X .5) / 3")
Mitigation Provided: 18 Trees

NOTE: SEE SHEET L-2 FOR PLANT LIST


JG JG 10.29.2018 **AS NOTED** Scale:

> Project Number: 19.031 Sheet Number:

NOT FOR CONSTRUCTION

© 2019 Vert Verde Landscape Architecture, LLC

landscape architecture 734.249.3568 Plymouth, MI james@vertverde.com

12.12.2019 Revised Site Plan

Revision

Liberty Townhomes Ann Arbor, MI

Project Sponsor:

Trowbridge Homes 2617 Beacon Hill Drive Auburn Hills, MI 48326

Landscape Plan North

GENERAL NOTES:

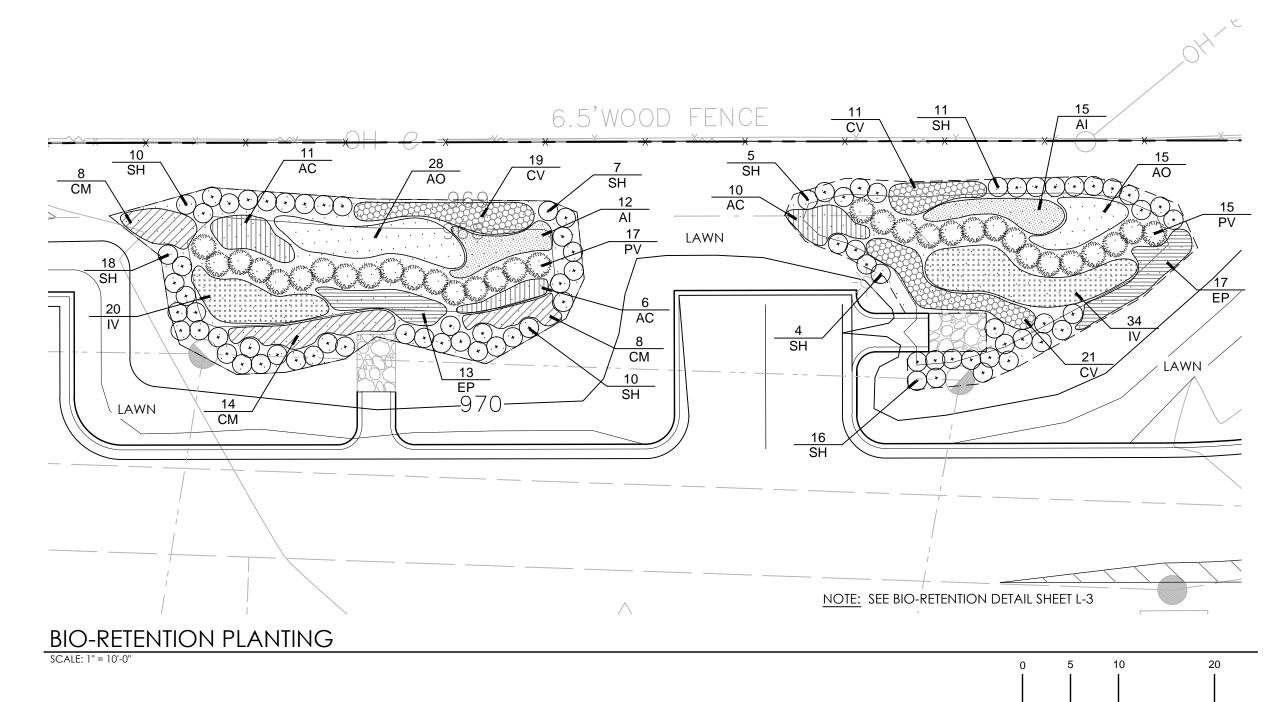
- UTILITY BOXES WILL BE SCREENED ON 3 SIDES.
- ALL DISTURBED AREAS TO BE SOD OR SEED.
- ALL LANDSCAPE AREAS SHALL BE IRRIGATED. SNOW SHALL BE STORED IN BUILDING ISLANDS AND ALONG STREETS. STORAGE SHALL NOT INCLUDE DETENTION AREAS OR LANDSCAPED AREAS.
- THE STREET TREE ESCROW MUST BE PAID PRIOR TO ISSUING BUILDING PERMITS. CHECKS ARE TO MADE PAYABLE TO: CITY OF ANN ARBOR AND MAILED TO SYSTEMS PLANNING UNIT, 301 E. HURON ST., PO BOX 8647, ANN ARBOR, MI 48107-8647 -- ATTN: TIFFANY GIACOBAZZI. PLEASE INCLUDE THE PROJECT NAME AND PROJECT NUMBER ON THE CHECK.
- TREES SHALL BE PLANTED 5'-8' FROM UTILITY LEADS. ALL PLANT SPECIES DEVIATIONS FROM THE APPROVED SITE PLAN MUST BE APPROVED BY THE CITY OF ANN ARBOR PRIOR TO INSTALLATION

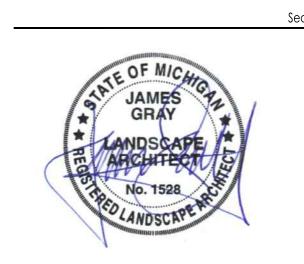
ADDITIONAL NOTES:

Continuing Care
Landscaping shall be kept in a neat, orderly and healthy growing condition, free from debris and refuse. All landscape materials shall be maintained by a regular program or mowing, watering, weeding, feeding and pruning. Pruning shall be minimal at the time of installation, only to remove dead or diseased branches. Subsequent pruning shall assure proper maturation of plants to achieve their approved purpose.

All dead, damaged, or diseased plant material shall be replaced in accordance with

this code by the end of the following planting season as a continuing obligation for the duration of the site plan.


Watering
This shall be accomplished by installation of an underground irrigation system to provide water for the landscape areas specified on the landscape plan. Clay Soils
Construct Earth Bed to Required Grade and Trim. Prior to Placement of Topsoil or


Compost, Harrow all Earth Beds to a Minimum of 3" Depth.

Beyond Initial Fertilization, All Future Fertilizer Applications Shall not Contain Phosphorus.

PLANT SCHEDULE

COMMENTS &B Minimum 5 stems &B Minimum 3 stems
R.B. Minimum 3 stems
VIIIIIIIIIII 5 Stellis
&B Unsheared, branched to gorun
&B Unsheared, branched to gorun
&B Single straight trunk
&B Single straight trunk
&B Unsheared, branched to gorun
&B Single straight trunk
ont. Well rooted
nt. Well rooted
nt. Well rooted
&B
ont. Well rooted
nt. Well rooted
ont. Well rooted
ont. Well rooted

	Drawn:	JG	
	Diawn.	JG	
	Checked:	JG	
	Date:	10.29.2018	
_	Scale:	AS NOTED	
•			

Project Number: 19.031

Sheet Number:

© 2019 Vert Verde Landscape Architecture, LLC

NOT FOR CONSTRUCTION

NORTH

Detention Basin Seed Mixes:

Emergent Wetland Seed N	IIX			
		DI O		
National Arts National Po	A supplementation is the second	PLS	10 St 2001 ST 10 ST	
Botanical Name	Common Name	Ounces/Acre	Seeds/Oz	Seeds/SQ FT
Permanent Grasses/Sedge	s/Rushes:			
Carex comosa	Bristly Sedge	2.50	41183	2.36
Carex lacustris	Common Lake Sedge	0.25	26000	0.15
Carex lurida	Bottlebrush Sedge	4.00	12000	1.10
Carex vulpinodea	Brown Fox Sedge	6.00	125000	17.22
Eleocharis ovata	Blunt Spike Rush	1.00	95000	2.18
Leersia oryzoides	Rice Cut Grass	3.00	94500	6.51
Juncus effusus	Common Rush	1.00	281000	6.45
Scirpus acutus	Hard-stemmed Bulrush	2.50	20000	1.15
Scirpus pungens	Chairmaker's Rush	4.00	125000	11.48
Scirpus validus	Great Bulrush	6.00	37813	5.21
13	Total	30.25		53.81
Temporary Cover:				
Avena sativa	Common Oat	360.00	8125	67.15
Lolium multiflorum	Annual Rye	100.00	14188	
Lonammannorum	Total	460.00	11100	99.72
Ft				
Forbs: Acorus calamus	Sweet Flag	0.50	7000	0.08
Alisma spp.	Water Plantain (Various Mix)	2.00	70175	=1
Asclepias incarnata	Swamp Milkweed	1.50	4540	
Cephalanthus occidentalis	Buttonbush	0.50	12500	
Decodon verticillatus	Swamp Loosestrife	0.50	40250	- Fr 111
Eupatorium maculatum	Spotted Joe-Pye Weed	0.50	78125	
Hibiscus spp.	Rosemallow (Various Mix)	3.00	2188	
Iris virginica	Blue Flag	6.00	1400	
Lobelia cardinalis	Cardinal Flower	0.25	437500	
Lobelia siphilitica	Great Blue Lobelia	1.50	520000	
Lycopus americanus	Common Water Horehound	0.25	235000	
Mimulus ringens	Monkey Flower	1.00	283500	
Peltandra virginica	Arrow Arum	16.00	42	
Penthorum sedoides	Ditch Stonecrop	0.50	36063	
Polygonum spp.	Pinkweed (Various Mix)	0.50	4063	
Pontederia cordata	Pickerel Weed	10.00	1250	
Sagittaria latifolia	Common Arrowhead	2.00	56700	
Sparganium americanum	American Bur Reed	1.00	975	
Sparganium eurycarpum	Common Bur Reed	4.00	596	
Verbena hastata	Blue Vervain	1.00	125000	
verberia Hastata	Total	52.50	123000	36.94

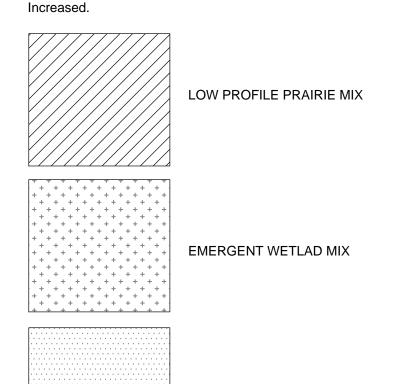
Stormwater Seed Mix				
		PLS		
Barton Com C. Warning	Santage North		0 1/0	0 L/00 FT
Botanical Name	Common Name	Ounces/Acre	Seeds/Oz	Seeds/SQFT
Permanent Grasses/Sedg	es/Rushes:			
Carex crisatella	Crested Oval Sedge	1.00	59000	1.35
Carex lurida	Bottlebrush Sedge	2.00	12000	0.55
Carex vulpinoidea	Brown Fox Sedge	6.00	125000	17.22
Elymus virginicus	Virginia Wild Rye	12.00	4375	1.21
Glyceria striata	Fowl Manna Grass	1.25	125000	3.59
Juncus effusus	Common Rush	1.00	281000	6.45
Juncus torreyi	Torrey's Rush	0.25	1134000	6.51
Leersia oryzoides	Rice Cut Grass	1.00	94500	2.17
Panicum virgatum	Switch Grass	8.00	28356	5.21
Scirpus atrovirens	Dark Green Rush	1.00	187500	4.30
Scirpus cypemus	Wool Grass	0.50	562500	6.46
Scirpus fluviatilis	River Bulrush	0.25	27500	0.16
Scirpus validus	Great Bulrush	6.00	37813	5.21
	Total	40.25		60.38
Temporary Cover:				
Avena sativa	Common Oat	360.00	8125	67.15
Lolium multiflorum	Annual Rye	100.00	14188	32.57
	Total	460.00		99.72
Forbs & Shrubs:				
Alisma spp.	Water Plantain (Various Mix)	4.25	70175	6.85
A sclepias incamata	Swamp Milkweed	1.50	4540	0.16
Bidens spp.	Bidens (Various Mix)	2.00	14175	0.65
Helenium autumnale	Sneezeweed	2.00	141750	6.51
Lycopus americanus	Common Water Horehound	0.25	235000	1.35
Mimulus ringens	Monkey Flower	1.00	283500	6.51
Penthorum sedoides	Ditch Stonecrop	0.50	36063	0.41
Polygonum pensylvanicum	Pinkweed	4.00	4063	0.37
Sagittaria latifolia	Common Arrowhead	2.00	113400	5.21
Senna hebacarpa	Wild Senna	1.00	1400	0.03
Thalictrum dasvcarpum	Purple Meadow Rue	2.00	13500	0.62

Notify Seed Supplier That This Seed Mix Shall NOT Contain Rudbeckia subtomentosa. Sagittaria latifolia Quantity has been

HOLE WIDTH = 2-3x WIDTH OF ROOTBALL

DO NOT STAKE UNLESS IN HEAVY CLAY SOIL, WINDY CONDITIONS, 3" OR GREATER DIAMETER TREE TRUNK OR LARGE CROWN. IF STAKING IS NEEDED DUE TO THESE CONDITIONS:

STAKE WITH 2 x 2 HARDWOOD STAKES, OR APPROVED EQUAL, DRIVEN 6"-8" OUTSIDE OF ROOTBALL.


LOOSELY STAKE TREE TRUNK TO ALLOW FOR TRUNK FLEXING.

STAKE TREES JUST BELOW FIRST BRANCH WITH 2"-3" WIDE BELT-LIKE, NYLON OR PLASTIC STRAPS (2 PER TREE ON OPPOSITE SIDES OF TREE, CONNECT FROM TREE TO STAKE HORIZONTALLY, DO NOT USE ROPE OR WIRE

REMOVE ALL STAKING MATERIALS AFTER 1 YEAR.

Low-profile Prairie Seed	Mix			
•				
		PLS		
Botanical Name	Common Name	Ounces/Acre	Seeds/Oz	Seeds/SQ F
Permanent Grasses:				
Carex spp.	Prairie Carex Mix	4 00	33422	3.0
Elymus canadensis	Canada Wild Rye	32.00	4258	3.10
Elymus virginicus	Virginia Wild Rye	10.00	9375	2.1
Koeleria cristata	June Grass	1.00	150000	3.4
Panicum virgatum	Switch Grass	1.00	28356	0.6
Schizachyrium scoparium	Little Bluestem	32.00	8800	6.40
	Total	80.00		18.9
- Control of the Cont				
Temporary Cover.	Common Oot	200.00	0405	C7 41
Avena sativa	Common Oat	360.00	8125	
Lolium multiflorum	Annual Rye Total	100.00 460.00	14188	32.5 99.7
	lotai	460.00		99.7
Forbs:		No. access		
Anemone cylindrica	ThimbleWeed	0.50	20938	0.2
Asclepias tuberosa	Butterfly MilkWeed	2.00	3500	0.10
Aster ericoides	Heath Aster	0.25	140000	0.80
Aster laevis	Smooth Blue Aster	0.75	48000	0.8
Aster novae-angliae	New England Aster	0.25	76000	0.4
Chamaecrista fasciculata	Partridge Pea	14.00	3800	1.2
Coreopsis lanceolata	Sand Coreopsis	5.00	12500	1.4
Coreopsis tripteris	Tall Coreopsis	3.00	13100	0.9
Dalea candida	White Prairie Clover	1.50	26250	0.9
Desmodium canadense	Showy Tick Trefoil	1.50	20000	0.6
Euphorbia corollata	Flowering Spurge	8.00	7542	
Euthamia graminifolia	Grass-leaved Goldenrod	2.50	8000	0.40
Lespedeza capitata	Round-Head Bush Clover	2.00	10000	0.46
Liatris aspera	Rough Blazing Star	0.50	13000	0.1
Lupinus perennis	Wild Lupine	2.00	1000	0.0
Monarda fistulosa	Wild Bergamot	0.75	78000	1.3
Parthenium integrifolium	Wild Quinine	1.00	6800	0.10
Penstemon digitalis	Foxglove Beard Tongue	0.50	115000	1.33
Pycnanthemum virginianum	Common Mountain Mint	1.00	331250	7.60
Ratibida pinnata	Yellow Coneflower	4.00	25250	2.3
Rudbeckia hirta	Black-Eyed Susan	5.00	110000	12.6
Symphyotrichum ericoides	Heath Aster	3.00	4000	0.2
Silphium terebinthinaceum	Prairie Dock	0.50	1100	0.0
Solidago nemoralis	Old-Field Goldenrod	0.50	240000	2.7
Solidago rigida	Stiff Goldenrod	1.00	46000	1.0
Tradescantia ohiensis	Common Spiderwort	0.75	8000	(4.5.5.6)
Vernonia spp.	Ironweed (Various Mix)	1.75	24000	
Veronicastrum virginianum	Culvers Root	0.25	750000	4.30
	Total	63.75		44.99

Notify Seed Supplier That This Seed Mix Shall NOT Contain Rudbeckia subtomentosa. Echinacea purpurea Quantity has been

STORMWATER MIX

1. The seed mixes shall be applied at the specified rate of for each mix. Must be installed to manufacturer specification and requirements.

- DO NOT PRUNE TERMINAL LEADER OR BRANCH TIPS. - PRUNE AWAY DEAD OR BROKEN BRANCHES ONLY.

MULCH 2"-3.5" DEEP LEAVING 3" CIRCLE OF BARE SOIL AROUND TRUNK OF TREE.

- IF POSSIBLE, WITHOUT DISTURBING DEVELOPED ROOTS, FOLD DOWN OR CUT AWAY BURLAP TO EXPOSE ROOTBALL. REMOVE ALL NON-DEGRADABLI MATERIALS, CUTTING AWAY WIRE BASKET TO 10"

BREAK UP (SCARIFY) SIDES OF PLANTING HOLE.

REVISIONS REV. NO. DR.BY CH. BY DATE

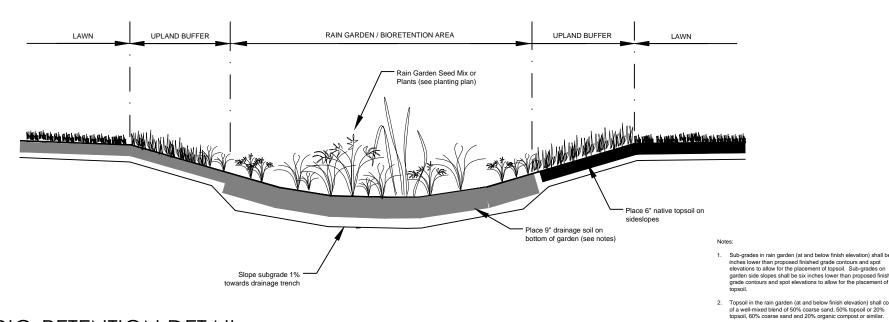
SHEET NO. _____ OF __

PUBLIC SERVICES DEPARTMENT

CITY OF ANN ARBOR

 DR. BY
 ARG
 CH. BY
 CSS
 DRAWING NO.

 SCALE
 NONE
 DATE
 7-23-10
 SD-L-3


TREE PLANTING DETAIL

- PRUNE OFF SUCKERS.

128 Sunset Drive Walkerton, IN 46574

574-586-2412

GENERAL LANDSCAPE NOTES

CONCERNS.

OF THE CONTRACTOR.

GROWING CONDITION.

RECOMMENDED RATES.

THE PLANTING DETAILS.

GREATER CONDITION.

1. LANDSCAPE CONTRACTOR SHALL VISIT SITE, INSPECT EXISTING CONDITIONS AND REVIEW PROPOSED PLANTING AND RELATED WORK. IN CASE OF

GOVERN QUANTITIES. CONTACT THE LANDSCAPE ARCHITECT WITH ANY

PRIOR TO BEGINNING CONSTRUCTION ON HIS/HER PHASE OF WORK. ANY

OTHER TRADES, AND SHALL REPORT ANY UNACCEPTABLE SITE CONDITIONS

6. THE CONTRACTOR AGREES TO GUARANTEE ALL PLANT MATERIAL FOR A PERIOD

7. ALL MATERIAL SHALL CONFORM TO THE GUIDELINES ESTABLISHED IN THE MOST RECENT EDITION OF THE "AMERICAN STANDARDS FOR NURSERY STOCK". CONTRACTOR WILL SUPPLY FINISHED GRADE AND EXCAVATE AS NECESSARY TO SUPPLY PLANT MIX DEPTH IN ALL PLANTING BEDS AS INDICATED IN PLANT DETAILS. PROVIDE CLEAN BACKFILL SOIL, USING MATERIAL STOCKPILED ON-SITE. SOIL SHALL BE SCREENED AND FREE OF DEBRIS, FOREIGN MATERIAL, AND STONE.

11. AMENDED PLANT MIX (PREPARED TOPSOIL) SHALL CONSIST OF 1/3 SCREENED TOPSOIL, 1/3 SAND, AND 1/3 COMPOST, MIXED WELL AND SPREAD TO A DEPTH AS INDICATED IN

13. NO SUBSTITUTIONS OR CHANGES OF LOCATION, OR PLANT TYPE SHALL BE MADE

14. THE LANDSCAPE ARCHITECT SHALL BE NOTIFIED OF ANY DISCREPANCIES BETWEEN

15. THE LANDSCAPE CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING ALL PLANT

MATERIAL IN A VERTICAL CONDITION THROUGHOUT THE GUARANTEED PERIOD. 16. THE LANDSCAPE ARCHITECT OR OWNERS REPRESENTATIVE SHALL HAVE THE RIGHT

17. THE LANDSCAPE CONTRACTOR SHALL SEED AND MULCH OR SOD (AS INDICATED ON

TO REJECT ANY WORK OR MATERIAL THAT DOES NOT MEET THE REQUIREMENTS OF

LIMITS. FURTHER, THE CONTRACTOR SHALL BE RESPONSIBLE FOR RESTORING AREAS

DISTURBED DURING CONSTRUCTION, NOT IN THE CONTRACT LIMITS, TO EQUAL OR

18. ALL LANDSCAPE AREAS SHALL HAVE PROPER DRAINAGE THAT PREVENTS EXCESSIVE

WATER FROM PONDING ON LAWN AREAS OR AROUND TREES AND SHRUBS.

19. ALL LANDSCAPE AREAS SHALL BE IRRIGATED WITH AN AUTOMATIC UNDERGROUND

PLANS) ALL AREAS DESIGNATED AS SUCH ON THE PLANS, THROUGHOUT THE CONTRACT

THE PLANS AND FIELD CONDITIONS PRIOR TO INSTALLATION.

THE PLANS AND/OR SPECIFICATIONS.

12. ALL PLANTINGS SHALL BE MULCHED WITH DOUBLE SHREDDED HARDWOOD BARK, SPREAD

TO A DEPTH OF 3" FOR TREES AND SHRUBS, AND 2" ON PERENNIALS, AND GROUNDCOVER PLANTINGS. MULCH SHALL BE FREE FROM DEBRIS AND FOREIGN MATERIAL, AND PIECES

WITHOUT THE APPROVAL OF THE LANDSCAPE ARCHITECT OR OWNERS REPRESENTATIVE.

OF ONE (1) YEAR. AT THAT TIME, THE OWNER'S REPRESENTATIVE RESERVES THE RIGHT FOR A FINAL INSPECTION. PLANT MATERIAL WITH A 25% DIEBACK OR GREATER AS

DETERMINED BY THE OWNER'S REPRESENTATIVE SHALL BE REPLACED. THIS GUARANTEE INCLUDES THE FURNISHING OF NEW PLANTS, LABOR AND MATERIALS. THESE NEW PLANTS

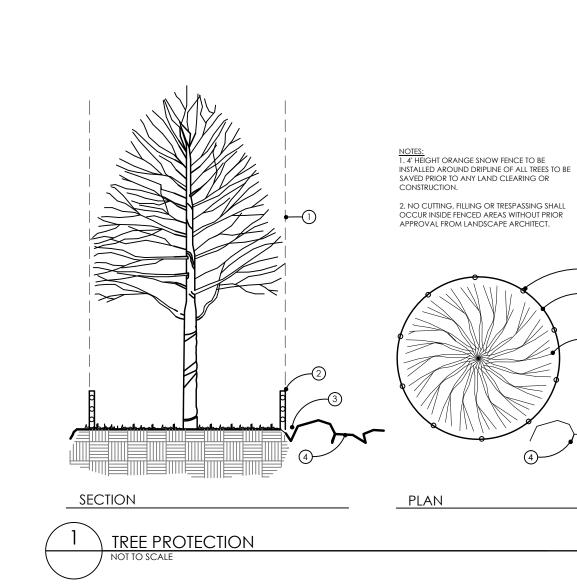
DAMAGE OR INTERRUPTION OF SERVICES SHALL BE THE RESPONSIBILITY

DISCREPANCY BETWEEN PLAN AND PLANT LIST, THE PLAN SHALL

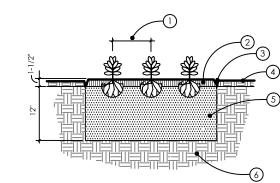
2. THE CONTRACTOR SHALL VERIFY LOCATIONS OF ALL ON-SITE UTILITIES

3. THE CONTRACTOR SHALL COORDINATE ALL RELATED ACTIVITIES WITH

TO THE OWNER'S REPRESENTATIVE PRIOR TO COMMENCEMENT.


4. PLANTS SHALL BE FULL, WELL-BRANCHED, AND IN HEALTHY VIGOROUS

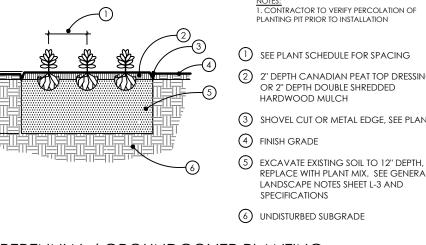
5. PLANTS SHALL BE WATERED BEFORE AND AFTER PLANTING IS COMPLETE.


SHALL ALSO BE GUARANTEED FOR THE PERIOD OF ONE YEAR.

10. SLOW-RELEASE FERTILIZER SHALL BE ADDED TO THE PLANT PITS BEFORE BEING BACKFILLED. APPLICATION SHALL BE AT THE MANUFACTURERS

BIO-RETENTION DETAIL

(1) DRIPLINE OF TREES TO BE SAVED 2) 4' HT. ORANGE SNOW FENCE (3) TRENCH OR CURB (4) CONSTRUCTION AREA (5) STEEL POST EVERY 10' MINIMUM, INSTALL POSTS MINIMUM 2' INTO GROUND


NOTES:

1. CONTRACTOR TO VERIFY PERCOLATION OF PLANTING PIT PRIOR TO INSTALLATION

2" DEPTH CANADIAN PEAT TOP DRESSING

(3) SHOVEL CUT OR METAL EDGE, SEE PLAN (5) EXCAVATE EXISTING SOIL TO 12" DEPTH,

PERENNIAL / GROUNDCOVER PLANTING

(4) REMOVE ALL NON-BIODEGRADALBE TWINE FROM ENTIRE ROOTBALL. REMOVE BURLAP FROM TOP 1/2 OF ROOTBALL. (5) SHOVEL CUT OR METAL EDGE, SEE PLAN (6) EXCAVATE EXISTING SOIL TO 12" DEPTH, REPLACE WITH PLANT MIX. SEE GENERAL LANDSCAPE NOTES SHEET L-3 AND SPECIFICATIONS

NOTES:

1. CONTRACTOR TO VERIFY PERCOLATION OF PLANTING PIT PRIOR TO INSTALLATION

(1) SEE PLAN FOR SPACING

2) SHRUBS, SEE PLANT SCHEDULE

2. SET TOP OF ROOTBALL 2" ABOVE FINISH GRADE

3" DEPTH DOUBLE SHREDDED HARDWOOD

7) SCARIFY TO 4" DEPTH AND RECOMPACT (8) UNDISTURBED SUBGRADE

PLANTING PIT PRIOR TO INSTALLATION

2. SET TOP OF ROOTBALL 3" ABOVE FINISH GRADE

(1) REMOVE ALL TAGS, STRINGS, PLASTICS, AND ANY OTHER MATERIALS WHICH ARE UNSIGHTLY OR COULD CAUSE GIRDLING.

SHREDDED HARDWOOD BARK MULCH.
MINIMUM 6' DIA. LEAVE 3" CIRCLE OF BARE SOIL AROUND BASE OF THE STEMS

MATERIALS FROM THE ROOTBALL. FOLD DOWN ALL BURLAP AND REMOVE WIRE BASKET FROM THE TOP 1/3 OF THE

(2) COVER PLANTING W/ 3" DOUBLE

(3) REMOVE ALL NON-BIODEGRADABLE

(4) PLANT MIX. SEE GENERAL LANDSCAPE NOTES SHEET L-3 AND SPECIFICATIONS

ROOTBALL.

MINIMUM 8" BETWEEN ROOTBALL AND EDGE OF PLANTING PIT SHRUB PLANTING

landscape architecture 734.249.3568 Plymouth, MI james@vertverde.com

12.12.2019 Revised Site Plan 04.23.2020 Revision

Liberty Townhomes

Ann Arbor, MI

Project Sponsor:

Trowbridge Homes 2617 Beacon Hill Drive Auburn Hills, MI 48326

Landscape Details

5 TREE PIT TO BE THREE TIMES WIDTH OF 6 4" TOPSOIL SAUCER MULTISTEM TREE PLANTING

REMOVE ALL TAGS, STRINGS, PLASTICS, AND ANY OTHER MATERIALS WHICH ARE UNSIGHTLY OR COULD CAUSE GIRDLING. 2) STAKE TREES WITH 2-3" WIDE BELT-LIKE, FABRIC STRAPS ONLY, ARBOR TIE OR APPROVED EQUAL, (CONNECT FROM TREE TO STAKE OPPOSITE FROM EACH

3 EVERGREEN TREE PLANTING

DO NOT USE WIRE OR ROPE THROUGH A HOSE. REMOVE AFTER ONE YEAR. (3) (3) 2"X2" HARDWOOD STAKES OR EQUIVALENT DRIVEN 6-8" OUTSIDE OF ROOTBALL. REMOVE AFTER ONE YEAR. 4 COVER PLANTING W/ 3" SHREDDED HARDWOOD BARK MULCH. MINIMUM 6' DIAMETER, CONNECT EVERGREEN PLANTINGS WHERE POSSIBLE REMOVE ALL NON-BIODEGRADABLE MATERIALS FROM THE ROOTBALL. FOLD

OTHER, AND ALLOW FOR SOME "FLEXING")

BASKET FROM THE TOP 1/3 OF THE (6) PLANT MIX. SEE GENERAL LANDSCAPE NOTES SHEET L-3 AND SPECIFICATIONS 7 TREE PIT TO BE 3 TIMES WIDTH OF

8 4" TOPSOIL SAUCER

2. GUY EVERGREENS 12' HEIGHT AND DOWN ALL BURLAP AND REMOVE WIRE 3. NEVER CUT OR PRUNE CENTRAL LEADER 4. SET STAKES VERTICAL AND EVENLY 5. PRUNE ONLY TO REMOVE DEAD OR BROKEN BRANCHES

1. STAKE EVERGREENS UNDER 12' HEIGHT

JG JG Checked: 10.29.2018 **AS NOTED** Scale:

> Project Number: 19.031

© 2019 Vert Verde Landscape Architecture, LLC

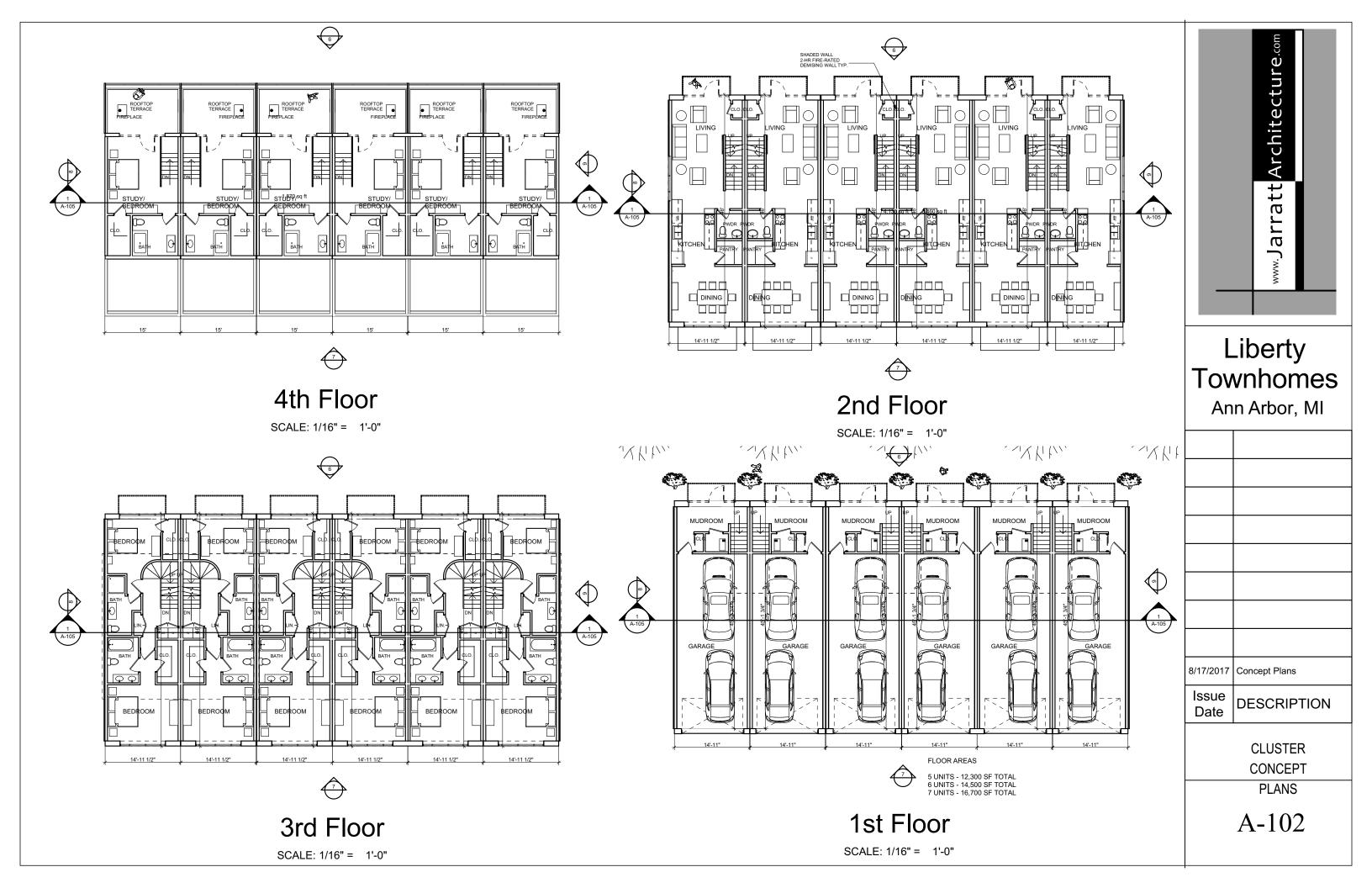
Know what's below Call before you dig MISS DIG System, Inc. www.missdig.net

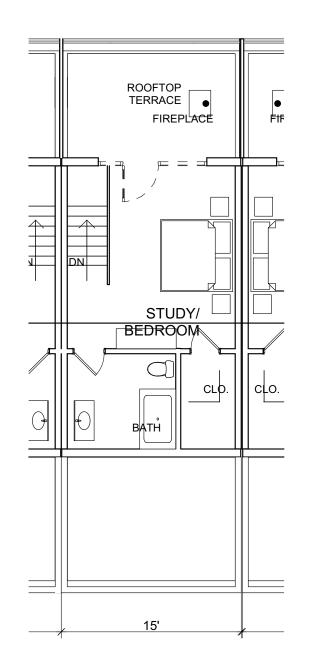
NOT FOR CONSTRUCTION

Sheet Number:

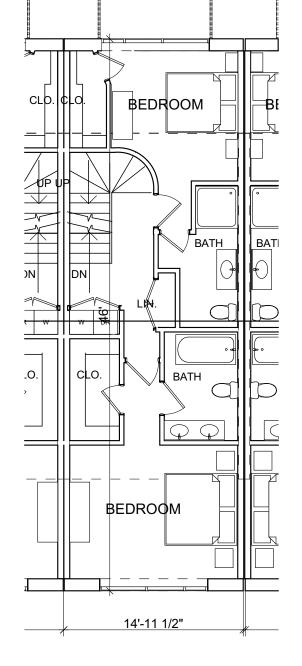
Liberty Townhomes

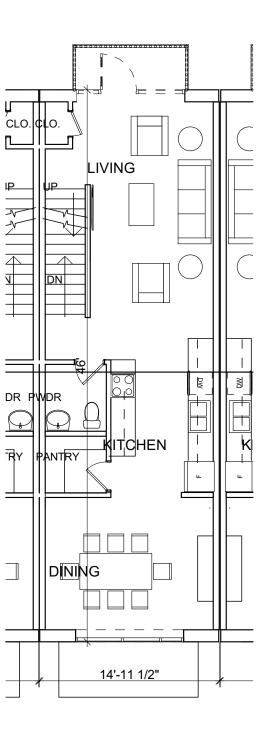
Liberty Townhomes

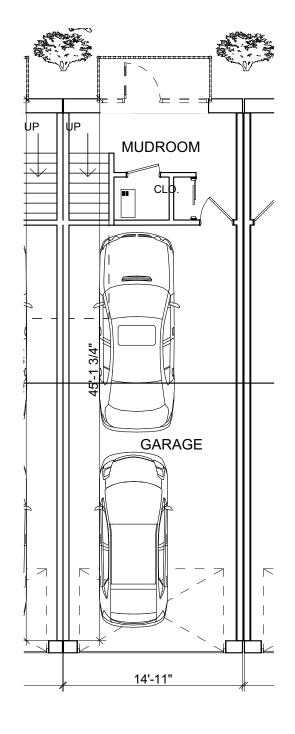

Ann Arbor, MI


8/17/2017 Concept Plans

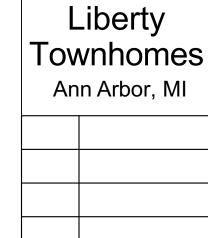
Issue DESCRIPTION


COVER


A-101



SCALE: 1/8" = 1'-0"



1st Floor

SCALE: 1/8" = 1'-0"

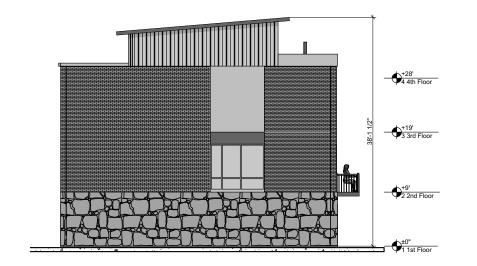
www.Jarratt Architecture.com

Issue DESCRIPTION Date

> UNIT CONCEPT PLANS

> > A-103

3rd Floor


SCALE: 1/8" = 1'-0"

SCALE: 1/8" = 1'-0"

4th Floor

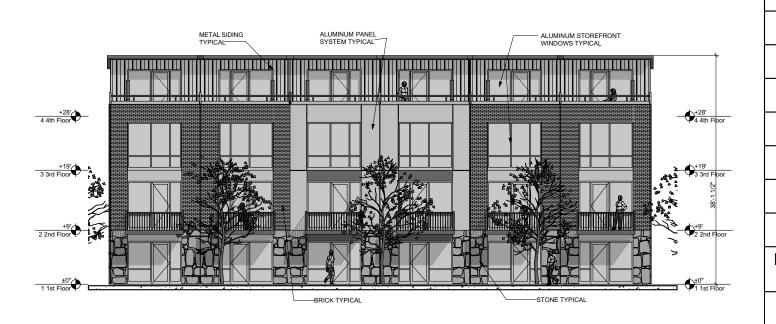
2nd Floor

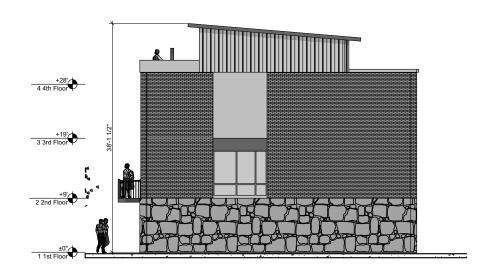
SIDE ELEVATION

SCALE: 1/16" = 1'-0"

Liberty Townhomes

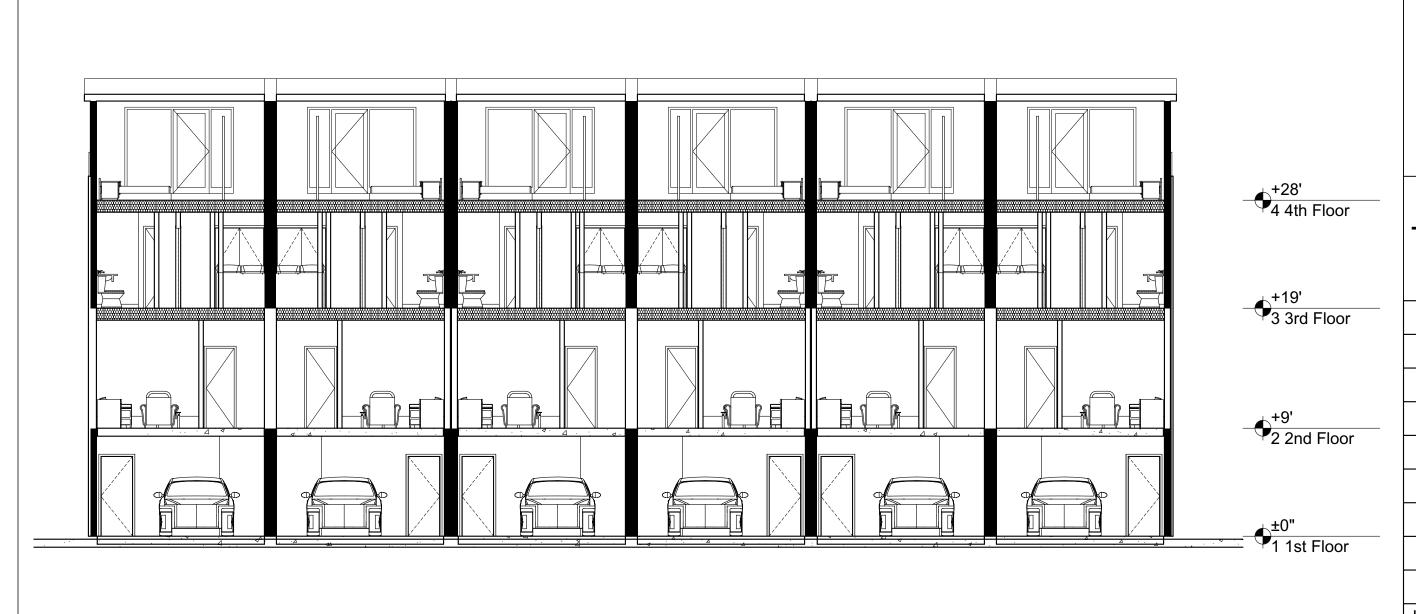
Ann Arbor, MI

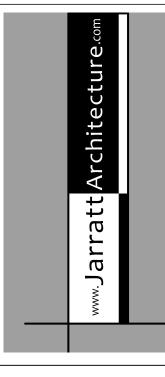

ww.Jarratt<mark></mark>Architecture.com


Issue DESCRIPTION

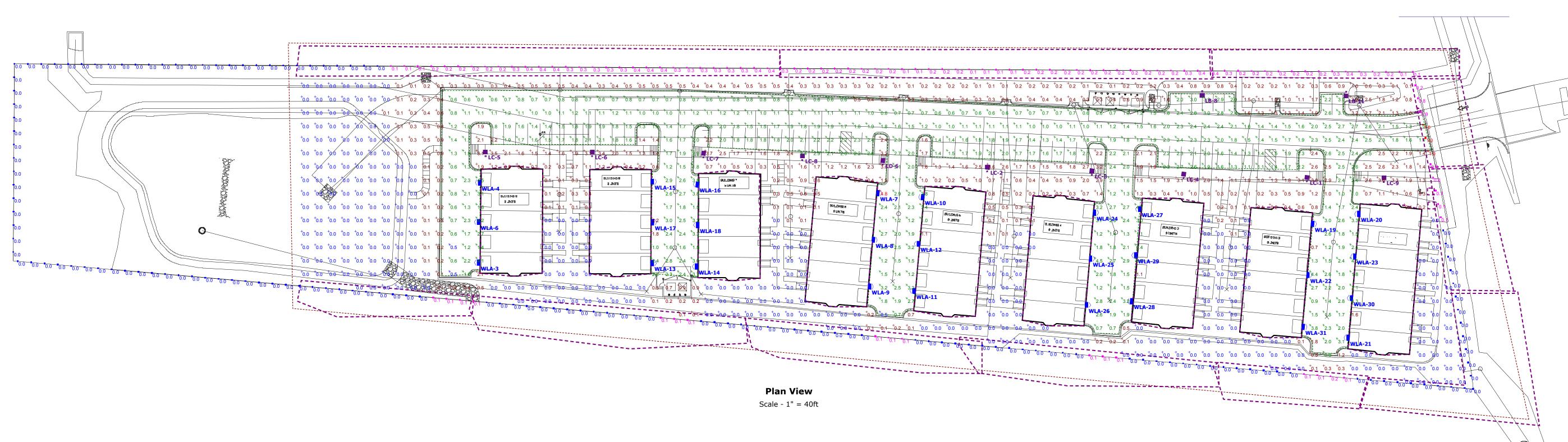
ELEVATIONS

A-104


REAR ELEVATION SCALE: 1/16" = 1'-0"



Liberty Townhomes


Ann Arbor, MI

Issue DESCRIPTION

SECTION

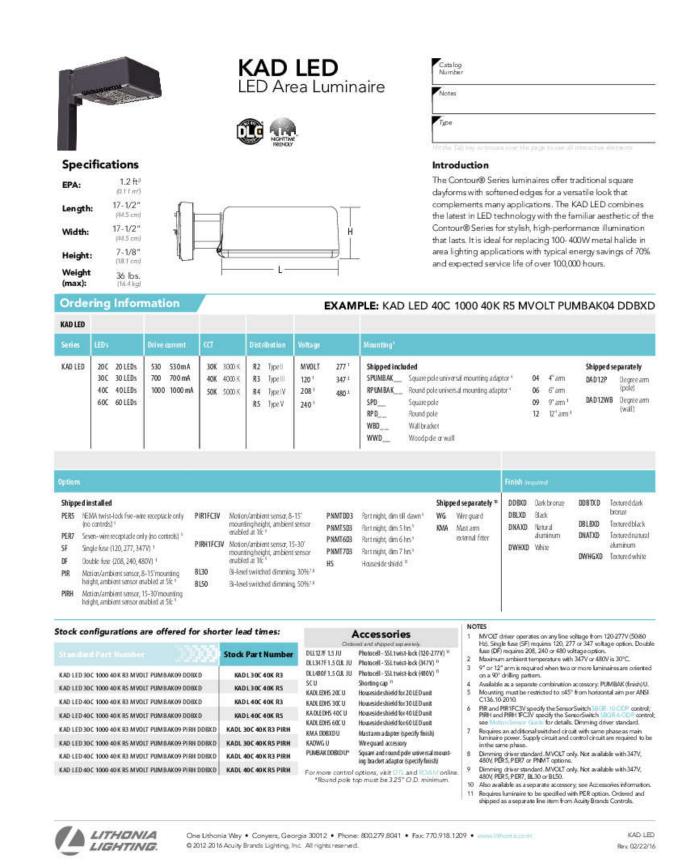
A-105

1 SECTION
SCALE: 1/8" = 1'-0"

Schedule											
Symbol	Label	Quantity	Manufacturer	Catalog Number	Description	Lamp	Number Lamps	Filename	Lumens Per Lamp	Light Loss Factor	Wattage
	LB	2	Lithonia Lighting	KAD LED 40C 530 40K R3 MVOLT HS	KAD LED, 40 LED, 530mA MVOLT DRIVER, 4000K, TYPE 3 OPTICS WITH HOUSE SIDE SHIELDS.	LED	1	KAD_LED_40C_530_40 K_R3_MVOLT_HS.ies	6941	0.9	71
	LC	9	Lithonia Lighting	KAD LED 40C 530 40K R4 MVOLT	KAD LED, 40 LED, 530mA MVOLT DRIVER, 4000K, TYPE 4 OPTICS.	LED	1	KAD_LED_40C_530_40 K_R4_MVOLT.ies	8731	0.9	71
	LD	1	Lithonia Lighting	KAD LED 40C 530 40K R4 MVOLT HS	KAD LED, 40 LED, 530mA MVOLT DRIVER, 4000K, TYPE 4 OPTICS WITH HOUSE SIDE SHIELDS	LED	1	KAD_LED_40C_530_40 K_R4_MVOLT_HS.ies	6834	0.9	71
	WLA	28	Lithonia Lighting	WST LED P1 40K VF MVOLT	WST LED, Performance package 1, 4000 K, visual comfort forward throw, MVOLT	LED	1	WST_LED_P1_40K_VF_ MVOLT.ies	1639	0.9	12

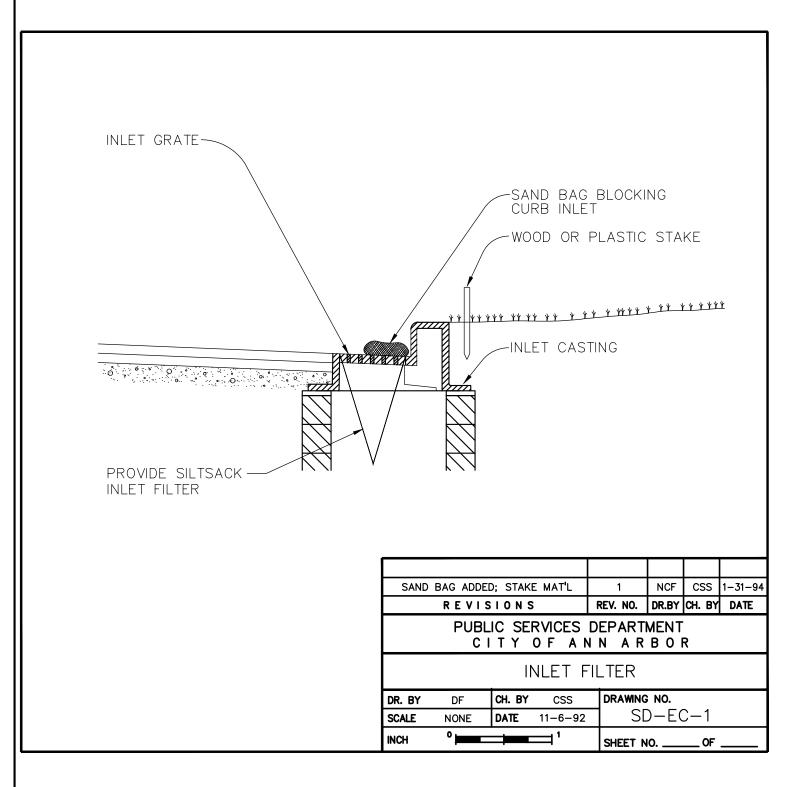
		Loca	tion			
No.	Label	х	Y	МН	Orientation	Tilt
8	LB	884.10	191.40	20.00	180.00	0.00
11	LB	991.03	190.99	20.00	180.00	0.00
1	LC	961.80	124.42	20.00	3.00	0.00
2	LC	724.23	131.97	20.00	3.00	0.00
3	LC	801.93	129.33	20.00	3.00	0.00
4	LC	870.16	126.90	20.00	3.00	0.00
5	LC	351.00	143.34	20.00	0.00	0.00
6	LC	430.40	143.33	20.00	0.00	0.00
7	LC	513.09	142.40	20.00	3.00	0.00
8	LC	586.59	140.47	20.00	3.00	0.00
9	LC	1019.16	124.11	20.00	0.00	0.00
6	LD	646.42	136.98	20.00	3.00	0.00
3	WLA	346.01	64.02	15.00	272.00	0.03
4	WLA	346.63	123.45	15.00	272.00	0.03
6	WLA	345.91	94.27	15.00	272.00	0.03
7	WLA	642.92	115.73	15.00	92.00	0.03
8	WLA	639.59	81.02	15.00	92.00	0.03
9	WLA	636.70	46.25	15.00	92.00	0.03
10	WLA	676.16	112.79	15.00	272.00	0.03
11	WLA	669.74	42.92	15.00	272.00	0.03
12	WLA	672.94	77.99	15.00	272.00	0.03
13	WLA	475.09	63.71	15.00	92.00	0.03
14	WLA	508.04	61.06	15.00	272.00	0.03
15	WLA	475.15	124.21	15.00	92.00	0.03
16	WLA	508.66	122.12	15.00	272.00	0.03
17	WLA	475.37	94.13	15.00	92.00	0.03
18	WLA	508.88	92.04	15.00	272.00	0.03
19	WLA	966.14	92.92	15.00	92.00	0.03
20	WLA	1000.50	100.26	15.00	272.00	0.03
21	WLA	992.47	8.09	15.00	272.00	0.03
22	WLA	962.76	54.79	15.00	92.00	0.03
23	WLA	997.49	68.55	15.00	272.00	0.03
24	WLA	803.97	101.18	15.00	92.00	0.03
25	WLA	801.08	66.91	15.00	92.00	0.03
26	WLA	797.97	32.59	15.00	92.00	0.03
27	WLA	837.48	103.86	15.00	272.00	0.03
28	WLA	831.52	35.33	15.00	272.00	0.03
29	WLA	834.71	69.50	15.00	272.00	0.03
30	WLA	994.97	37.62	15.00	272.00	0.03
31	WLA	959.17	16.30	15.00	92.00	0.03

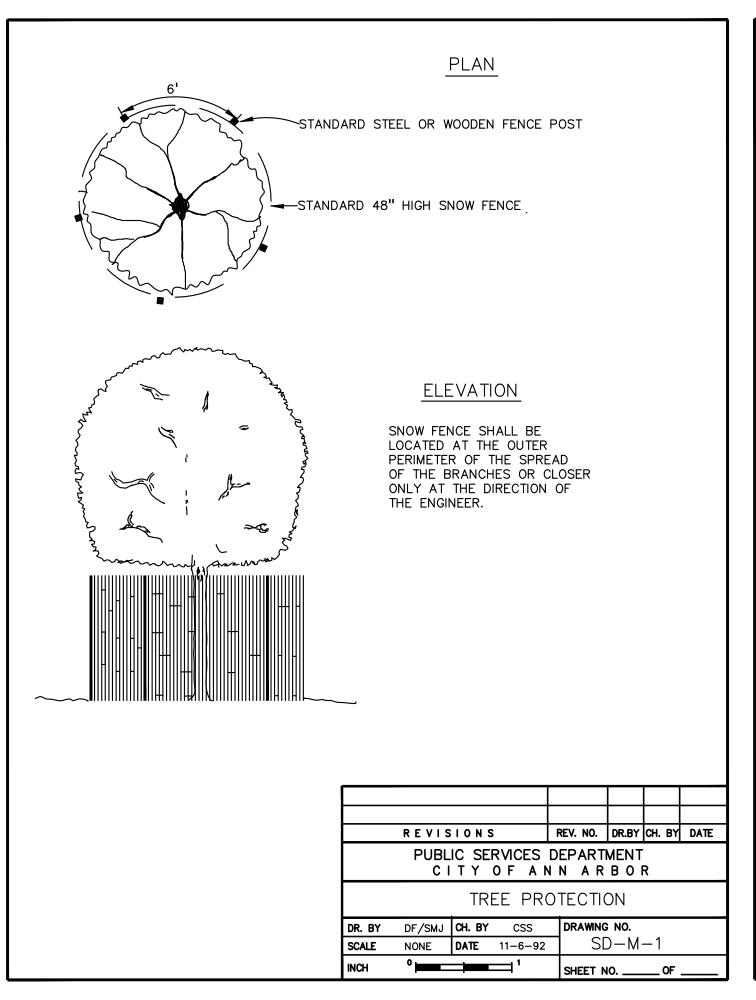

Statistics							
Description	Symbol	Avg	Max	Min	Max/Min	Avg/Min	Avg/Max
PARKING & DRIVE AREAS - 3' AFG	*	1.8 fc	4.8 fc	0.5 fc	9.6:1	3.6:1	0.4:1
PROPERTY LINE VALUES AT GRADE	_	0.1 fc	1.0 fc	0.0 fc	N/A	N/A	0.1:1
SITE	+	1.0 fc	4.8 fc	0.0 fc	N/A	N/A	0.2:1

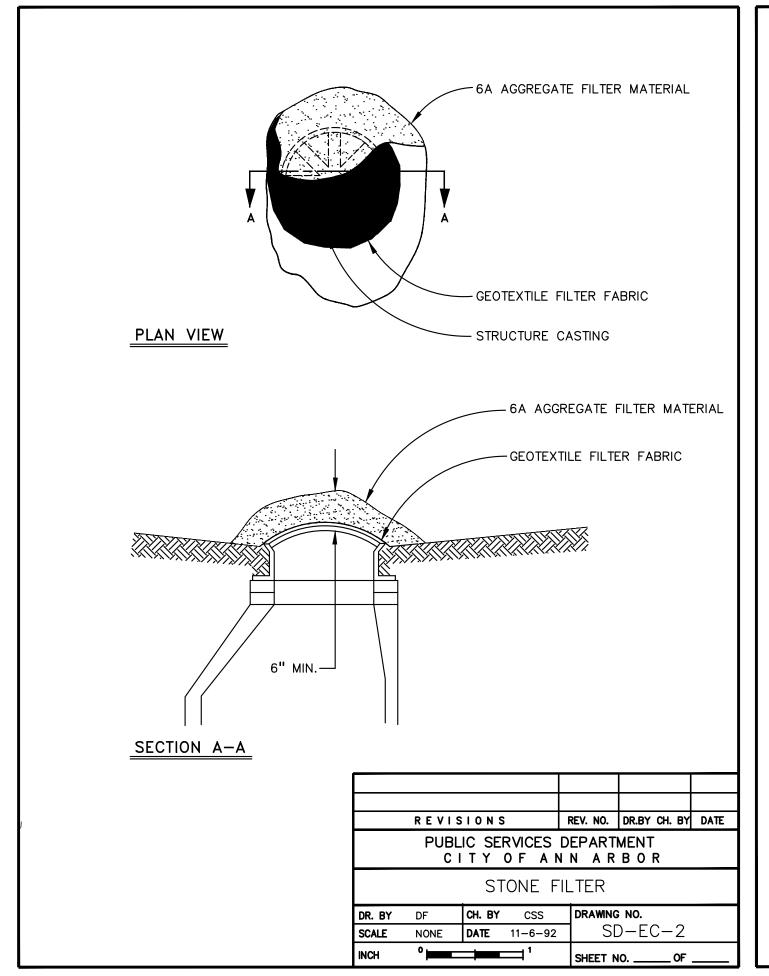

GENERAL NOTE

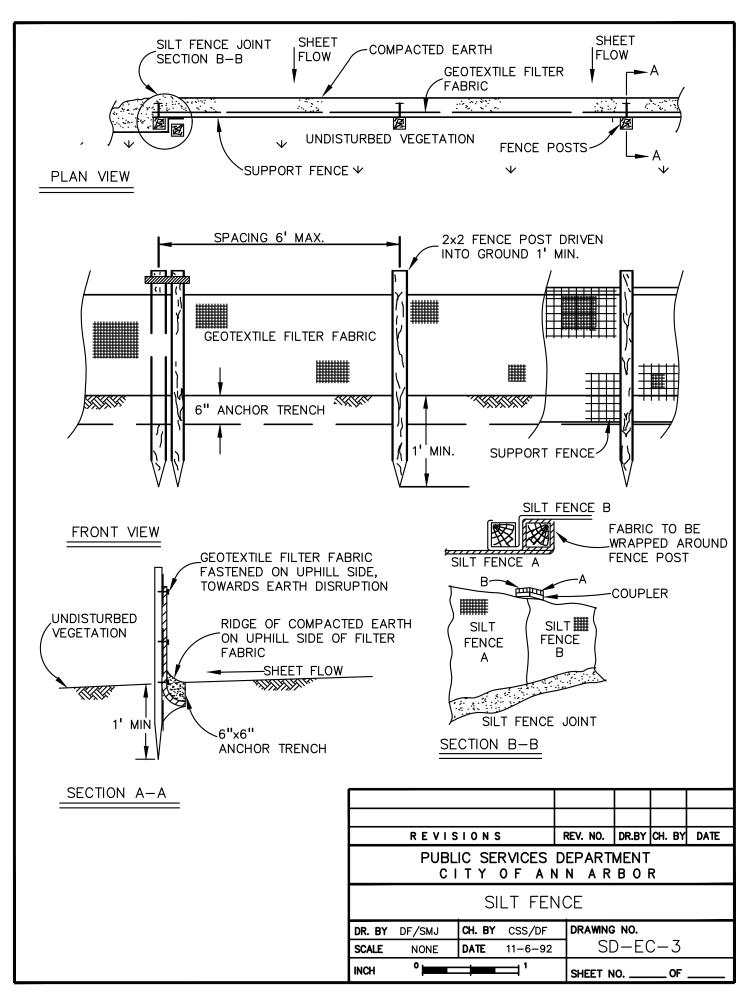
- 1. SEE LUMINAIRE LOCATIONS FOR MOUNTING HEIGHT.
- 2. SEE LUMINAIRE SCHEDULE FOR LIGHT LOSS FACTOR.
- 3. CALCULATIONS ARE SHOWN IN FOOTCANDLES AT 3'AFG IN PARKING LOT AND AT GRADE ALONG PROPERTY LINE.

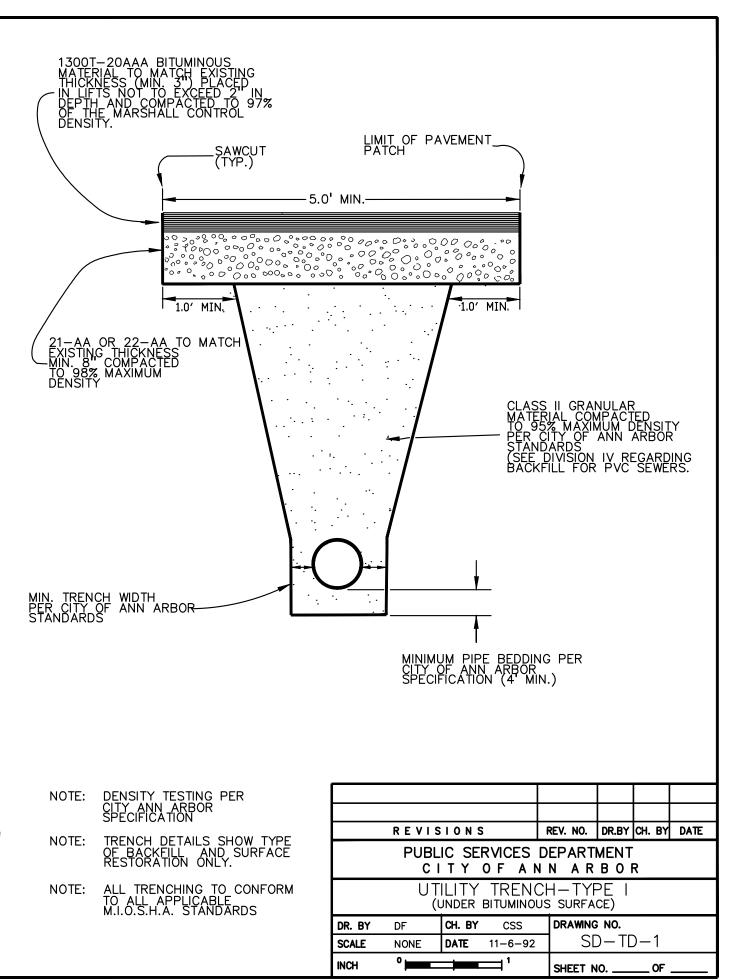
THE ENGINEER AND/OR ARCHITECT MUST DETERMINE APPLICABILITY OF THE LAYOUT TO EXISTING / FUTURE FIELD CONDITIONS. THIS LIGHTING LAYOUT REPRESENTS ILLUMINATION LEVELS CALCULATED FROM LABORATORY DATA TAKEN UNDER CONTROLLED CONDITIONS IN ACCORDANCE WITH ILLUMINATING ENGINEERING SOCIETY APPROVED METHODS. ACTUAL PERFORMANCE OF ANY MANUFACTURER'S LUMINAIRE MAY VARY DUE TO VARIATION IN ELECTRICAL VOLTAGE, TOLERANCE IN LAMPS, AND OTHER VARIABLE FIELD CONDITIONS. MOUNTING HEIGHTS INDICATED ARE FROM GRADE AND/OR FLOOR UP.

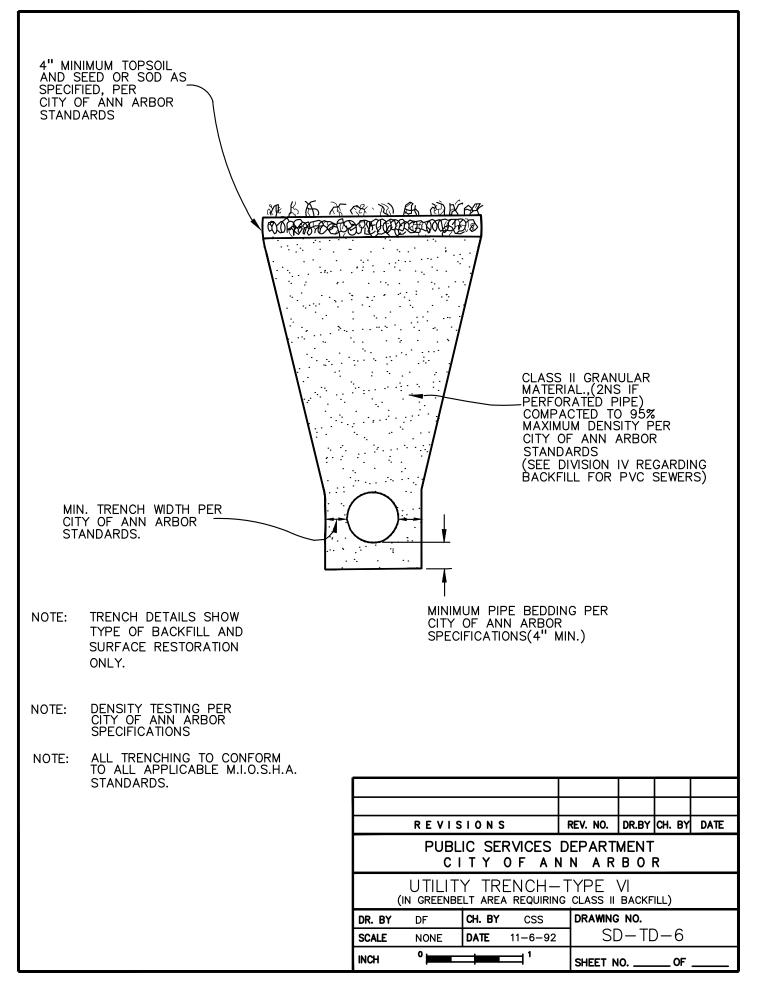

THESE LIGHTING CALCULATIONS ARE NOT A SUBSTITUTE FOR INDEPENDENT ENGINEERING ANALYSIS OF LIGHTING SYSTEM SUITABILITY AND SAFETY. THE ENGINEER AND/OR ARCHITECT IS RESPONSIBLE TO REVIEW FOR MICHIGAN ENERGY CODE AND LIGHTING QUALITY COMPLIANCE.

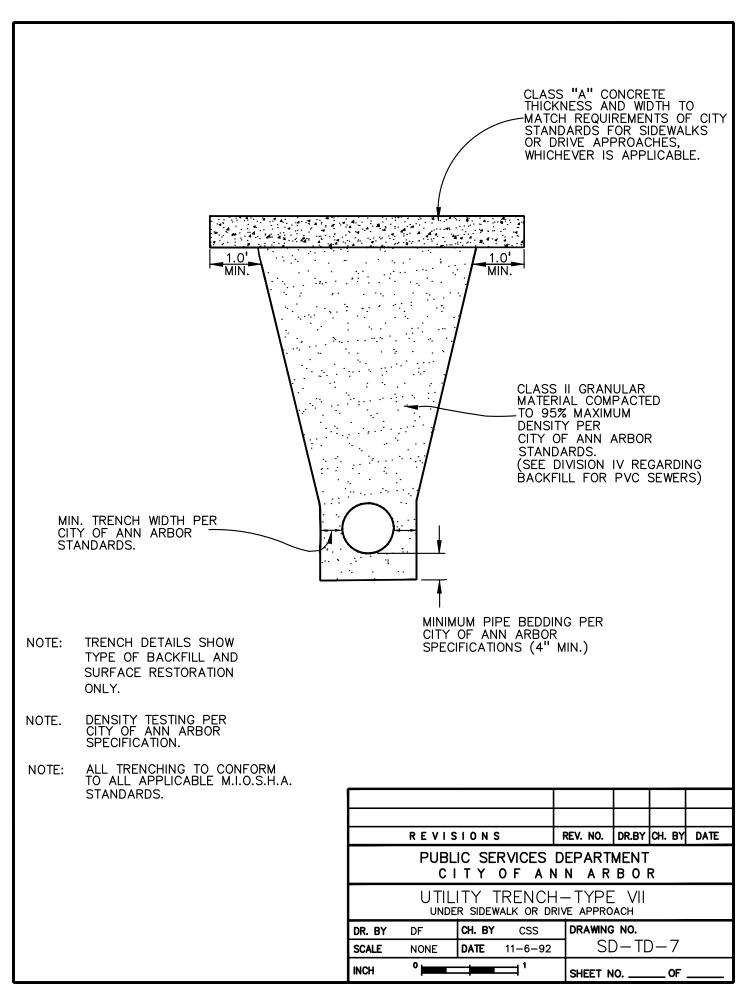


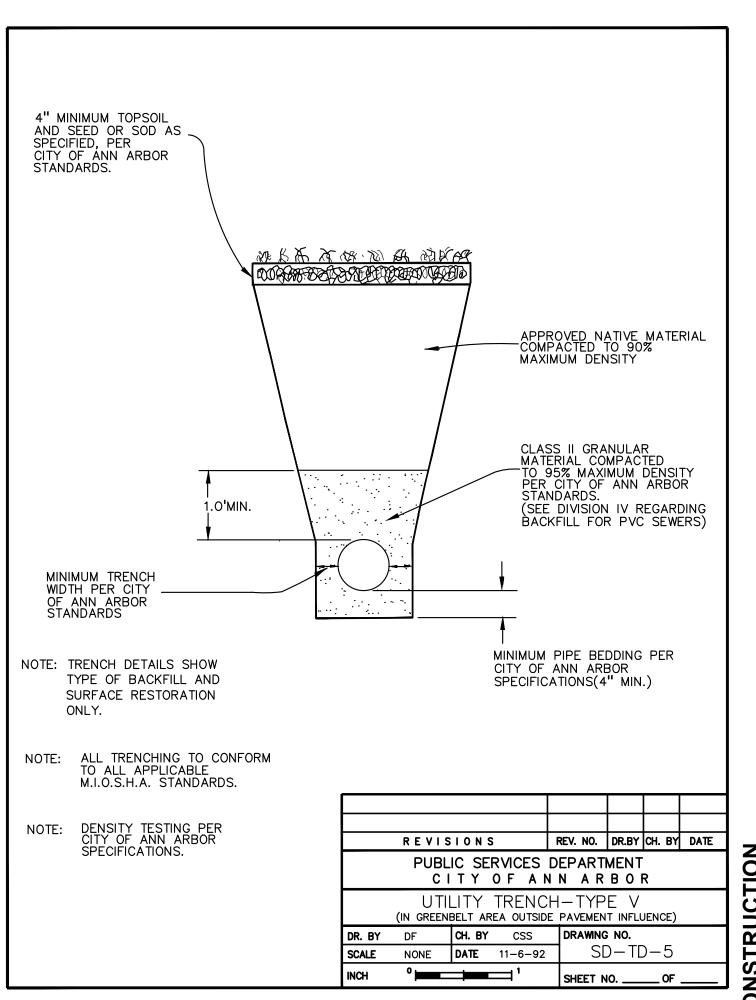


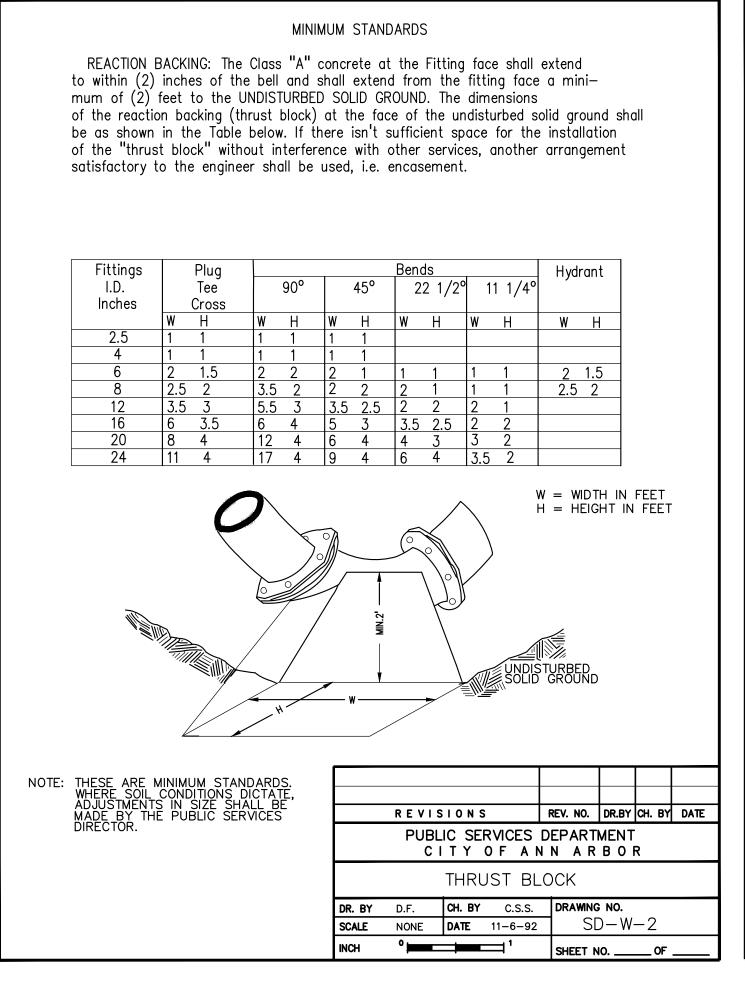

Designer BW/JAB Date JULY 17 2017 Scale AS NOTED Drawing No. #16-48717-V2

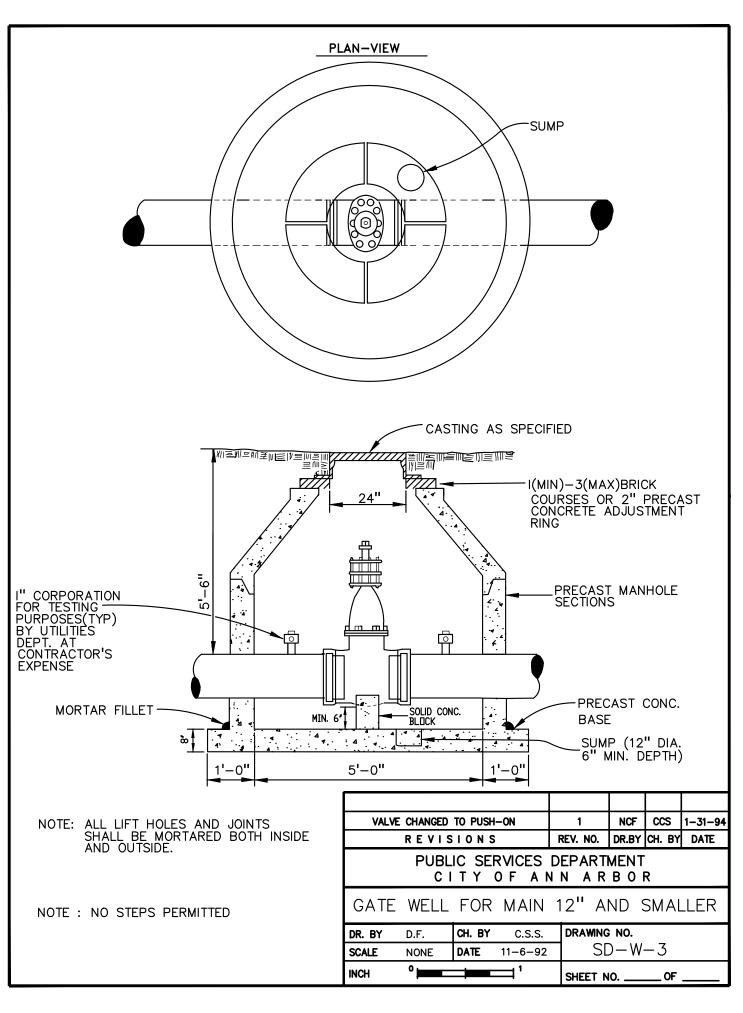

Summary

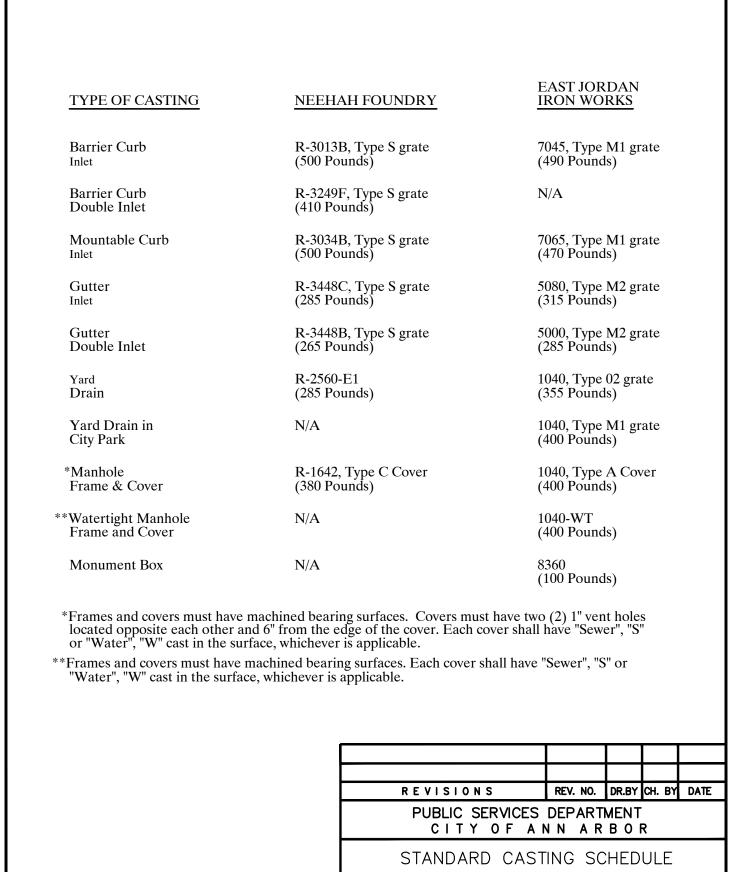






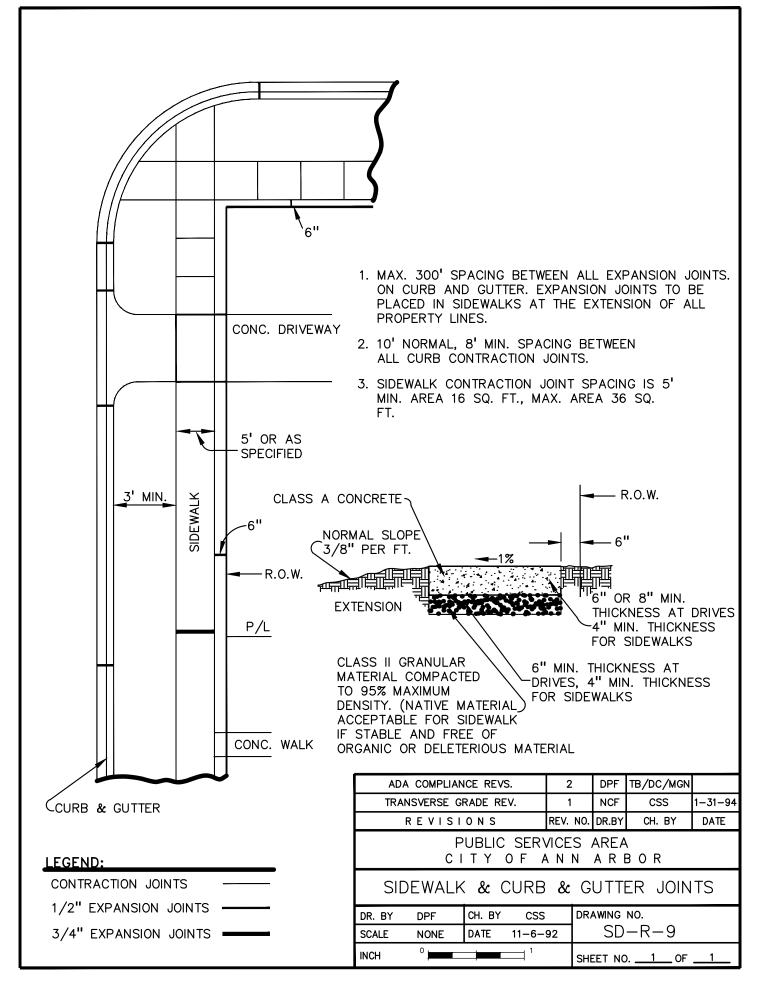


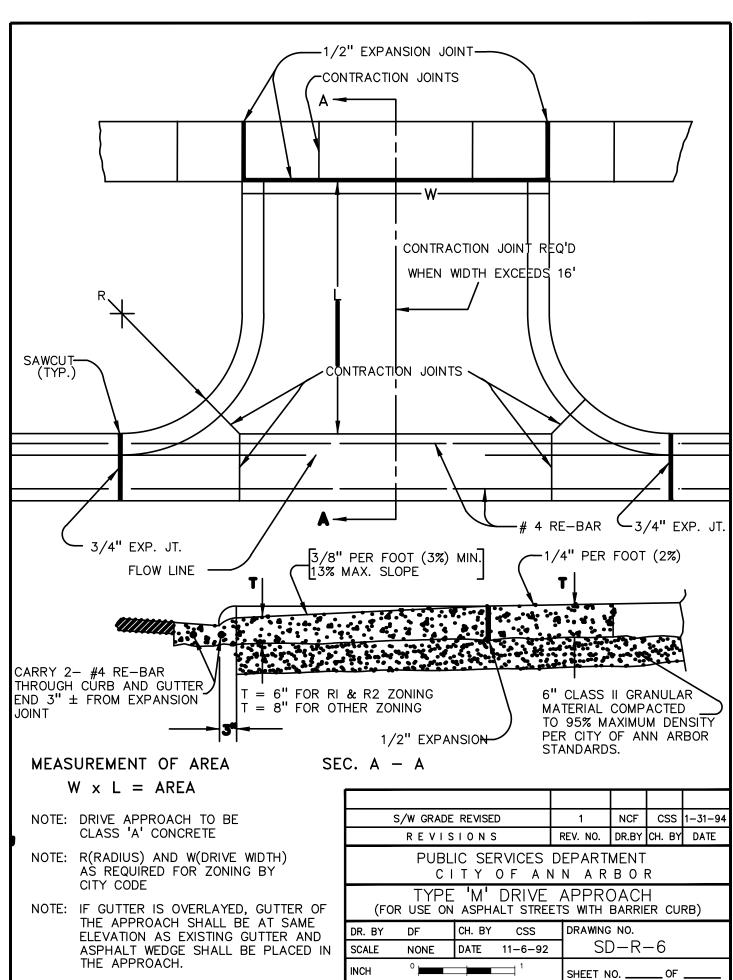


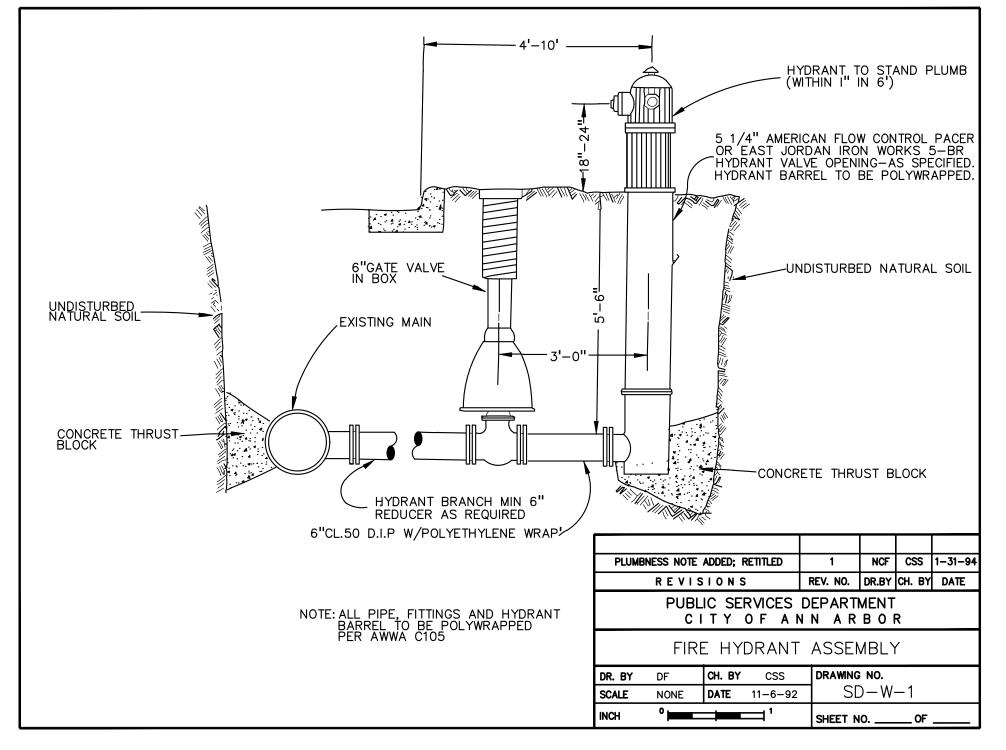


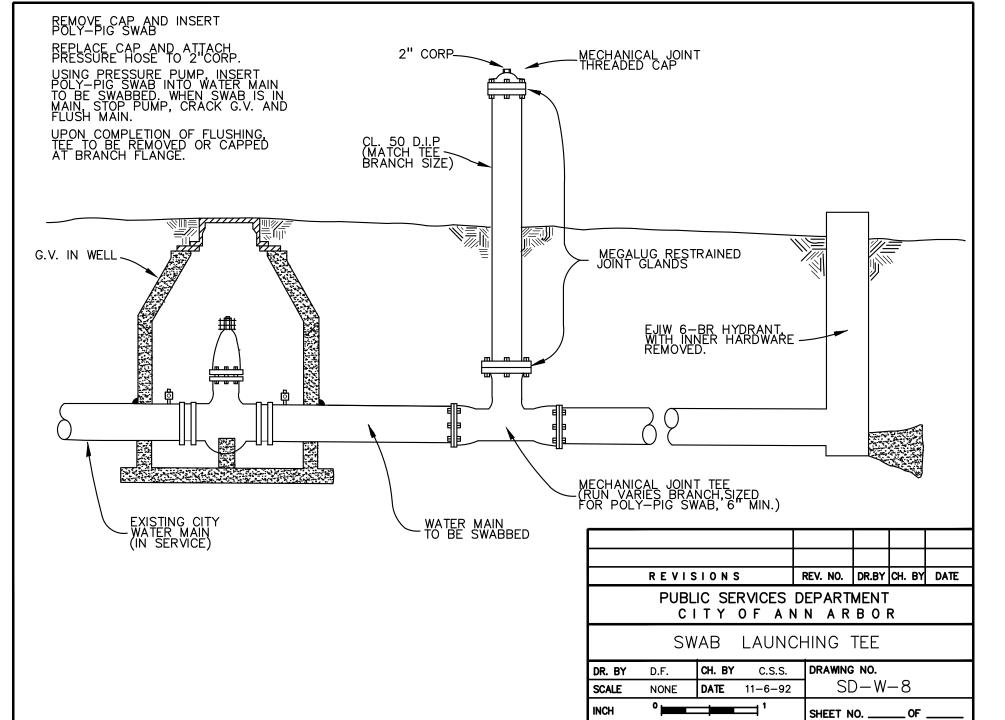
AA-1

0 4 8 2 T Q






DR. BY JPB CH. BY CSS DRAWING NO.


SCALE NONE DATE 6-12-92

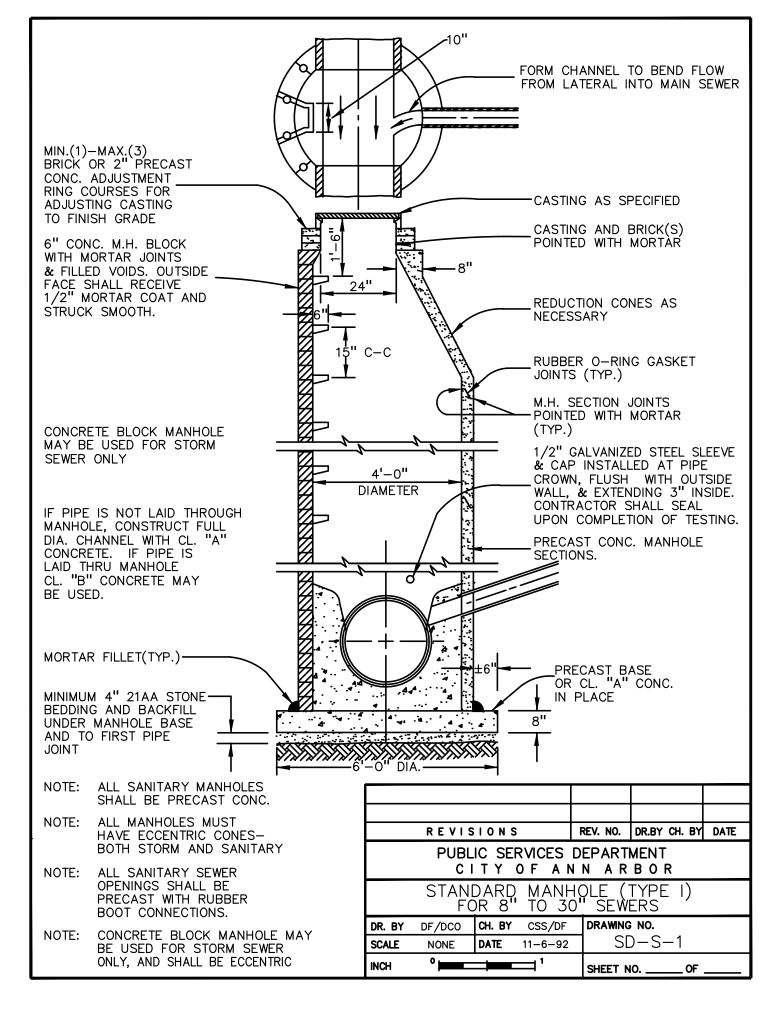
SD-GU-5

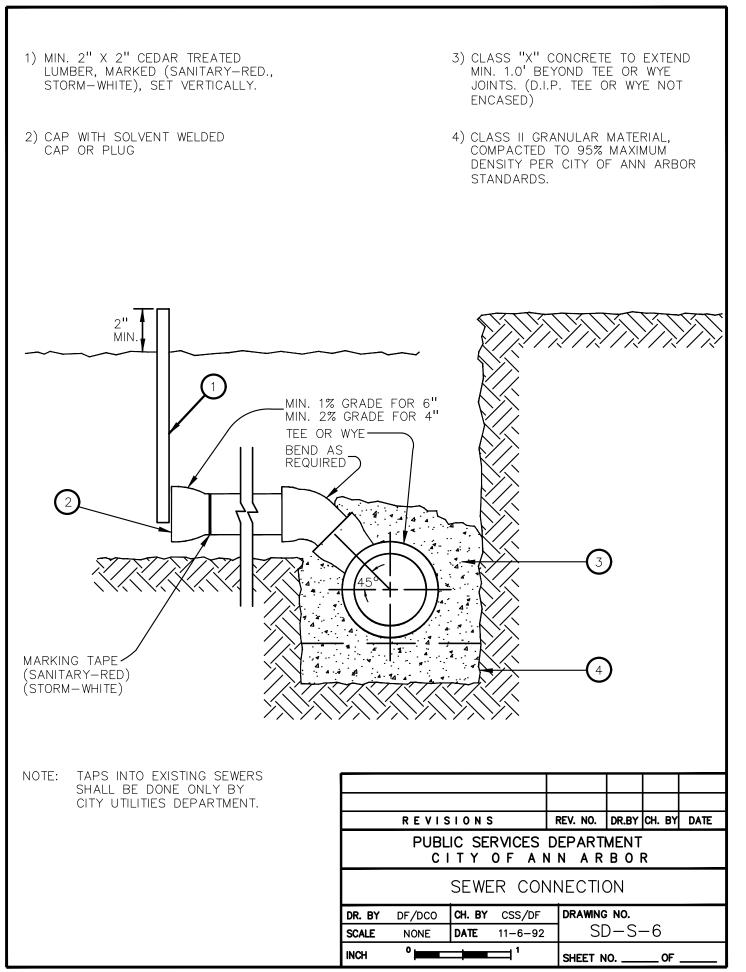
Ω 4 ε α τ ο N

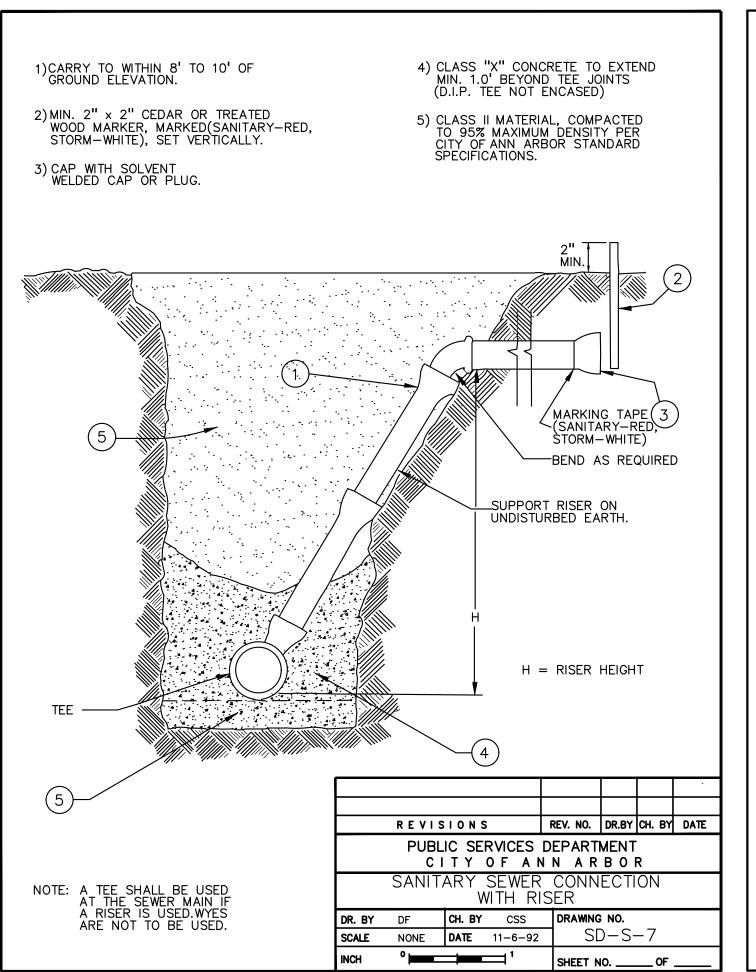
CAUTION!! THE LOCATIONS AND ELEVATIONS OF EXISTING INDERGROUND UTILITIES AS SHOWN ON THIS PRAWING ARE ONLY APPROXIMATE. NO GUARANTEE ITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS OR ACCURACY THEREOF. THE CONTRACTOR SHALL BE EXCLUSIVELY RESPONSIBLE. R DETERMINING THE EXACT UTILITY LOCATIONS A VATIONS PRIOR TO THE START OF CONSTRUCTION THIS DRAWING AND DESIGN ARE THE PROPERTY OF PEA, INC. THEY ARE SUBMITTED ON THE CONDITION THAT THEY ARE NOT TO BE USED, REPRODUCED, OR COPIED, IN WHOLE OR IN PART, OR USED FOR FURNISHING INFORMATION TO OTHERS, WITHOUT THE PROPERTY OF CONSENT OF PEA, INC. ALL COMMON LAW RIGHTS OF COPYRIGHT AND OTHERWISE ARE HEREBY SPECIFICALLY RESERVED. © 2017 PEA, INC. CONSTRUCTION CONTRACTOR AGREES THAT IN ACCORDANCE WITH GENERALLY ACCEPTED CONSTRUCTION PRACTICES, CONSTRUCTION CONTRACTOR WILL BE REQUIRED TO ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THE COURSE OF CONSTRUCTION OF THE PROJECT, INCLUDING SAFETY OF ALL PERSONS AND PROPERTY, THAT THIS REQUIREMENT SHALL BE MADE TO APPLY CONTINUOUSLY AND NOT BE LIMITED TO NORMAL WORKING HOURS, AND CONSTRUCTION CONTRACTOR FURTHER AGREES TO DEFEND, INDEMNIFY AND HOLD DESIGN PROFESSIONAL HARMLESS FROM ANY AND ALL LIABILITY, REAL OR ALLEGED, IN CONNECTION WITH THE PERFORMANCE OF WORK ON THIS PROJECT EXCEPTING LIABILITY ARISING FROM THE SOLE NEGLIGENCE OF THE DESIGN PROFESSIONAL.

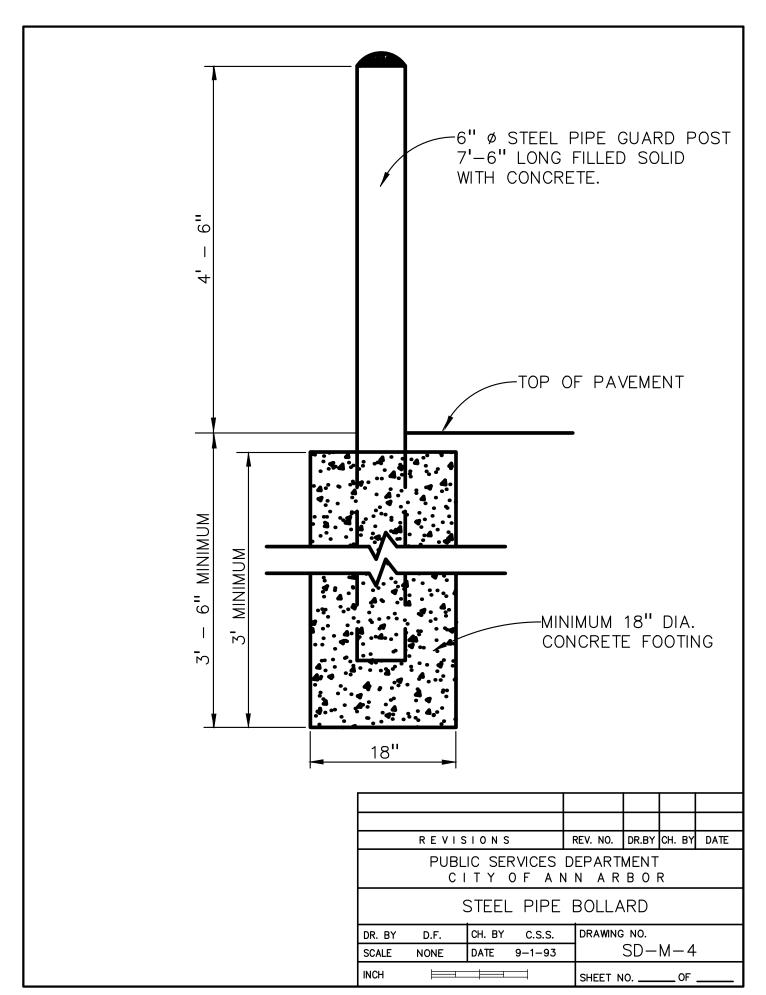
BEFORE YOU DIG CALL Know what's below Call before you dig -800-482-7171 www.missdig.ne

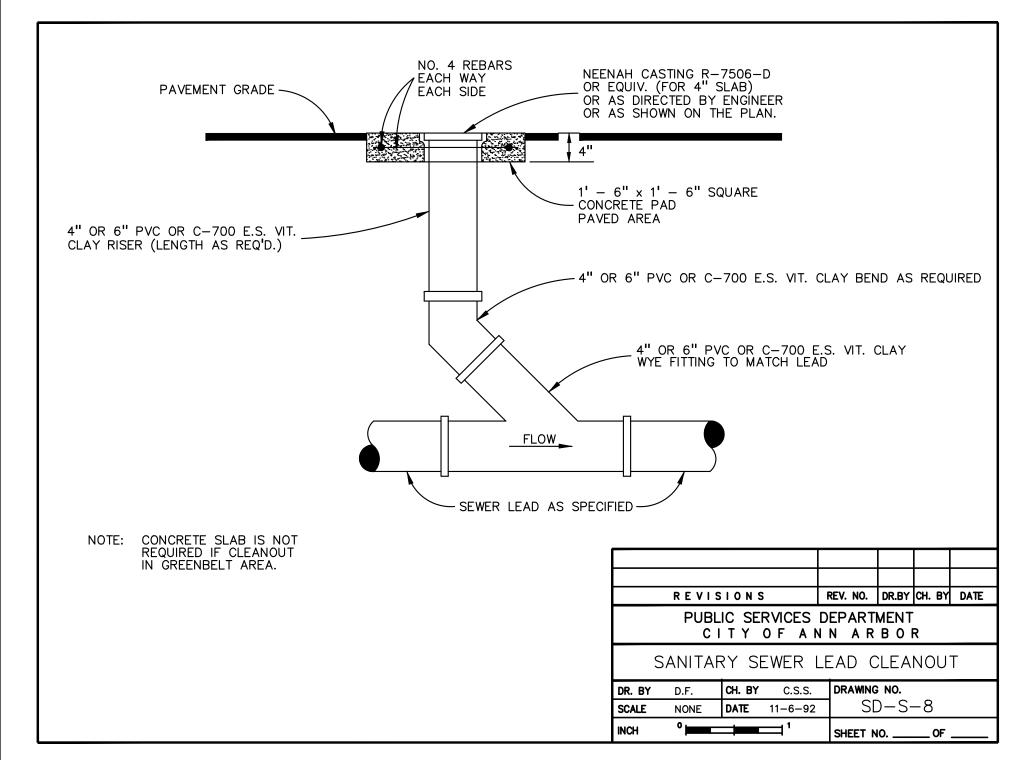
3 FULL WORKING DAYS

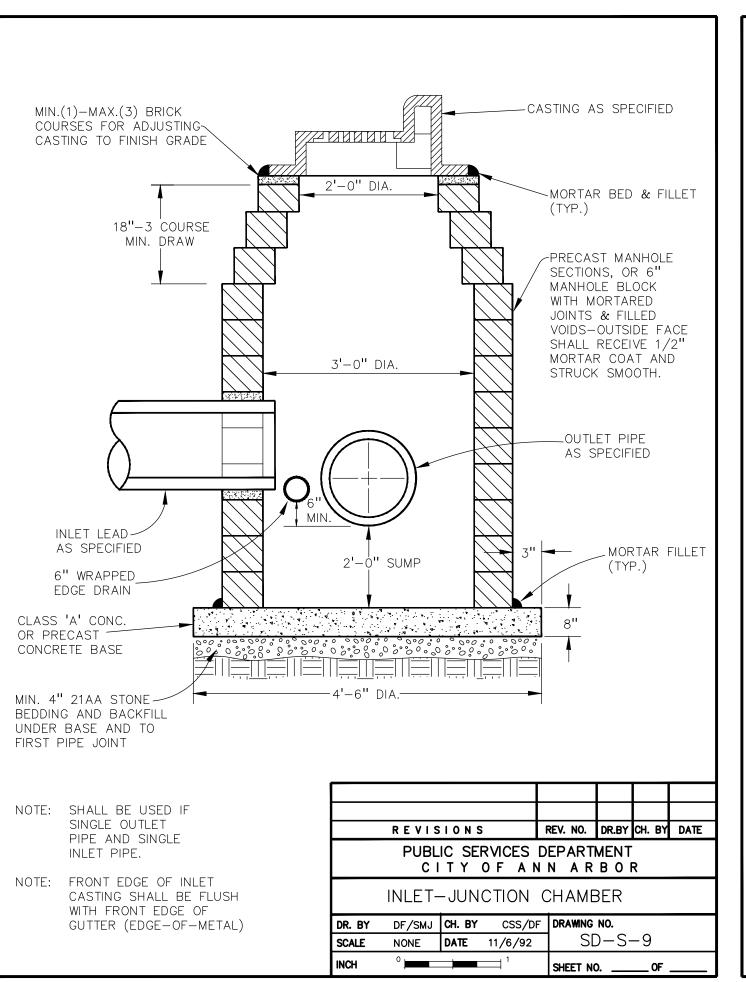

PEA, Inc. 7927 Nemco Way, Ste 115 Brighton, MI 48116 t: 517.546.8583 f: 517.546.8973

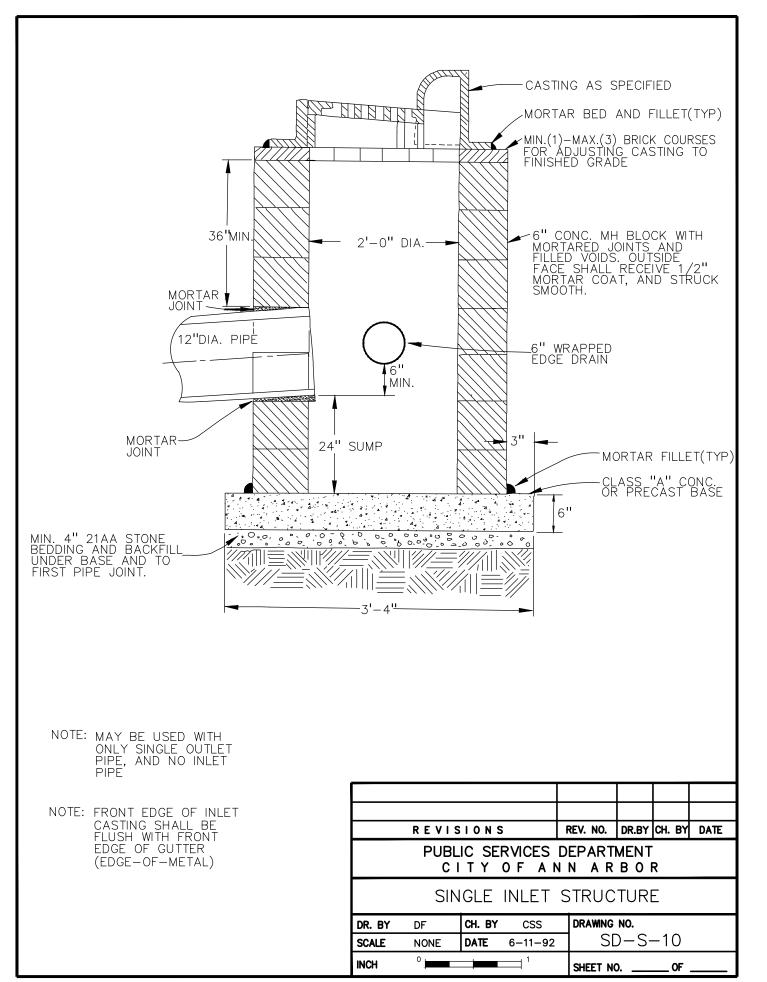

www.peainc.com CITY OF ANN ARBOR DETAIL
LIBERTY TOWNHOMES
PART OF THE SE 1/4 OF SECTION 25, T. 2S., R. 5E., MCP LIBERTY DEVCO,


> ORIGINAL ISSUE DATE: JULY 27, 2017


PEA JOB NO. 2017-167 SCALE: AS NOTED


RAWING NUMBER: AA-2





PEA JOB NO. 2017-167

DRAWING NUMBER:

AA-3