# RACQUET CLUB OF ANN ARBOR SITE RENOVATIONS SITE PLAN CITY OF ANN ARBOR, WASHTENAW CO., MICHIGAN SITE PLAN SUBMITTAL 3 - 5/15/2015

# OWNER/DEVELOPER

RACQUET CLUB OF ANN ARBOR 3010 HICKORY LANE. ANN ARBOR, MI 48108 PH: (734) 216-0579 ATTN: BRENT SCHOMAKER

#### ANN ARBOR RACQUET CLUB Narrative Description

#### DEVELOPMENT PROGRAM SUMMARY

The Ann Arbor Racquet Club is a tennis and swim club that began in the mid 1960's and is located at 3010 Hickory lane at the southwest corner of Geddes and Huron Parkway. Facilities at the club include clay and all weather tennis courts, a full size pool, tennis locker rooms, office and pro shop, children's pool, playground amenities and grilling and food vending. The facility is open seasonally during daylight hours only. The original pool and tennis building are 50 years old and lacking modern functionality and accessibility. The tennis building has been particularly problematic in that it has a basement that cannot be utilized due to groundwater flooding. Additionally the building is constructed such that visitor must ascend and descend a half of a flight of stairs to enter and exit the building.

The proposal contained here-in includes the demolition of the existing tennis building and replacing it with a new, single story 3533 SF facility that will be accessible to all. Also included is an addition to the pool building that will facilitate a common, central entry and check in point for all entering and exiting club members as well as new office and laundry facilities. Additional improvements include and addition to the snack shack, patio and pedestrian improvements and storm water detention.

#### A. Proposed Land Use

The Ann Arbor Racquet Club will continue to operate as a private tennis, swim and recreational facility.

#### B. Phasing and Construction Cost

- (B.1) Preliminary Phasing: All construction shall be completed in one phase beginning in the fall of 2015 and being completed in the spring of 2016.
- (B.2) Preliminary Cost Estimate: The combined estimated total project construction cost, including utilities, structures, landscaping and site amenities is approximately \$2.5 million.
- 1. <u>Community Analysis</u>
- (a) Impact on Schools
- The project will have no impact on the school system
- (b) Relationship with Neighboring Uses
- The proposal is consistent with the existing use at this site and should present no objection to neighboring uses North of Site: The north side of the site is Geddes Road leading down to the
- Huron River West of Site: Hickory Lane lies west of the site and serves adjacent residential properties that were developed after the club was established. South of Site: Contains the Huron Hills Golf course.
- East of Site: Contains a public ROW for what once was the entrance from Geddes Road onto south bound Huron Parkway. It is now a bike lane.
- (c) Impact on Adjacent Uses

The proposed development will have no negative impact on existing uses around the site and is consistent with the current use.

## • Air Quality: The proposal will have no impact on air quality.

(d) Impact of Development Relevant to Various Issues:

- Water Quality: The reconstructed parts of this site will be provided with storm water management facilities in accordance with current standards and discharged in accordance with City of Ann Arbor and Washtenaw County Water Resources Commissioner standards. There currently are no stormwater management facilities on the site at all. Stormwater will be collected from the parking lot through an existing network and then directed into a new underground stormwater tank farm for
- storage and infiltration. • Natural Features: Sheet 1 of the site plan provide a graphic description of the natural features that are found on the site. Natural features on this site consist solely of landmark trees. The area that is proposed for development is almost entirely existing improvements in the form of buildings and pedestrian improvements. The development program concentrates all of the activities in this area thus eliminating any impact to landmark trees.
- Wetlands: The site contains no wetlands.
- Steep Slopes: the site contains no steep slopes. • Floodplains: There are no 100 year floodplains or watercourses that will be impacted by the development.
- Endangered Species or Habitat: None known to exist
- Woodlands: There are no qualifying woodlands on site. • Solid Waste - Solid waste removal will be contracted privately using the existing
- facilities • There are no historical sites, structures or districts impacted by the proposed development
- 1. <u>Site Analysis</u>

### (a) Existing Land Use

The existing land zoning is Agricultural while the use of the parcel is recreational. The land has been utilized in this fashion for decades.

#### (b) Site Conditions

The site is shown in the USDA Soil Conservation Service Soil Survey of Washtenaw County to be primarily Boyer series with 0 to 6% slopes. Site vegetation includes almost exclusively planted trees and shrubs and several native landmark trees that will not be

affected. Topography ranges from 785 USGS down to 769 USGS. Sheet 1 of the Area Plan graphically depicts the site conditions.

- (c) Natural Features Description
  - No endangered species are known to exist on-site. There is no 100-year floodplain on-site.
  - The landmark trees on site are shown on Sheet 1.
  - There are no steep slopes on the site. There are no permanent watercourses on-site
  - There are no wetlands on the site. There are no woodlands on the site.
- (d) Existing Structures

The site contains a managers residence with a detached garage, a pool building a tennis building, a snack shack grill and two barns for storage.

## (e) Access Points

Vehicular: The site has access through two entrances off of Hickory Lane and one off Geddes Road. No other connections to adjacent properties are anticipated.

Pedestrian and Bicycle: There are currently no paths or walks along Geddes in front of this location and none are proposed with this project due to safety reasons. The City is planning to install sidewalks along the north side of Geddes Road in 2016, but not will not be installing any on the south side. There are currently no paths proposed on Hickory Lane as there are no paths or sidewalks in the neighborhood.

Associated with a previous site plan administrative amendment in 2008, City Council Resolution R-08-140 waived the sidewalk requirement for site plan petition file AA08-019. This Resolution does not waive the requirement in perpetuity or run with the land, however we are requesting the waiver to continue as the reasons for requesting it have not changed.

#### (f) Utilities

Water: Water is received from a public main located in Geddes Road. Sanitary Sewer: Sewage drains to a public main located in Huron Parkway

Storm Sewer: Storm sewer will collect and drain stormwater runoff to a new underground storm water detention and infiltration unit on the site.

#### (g) Drainage

All on-site drainage that is equitable to the new improvements will be detained on-site until it is discharged in accordance with City of Ann Arbor and Washtenaw County Water Resources Commissioner standards. The stormwater discharges to a centeral storm sewer which will divert the flow into an underground detention and infiltration chamber. The proposed drainage system will be completely internal to the site and utilize sheet flow, underground storm sewer and swirl separators that filter the stormwater and release the runoff at a pre-developed rate of discharge.

#### Traffic Impact

The scope of this project includes the reconstruction of existing facilities only. No new uses or expansion of existing uses is proposed therefore no new trip generation is expected.

#### GENERAL NOTES:

PER CHAPTER 49, SECTION 4:58 OF THE CITY CODE, "ALL SIDEWALKS ARE TO BE KEPT AND MAINTAINED IN GOOD REPAIR BY THE OWNER OF THE LAND ADJACENT TO AND ABUTTING THE SAME." PRIOR TO ISSUANCE OF THE FINAL CERTIFICATE OF OCCUPANCY FOR THIS SITE, ALL EXISTING SIDEWALKS MUST BE REPAIRED IN ACCORDANCE WITH CITY STANDARDS.

THE CONSTRUCTION COVERED BY THESE PLANS SHALL CONFORM TO THE CITY OF ANN ARBOR PUBLIC SERVICES DEPARTMENT STANDARD SPECIFICATIONS AND DETAILS WHICH ARE INCLUDED BY REFERENCE.

THE OMISSION OF ANY STANDARD DETAILS DOES NOT RELIEVE THE CONTRACTORS OF THEIR OBLIGATION TO CONSTRUCT ITEMS IN COMPLETE ACCORDANCE WITH PUBLIC SERVICES DEPARTMENT STANDARD SPECIFICATIONS.



SCALE: 1'' = 60'





| IMON NA ME                 | GENUS/SPECIES                                  | STEMS | SCORE    | LM | INV |
|----------------------------|------------------------------------------------|-------|----------|----|-----|
| ney Locust                 | Gleditsia triacanthos                          |       |          |    |     |
| ney Locust                 | Gleditsia triacanthos<br>Gleditsia triacanthos |       |          |    |     |
| ney Locust                 | Gleditsia triacanthos                          |       |          |    |     |
| ney Locust                 | Gleditsia triacanthos                          |       |          |    |     |
| igar Maple<br>adford Pear  | Pyrus calleryana                               |       |          |    |     |
| ıgar Maple<br>Red Pine     | Acer saccharum<br>Pinus resinosa               |       |          |    |     |
| Red Pine                   | Pinus resinosa                                 |       |          |    |     |
| Vhite Pine                 | Pinus resinosa<br>Pinus strubus                |       |          |    |     |
| Black Pine                 | Pinus nigra<br>Pinus nigra                     |       | 21       | Х  |     |
| cotch Pine                 | Pinus sylvestris                               |       | 20       | v  | Х   |
| Black Pine                 | Pinus nigra                                    |       | 20       | ^  |     |
| Black Pine                 | Pinus nigra<br>Pinus nigra                     |       |          |    |     |
| Black Pine                 | Pinus nigra                                    |       | 20       | v  |     |
| Black Pine                 | Pinus nigra                                    |       | 20       | ^  |     |
| Black Pine<br>Red Pine     | Pinus nigra<br>Pinus resinosa                  |       | 19       | Х  |     |
| Black Pine                 | Pinus nigra                                    |       |          |    |     |
| Black Pine                 | Pinus nigra                                    |       | 20       | Х  |     |
| Red Pine<br>Black Pine     | Pinus resinosa<br>Pinus nigra                  |       |          |    |     |
| Black Pine                 | Pinus nigra                                    |       |          |    |     |
| Black Pine                 | Pinus nigra                                    |       |          |    |     |
| ack Pine<br>Black Pine     | Pinus nigra<br>Pinus nigra                     |       |          |    |     |
| Red Pine                   | Pinus resinosa<br>Picea glauca                 |       | 21       | Х  |     |
| nite Spruce                | Picea glauca                                   |       |          |    |     |
| nite Spruce                | Picea glauca<br>Picea glauca                   |       |          |    |     |
| nite Spruce                | Picea glauca<br>Picea glauca                   |       |          |    |     |
| nite Spruce                | Picea glauca                                   |       |          |    |     |
| nite Spruce<br>nite Spruce | Picea glauca<br>Picea glauca                   |       |          |    |     |
| Black Pine                 | Pinus nigra<br>Pinus nigra                     |       |          |    |     |
| Black Pine                 | Pinus nigra                                    |       |          |    |     |
| Black Pine                 | Pinus nigra<br>Pinus nigra                     |       |          |    |     |
| cotch Pine<br>Black Pine   | Pinus sylvestris<br>Pinus nigra                |       |          |    | Х   |
| Black Pine                 | Pinus nigra                                    |       |          |    |     |
| Black Pine                 | Pinus nigra<br>Pinus nigra                     |       |          |    |     |
| Black Pine<br>Black Pine   | Pinus nigra<br>Pinus nigra                     |       | 19       | Х  |     |
| Black Pine                 | Pinus nigra                                    |       | 19       | Х  |     |
| Black Pine                 | Pinus nigra<br>Pinus nigra                     |       |          |    |     |
| Black Pine                 | Pinus nigra<br>Pinus nigra                     |       | 20       | Х  |     |
| rway Maple                 | Acer platanoides                               |       |          |    | Х   |
| Black Pine                 | Picea glauca<br>Pinus nigra                    |       |          |    |     |
| Black Pine                 | Pinus nigra<br>Pinus nigra                     |       | 20       | Х  |     |
| Red Pine                   | Pinus resinosa                                 |       |          |    |     |
| cotch Pine                 | Pinus sylvestris                               |       |          |    | Х   |
| Black Pine<br>Igar Maple   | Pinus nigra<br>Acer saccharum                  |       | 13       | Х  |     |
| Vhite Pine                 | Pinus strubus                                  |       |          |    |     |
| Way Spruce<br>Vhite Pine   | Pinus strubus                                  |       |          |    |     |
| rab Apple<br>rab Apple     | Malus coronaria<br>Malus coronaria             |       |          |    |     |
| ack Cherry                 | Prunus serotina                                |       | 15       | v  |     |
| ack Walnut                 | Juglans nigra                                  |       | 21       | X  |     |
| ack Walnut<br>ite Mulberry | Juglans nigra<br>Morus alba                    | twin  | 21       | X  | Х   |
| Lost<br>Red Pine           | Tag<br>Pinus resincea                          |       |          |    |     |
| Red Pine                   | Pinus resinosa                                 |       |          |    |     |
| ked Pine<br>Red Pine       | Pinus resinosa<br>Pinus resinosa               |       |          |    |     |
| Red Pine<br>Red Pine       | Pinus resinosa<br>Pinus resinosa               |       |          |    |     |
| Red Pine                   | Pinus resinosa                                 |       |          |    |     |
| ked Pine<br>Red Pine       | Pinus resinosa<br>Pinus resinosa               |       | 19       | Х  |     |
| Red Pine                   | Pinus resinosa<br>Pinus resinosa               |       |          |    |     |
| ottonwood                  | Populus deltoides                              |       | 20       | Х  |     |
| ox ⊨lder<br>rab Apple      | Acer negundo<br>Malus coronaria                |       | 16       | X  |     |
| rab Apple<br>rab Apple     | Malus coronaria<br>Malus coronaria             |       |          |    |     |
| ninese Elm                 | Ulmus parvifolia                               |       |          |    |     |
| way Maple<br>Igar Maple    | Acer platanoides<br>Acer saccharum             |       | 20       | Х  | X   |
| Catalpa<br>Catalpa         | Catalpa speciosa<br>Catalpa speciosa           | twin  |          |    | X   |
| Black Pine                 | Pinus nigra                                    |       | 24       | v  | ~   |
| ack Pine                   | Pinus americana                                |       |          | X  |     |
| Vhite Pine<br>Vhite Pine   | Pinus strubus<br>Pinus strubus                 |       |          |    |     |
| ite Mulberry               | Morus alba                                     |       |          |    | Х   |
| Box Elder                  | Acer negundo                                   |       | 18       | Х  |     |
| ack Locust<br>ack Locust   | Robinia pseudoacaci<br>Robinia pseudoacaci     |       | 15<br>15 | X  | X   |
| ack Walnut                 | Juglans nigra                                  |       | 19<br>18 | X  |     |
|                            |                                                |       | 10       | ~  | 1   |
| COMMON                     |                                                |       |          |    |     |

|                                                                                                                       |                                                                                                                                                       | LTING<br>Drive<br>Michiaan 48108           |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                                                                                                                       |                                                                                                                                                       | IS Plaza                                   |
| SCALE: 1"                                                                                                             | ' = 50'                                                                                                                                               | 381<br>Apr                                 |
| o 50                                                                                                                  | 100 150                                                                                                                                               | al and                                     |
|                                                                                                                       | FGEND                                                                                                                                                 | Commento<br>Find Find                      |
|                                                                                                                       |                                                                                                                                                       |                                            |
| ×768.9<br>U.P.<br>GP                                                                                                  | EXIST. CONTOUR<br>EXIST. SPOT ELEVATION<br>EXIST. UTILITY POLE<br>EXIST. GUY POLE                                                                     |                                            |
|                                                                                                                       | ELEC. TRANSFORMER                                                                                                                                     |                                            |
| —————————————————————————————————————                                                                                 | - EXIST. OVERHEAD UTILITY LINE<br>EXIST. LIGHT POLE                                                                                                   |                                            |
|                                                                                                                       | - EXIST. TELEPHONE LINE<br>- EXIST. ELECTRIC LINE                                                                                                     |                                            |
| g                                                                                                                     | EXIST. GAS LINE                                                                                                                                       |                                            |
|                                                                                                                       | - EXIST. WATER MAIN<br>- EXIST. HYDRANT                                                                                                               | Cr.                                        |
| <u></u>                                                                                                               | EXIST. GATE VALVE IN BOX                                                                                                                              | RBOF                                       |
| ~r ~                                                                                                                  | EXIST. STORM SEWER                                                                                                                                    | A NN 401                                   |
|                                                                                                                       | - EXIST. CATCH BASIN OR INLET<br>EXIST. CLEANOUT                                                                                                      | ANE<br>48,                                 |
| s0                                                                                                                    | - EXIST. SANITARY SEWER<br>SIGN                                                                                                                       | LUB<br>DRY I                               |
| MAIL<br>t                                                                                                             | MAILBOX                                                                                                                                               | NT<br>ET C<br>HICK(                        |
| acatv<br>B                                                                                                            | CABLE TELEVISION RISER                                                                                                                                | CLIE<br>acqu<br>010                        |
| ¤ <sup>e</sup><br>™                                                                                                   | ELECTRIC METER<br>WATER METER                                                                                                                         |                                            |
| ⊠<br>⊠9                                                                                                               | GAS METER                                                                                                                                             | l CC                                       |
|                                                                                                                       | WELL                                                                                                                                                  |                                            |
| _//////-                                                                                                              | – FENCE<br>SINGLE TREE                                                                                                                                |                                            |
| R                                                                                                                     | EXIST. BOULDER                                                                                                                                        |                                            |
| *                                                                                                                     | EXIST. SPRINKLER HEAD                                                                                                                                 | Z                                          |
|                                                                                                                       | SECTION CORNER                                                                                                                                        |                                            |
| O F                                                                                                                   | FOUND IRON PIPE                                                                                                                                       |                                            |
| oFIR                                                                                                                  | FOUND IRON ROD                                                                                                                                        |                                            |
|                                                                                                                       | CONTROL PT.                                                                                                                                           |                                            |
|                                                                                                                       |                                                                                                                                                       |                                            |
| LEGAL<br>Commencing at the S.W. corner of<br>Arbor, Washtenaw County, Michigar<br>along the west line of said Section | DESCRIPTION<br>f Section 26, T2S, R6E, City of Ann<br>n, thence N 00°00'00" E 515.92 feet<br>n 26 thence S 71°47'25" E 506 79                         | CLU                                        |
| feet to the POINT OF BEGINNING,                                                                                       |                                                                                                                                                       |                                            |
| thence S 71°47'25" E 182.05<br>Ave. (formerly Huron Riv<br>thence S 18°12'35" W 33.00<br>thence along the westerly r  | 5 feet along the centerline of Geddes<br>ver Drive),<br>) feet,<br>ight—of—way line of Huron Parkway in                                               | QUE                                        |
| the following two (2) co                                                                                              | urses:                                                                                                                                                | 0                                          |
| the right, radius 29<br>51°18'35", chord S<br>southeasterly 423.76 fee<br>the left, radius 151<br>16°00'38", chord S  | 90.00 feet, central angle<br>33°59'10" E 251.11 feet,<br>et in the arc of a circular curve to<br>6.47 feet, central angle<br>16°20'21" E 422.38 feet. | R                                          |
| thence S 59°28'15" W 57.70<br>thence S 85°38'40" W 283.0                                                              | feet,<br>19 feet,                                                                                                                                     | 0                                          |
| thence S 30°36'31" E 25.37<br>Riverside Hills Subdivisior<br>Pages 25 and 26, Wash<br>thence N 89°36'10" W 186.0      | feet to the S.E. corner of Lot 47 of<br>n No. 2, Liber 17 of Plats,<br>tenaw County Records,<br>9 feet along the south line of said                   |                                            |
| Lot 47,<br>thence along the easterly ri<br>the following six (6) cou                                                  | ght—of—way line of Hickory Lane in<br>ırses:                                                                                                          | 2015<br>DF 22                              |
| northerly 124.27 feet ald<br>the left, radius 202<br>35°10'52, chord N (                                              | ong the arc of a circular curve to<br>2.38 feet, central angle<br>06°54'34" W 122.32 feet,                                                            | TE: 5/15/;<br>EET 2 0<br>DD: WAJ<br>C: JAM |
| northerly 60.54 feet alor<br>the right, radius 11                                                                     | ng the arc of a circular curve to<br>0.45 feet, central angle 31°24'12",                                                                              | E CAL                                      |
| chord N 08°46'37"<br>N 06°54'35" E 315.97 fe                                                                          | W 59.78 feet,<br>eet,                                                                                                                                 | EV. DA                                     |
| northerly 63.11 feet alon<br>right, radius 320.00                                                                     | ng the arc of a circular curve to the<br>D feet, central angle 11°18'00", chord                                                                       | <u>۳</u>                                   |
| N 12°33′35″ E 63.0<br>N 18°12'35″ E 28.87 fee                                                                         | I teet,<br>t to the N.W. corner of Lot 51 of<br>Subdivision No. 2                                                                                     |                                            |
| sula Riversiae Hills<br>thence S 71°47'25" F 140 84                                                                   | Suburvision into. 2,                                                                                                                                  | 20                                         |
| Lot 51 to the N.E. cornel<br>thence N 06°54°35" E 33.65<br>being Lots 47 through 5<br>Subdivision No. 2 and a         | er of said Lot 51,<br>feet to the POINT OF BEGINNING,<br>51 inclusive of said Riverside Hills<br>part of the S.W. 1/4 of Section 26.                  | 140                                        |

T2S, R6E and a part of the N.W. 1/4 of Section 35, T2S,

R6E, City of Ann Arbor, Washtenaw County, Michigan,

easements and restrictions of record, if any.

containing 7.86 acres of land more or less, subject to

![](_page_2_Figure_0.jpeg)

![](_page_2_Picture_7.jpeg)

![](_page_2_Picture_8.jpeg)

# LEGEND

| —03<br>SAN MH*<br>APPROX. GIS)<br>36"INV. ~759.1           | U.P.<br>GP                             | EXIST. CONTOUR<br>EXIST. SPOT ELEVATION<br>EXIST. UTILITY POLE<br>EXIST. GUY POLE |
|------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------|
|                                                            |                                        | ELEC. TRANSFORMER                                                                 |
|                                                            | —————————————————————————————————————— | EXIST. OVERHEAD UTILITY LINE                                                      |
|                                                            | ~~<br>t                                | EXIST. TELEPHONE LINE                                                             |
| - 17                                                       | e                                      | EXIST. ELECTRIC LINE                                                              |
|                                                            | g                                      | EXIST. GAS LINE<br>EXIST. WATER MAIN                                              |
|                                                            | <br>-фн                                | EXIST. HYDRANT                                                                    |
| 910 E<br>I.11'                                             | ⊠                                      | EXIST. GATE VALVE IN BOX                                                          |
|                                                            | ~                                      | EXIST. GATE VALVE IN WELL                                                         |
|                                                            |                                        | EXIST. CATCH BASIN OR INLET                                                       |
| I                                                          | 0                                      | EXIST. CLEANOUT                                                                   |
| UR                                                         | SO<br>Þ                                | EXIST. SANITARY SEWER<br>SIGN                                                     |
| P RnR                                                      | MAIL                                   | MAILBOX                                                                           |
|                                                            | ⊠ <sup>t</sup><br>catv                 | TELEPHONE RISER                                                                   |
| RX                                                         | ×e<br>e                                | ELECTRIC METER                                                                    |
|                                                            | ×<br>N                                 | WATER METER                                                                       |
|                                                            | •<br>⊠⊃                                | POST                                                                              |
|                                                            | $\otimes$                              | WELL                                                                              |
| AND GRILLS                                                 | _//////                                | FENCE                                                                             |
| r-01<br>STRM MH                                            | •                                      | SINGLE IREE                                                                       |
| RIM=772.00<br>12"N INV=760.2                               | (R)                                    | EXIST. BOULDER<br>EXIST. SPRINKLER HEAD                                           |
| r-02                                                       |                                        | SECTION CORNER                                                                    |
| RIM=772.01                                                 | Ŷ                                      |                                                                                   |
| REMOVE AND<br>SALVAGE BRICKS                               | © F                                    | FOUND IRON PIPE<br>FOUND MONUMENT                                                 |
|                                                            | oFIR                                   | FOUND IRON ROD                                                                    |
| REMOVE AND<br>SALVAGE BRICKS<br>X. GIS)<br>36" INV. ~758.8 |                                        | CONTROL PT.                                                                       |
| PLAY AREA AND SURROUNDING                                  |                                        | REMOVE STEPS AND RAILS                                                            |
|                                                            |                                        | REMOVE CONCRETE WALK                                                              |
| REMOVE<br>RETAINING WALL                                   |                                        | SAWCUT AND REMOVE                                                                 |
| REMOVE FENCE                                               |                                        | ASPHALT PAVEMENT                                                                  |
|                                                            |                                        | REMOVE FENCE                                                                      |
|                                                            | · xxxxxxxxxxxxxxxxxx                   | REMOVE RETAINING WALL<br>OR PLANTER WALL                                          |
| $= 16^{\circ}00'38''$                                      |                                        | REMOVE VOLLEYBALL COURT                                                           |
| $R_{i} = 1516.47'$                                         |                                        | REMOVE VEGETATION                                                                 |
| REMOVE<br>LANDSCAPING                                      |                                        | REMOVE UTILITY LINE                                                               |
| AT CHI = 5 16 20 21 E<br>422.38'                           | $\bigotimes$                           | REMOVE UTILITY POLE                                                               |
| POWER CONDUIT                                              | $\bigtriangleup$                       | REMOVE STORM STRUCTURE                                                            |
| -36"                                                       | $\bigcirc$                             | REMOVE FIRE HYDRANT                                                               |
|                                                            | ×                                      | REMOVE TREE                                                                       |
|                                                            | $\sim$                                 |                                                                                   |
| AND RAILS<br>PING<br>ALK                                   | $\bigotimes$                           | TRANSPLANT TREE                                                                   |
|                                                            |                                        |                                                                                   |

0F 48 48  $\square \succ \Sigma$ g o CL 301 ANN Ω 0  $\mathbf{m}$ 2 4 2 Z 0  $\mathbf{m}$ D C C C **m** 3 S 0 4

Know what's **DelOW**.

Call before you dig.

5

Ζ

Π

S

Ζ

0

C

Z

2

S

3

 $\geq$ 

![](_page_3_Figure_0.jpeg)

| SED FOR EXISTING FOR <sup>-</sup><br>ALL WORK RELATED TO                                                      | THIS PROJECT.<br>BUILDINGS,                                                |                                               |                                | TING<br>Drive<br>5.0200<br>399                                                  |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------|--------------------------------|---------------------------------------------------------------------------------|
| ILLISES.<br>CREDEVELOP THE SECTION<br>STRUCTION, AND MINIMIZ<br>TREQUIRED TO INSTALL<br>BANCE AND RESTORATION | ON OF SITE AROUND<br>ZE THE REMAINDER<br>L UNDERGROUND<br>N IN THESE AREAS |                                               |                                | <b>NSUI</b><br>3815 Plaza 1<br>Ann Arbor, M<br>Phone: 734.999<br>Fax 734.995.05 |
| NG ON CONSTRUCTION M                                                                                          | I THE CITY OF ANN                                                          | SCALE: 1" =                                   | 30'                            | and and seers                                                                   |
| IONS FOR CONSTRUCTION<br>E OFF-SEASON WHEN TI                                                                 | N.<br>HE RACQUET CLUB                                                      | 0 30                                          | 60 90                          | nental ت<br>Engir<br>veyors<br>chitect                                          |
|                                                                                                               |                                                                            |                                               |                                | Environr<br>ortation<br>rs, Sur<br>:ape Ar                                      |
|                                                                                                               | LEG                                                                        | END                                           |                                | Civil, E<br>Transp<br>Planne<br>Landsc                                          |
|                                                                                                               | ₩<br><i>    </i>                                                           | VELL<br>Tence                                 |                                |                                                                                 |
|                                                                                                               | •                                                                          | SINGLE TREE                                   |                                |                                                                                 |
|                                                                                                               | ₩ E                                                                        | EXIST. SPRINKLER HEAD                         |                                |                                                                                 |
|                                                                                                               | - <b>-</b>                                                                 | SECTION CORNER                                |                                |                                                                                 |
|                                                                                                               | of F<br>©f F                                                               | OUND IRON PIPE<br>OUND MONUMENT               |                                |                                                                                 |
|                                                                                                               | ofir F                                                                     | OUND IRON ROD                                 |                                | ROR                                                                             |
|                                                                                                               |                                                                            | ASPHALT PAVEMENT (PARKING L                   | OT OR BASKETBALL COURT)        | NN AF<br>04                                                                     |
|                                                                                                               |                                                                            | CONCRETE SIDEWALK WITH JOINTS                 | 5                              | OF AI<br>LANE<br>481<br>9<br>9                                                  |
|                                                                                                               |                                                                            | SIDEWALK RAMP WITH DETECTABL                  | E WARNING                      | CLUB<br>(ORY<br>HOMAK<br>- O57(                                                 |
|                                                                                                               |                                                                            | PAVERS (RADIAL PATTERN)                       |                                | ENT<br>UET (<br>HICK<br>ARBOI<br>IT SCI                                         |
|                                                                                                               |                                                                            | OVERHANG                                      |                                | CLI<br>RACG<br>301C<br>ANN<br>BREN<br>(734)                                     |
| MAIN                                                                                                          |                                                                            | PROPOSED BUILDING                             |                                | 6                                                                               |
|                                                                                                               |                                                                            | proposed landscaped area —<br>Fence with gate | SEE SHEET 15                   | I O                                                                             |
|                                                                                                               |                                                                            | PROPERTY LINE                                 |                                |                                                                                 |
|                                                                                                               |                                                                            | SETBACK LINE                                  |                                | Ā                                                                               |
|                                                                                                               | _ · ·                                                                      | UTILITY EASEMENT LINE                         |                                | z                                                                               |
|                                                                                                               |                                                                            |                                               |                                | <b>A A</b>                                                                      |
| EWALK (TYP.)                                                                                                  |                                                                            |                                               |                                |                                                                                 |
| AREA TO REMAIN                                                                                                |                                                                            |                                               |                                | O SIT                                                                           |
| ORATIVE FENCE                                                                                                 |                                                                            |                                               |                                | DNAL ITE I                                                                      |
| E GATE                                                                                                        | SITE DATA AN                                                               | IALYSIS                                       |                                | <b>D</b> I<br>NSIG                                                              |
| NING AREA<br>PAVER SURFACE I. S                                                                               | Site Use                                                                   |                                               |                                | <b>C</b>                                                                        |
| ALL COURT                                                                                                     | Existing Zoning                                                            |                                               | AG                             |                                                                                 |
| T PAVEMENT                                                                                                    | Proposed Zoning<br>Gross Site Area<br>Total Net Site Area                  |                                               | AG<br>7.86 Acres<br>7.86 Acres | H                                                                               |
| S PLAY AREA<br>N                                                                                              | Number of Units<br>Space Use Summary                                       |                                               | 1.00 Acres                     | <b>Ö</b>                                                                        |
|                                                                                                               | Managers Residenc<br>Enlarged Pool Blgd*                                   | e (GFA)                                       | 1,420 SF<br>3,638 SF           | A<br>O                                                                          |
|                                                                                                               | Enlarged Snack Sha<br>New Tennis Building                                  | ick<br>*                                      | 851 SF<br><u>3,533 SF</u>      | R I                                                                             |
| WIDE GATE                                                                                                     |                                                                            |                                               | 9,442 SF Total                 |                                                                                 |
| SWALE CENTERLINE                                                                                              | Used to Calculate Parking R                                                | equirements                                   |                                |                                                                                 |
| n. <i>4</i>                                                                                                   | Minimum Area per Dwelling Ur                                               | nit 100.000 SF                                | Provided<br>342.382 SF         | 4                                                                               |
| $\Delta = 16^{\circ}00'38''$                                                                                  | Front Setback (Min./Max.)<br>Rear Setback                                  | 30/40 FT<br>50 FT                             | 41.27 FT<br>N/A                |                                                                                 |
| $\Gamma = 213.27'$<br>$\Gamma = 423.76'$                                                                      | Side Setback (South)                                                       | 10% LOT WIDTH<br>EQUALS 51 FT                 | 271.21                         | 015                                                                             |
| $CH = S \ 16^{\circ}20'21'' E \ 422.38'$                                                                      | Maximum Building Height<br>Minimum Lot Size                                | 30 FT<br>100,000 SF                           | 22.5 FT<br>342,382 SF          | 5/15/2(<br>4 OF<br>(AJ<br>(AJ<br>(AJ<br>(A)<br>(P1.dwg                          |
| EX. RETAINING WALL<br>TO REMAIN                                                                               | winimum lot vvidth                                                         | 200 FT                                        | 515 F I                        | DATE: 5<br>SHEET<br>CADD: W<br>CADD: W<br>PM: S<br>PM: S<br>I 14058S            |
| II.                                                                                                           | Parking Requirements                                                       | Required                                      | Provided                       |                                                                                 |
|                                                                                                               | 1 space per 200 SF required =                                              | - 36                                          | 59                             | REV.                                                                            |
| MENT FOR<br>20" WATER MAIN                                                                                    | Barrier Free spaces<br>1 bicycle space per 1000 SF                         | 2 8                                           | 5<br>12                        |                                                                                 |
|                                                                                                               |                                                                            | 100% CL C 8                                   | 12                             | <b>ω</b>                                                                        |
|                                                                                                               |                                                                            |                                               | $\mathbf{G}$                   | 02                                                                              |
|                                                                                                               |                                                                            |                                               | ŬIJ.                           | <b>4</b>                                                                        |
|                                                                                                               |                                                                            |                                               |                                |                                                                                 |
|                                                                                                               |                                                                            |                                               | <b>Call before you dig.</b>    |                                                                                 |

![](_page_4_Figure_0.jpeg)

il3d\_Proj\14058\Site Plan\14058SP2.dwg, 5, 5/14/2015 4:24:52 PM, JAM, DWG to PDF

![](_page_5_Figure_0.jpeg)

![](_page_5_Figure_1.jpeg)

![](_page_5_Figure_2.jpeg)

![](_page_5_Figure_5.jpeg)

![](_page_6_Figure_0.jpeg)

![](_page_7_Figure_0.jpeg)

![](_page_7_Figure_1.jpeg)

![](_page_7_Figure_2.jpeg)

| A PART OF THIS PROJECT.<br>INFORMATION.<br>AND SCHEDULES.  | SCALE:                                                                                                                                                                                      | 1'' = 30'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>CONSULTING</b><br>I and 3815 Plaza Drive<br>ineers Ann Arbor, Michigan 48108<br>Phone: 734.995.0299<br>its Fax 734.995.0599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            |                                                                                                                                                                                             | 30 60 90<br>GEND<br>EXISTING 1' CONTOUR<br>EXISTING 5' CONTOUR<br>EXISTING 5' CONTOUR<br>PROPOSED 1' CONTOUR<br>PROPOSED 1' CONTOUR<br>PROPOSED 5' CONTOUR<br>PROPERTY LINE<br>GRADING LIMITS<br>DRAINAGE SWALE CENTERLINE                                                                                                                                                                                                                                                                                                                                  | IN ARBOR<br>O4<br>MDVESTERN<br>Civil, Environmental<br>Transportation Engir<br>Planners, Surveyors<br>Landscape Architect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BnB                                                        |                                                                                                                                                                                             | <ul> <li>EROSION EEL (OR EQUAL)</li> <li>TREE PROTECTION FENCE</li> <li>TEMPORARY SECURITY<br/>CHAIN-LINK PANEL FENCE ON<br/>PEDESTALS (USE PANELS AS GATE)</li> <li>SILT SACK INLET FILTER ON<br/>EXISTING INLET</li> <li>SILT SACK INLET FILTER ON NEW<br/>INLET IMMEDIATELY AFTER<br/>CONSTRUCTION OF INLET</li> <li>PROPOSED BUILDING</li> <li>BUILDING STAGING AREA</li> <li>STORAGE AREA (NO SOILS)</li> <li>SOIL STOCKPILE AREA</li> <li>CONCRETE WASHOUT STRUCTURE</li> <li>DEWATERING FILTER BAG</li> <li>CONSTRUCTION TRAILER LOCATION</li> </ul> | <b>JB OF ANN ARBOR</b> CLIENT<br>ITE PLAN<br>D STAGING PLAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TECTION<br>P.)<br>ITS<br>NEW INLETS<br>CONSTRUCTION (TYP.) | <ul> <li>BENCHMARK:</li> <li>1. TOP OF WEST STEAL LOCATED AT S.E. CHICKORY LANE. ELEV. = 769.23</li> <li>2. TOP OF NORTH STE LOCATED ±50' S. O ±275' E. OF HICKOF ELEV. = 770.13</li> </ul> | DUMPSTER & RECYCLING LOCATION<br>MER VALVE ON HYDRANT<br>OR. OF GEDDES AND<br>AMER VALVE ON HYDRANT<br>F GEDDES RD. AND<br>RY LANE.                                                                                                                                                                                                                                                                                                                                                                                                                         | Pate: 5/15/2015     Date: 5/15/2015       Rev. Date     Bate: 5/15/2015       Rev. Date     Sheet 8 of 22       Rev. |

![](_page_7_Picture_4.jpeg)

 $\mathbf{\omega}$ 

S

40

![](_page_8_Figure_0.jpeg)

Civil3d\_Proj/14058\Site Plan\14058UP1.dwg, 9, 5/14/2015 4:27:04 PM, JAM, DWG to PDF.pc3

![](_page_9_Figure_0.jpeg)

![](_page_9_Figure_1.jpeg)

![](_page_9_Figure_2.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_10_Figure_2.jpeg)

![](_page_10_Figure_3.jpeg)

![](_page_10_Figure_4.jpeg)

The underground utilities shown have been located from field survey information and existing records. The surveyor makes no guarantees that the underground utilities shown comprise all such utilities in the area, either in-service or abandoned. The surveyor further does not warrant that the underground utilities shown are in the exact location indicated. Although the surveyor does certify that they are located as accurately as possible from the information available.

| X PUMP HOUSE                 |                                          |                      |                        |                                    |                                                      |                 | EXIS        |
|------------------------------|------------------------------------------|----------------------|------------------------|------------------------------------|------------------------------------------------------|-----------------|-------------|
| AS LEAD TO REM               | AIN                                      |                      |                        |                                    |                                                      |                 |             |
|                              |                                          | RE-LAY EL            |                        | (2.25' COVER AT                    | PR 3x3"T -<br>CROSSING)                              |                 |             |
|                              |                                          | UNDEF<br>At          | STORM PIPE             | (=:=============================== |                                                      |                 |             |
|                              |                                          |                      |                        |                                    |                                                      | $\frown$        |             |
|                              |                                          |                      |                        |                                    |                                                      | ↓               |             |
| 9 LF<br>).40%                |                                          |                      |                        |                                    | 13 LF                                                | © 0.45%         |             |
| PVC                          |                                          |                      |                        |                                    | 0.45%                                                | 4 LF 19 LF      | 29 LF       |
|                              |                                          | 164 LF               |                        | 73 LF                              |                                                      | 0.45%           | @ 0.45%     |
| 40'Lx4'H                     |                                          | @ 0.40%              |                        | 10" BCB                            | 12'                                                  | ' PVC 12" PVC   | 12" PVC     |
| 763.00                       |                                          | 15" RCP              |                        |                                    |                                                      |                 |             |
|                              |                                          | R-37                 | PR 4' CB               |                                    |                                                      |                 |             |
|                              |                                          | RIM<br>12" SE INV    | = 767.95 L<br>= 765.25 | /                                  |                                                      |                 |             |
|                              |                                          | 15" N INV            | = 765.05 R-38 P        | R 4' CB                            |                                                      |                 |             |
|                              | R-36 PR 6' HYDROL                        | YNAMIC SEPARATOR     | 12"  S INV =           | 770.03                             | PR 4"W                                               |                 | PR 1.5"G    |
|                              | 2.8  CFS TREATED TO $RIM = 770.51$       | 0 80% TSS REMOVAL    | 12" NW INV =           | 765.63                             |                                                      |                 |             |
|                              | 15" S INV = 764.40<br>15" N INV = 764.40 | )                    | RIM =                  | 770.28                             |                                                      | / PR 6"S-       |             |
|                              |                                          |                      | 12" N INV =            | 765.69                             |                                                      | /               |             |
| $\frac{R-35}{RIM} = 7$       | 66.13                                    |                      | R–                     | 40 PR 2' CB R                      | -41 PR 8"x12" WYE <sup>/</sup><br>12" F INV = 765 90 |                 | R-42 PR 12' |
| 15″S IN<br>4 CONNECT 12"     | V = 764.36<br>PVC TO RTANK               |                      | 12" E II               | VV = 765.86                        | 8"  N INV = 766.07                                   |                 | 12" E INV = |
| = /64.6/<br>N INV $= 763.00$ |                                          |                      | 12" W II               | NV = 765.84                        | 2 W INV = 765.90                                     |                 | 12" W INV = |
|                              | 5                                        | 2                    | ~ ~                    | 9                                  | 4                                                    | <u>م</u>        | ۍ<br>ا      |
| 770.5                        | 770.5                                    | <b>69.5</b><br>769.2 | <b>7</b> 6 <b>9.1</b>  | <b>67.7</b>                        | <b>69.6</b>                                          | <b>77</b> 4.1   | 74.C        |
| С<br>Ц                       | E E E                                    | E E C                | FG 7                   | EG T                               | E EG                                                 | EG EG           | FG 2        |
|                              | 2+                                       | -00                  | .3+                    | 00                                 | 4.4                                                  | <u> </u><br>⊦00 |             |
|                              |                                          |                      |                        |                                    |                                                      |                 |             |

![](_page_10_Figure_7.jpeg)

![](_page_10_Figure_8.jpeg)

![](_page_10_Figure_9.jpeg)

#### Stormwater Narrative **Racquet Club of Ann Arbor** May 12, 2015

Ordinance: This project is bound by the Washtenaw County Water Resources Commissioner Rules and Guidelines, Issued August 6, 2014. The regulations require that the greater of the 1-inch storm volume or the increase in the 2-year storm volume be infiltrated, if feasible, and that the 100-year storm runoff be reduced to less than 0.15 cfs/acre. If infiltration is infeasible, an additional 20% penalty is applied to the storage volume required. Additionally, the 1-inch storm must be treated for water quality to remove 80% of total suspended solids.

**Portion of Site Modified:** If less than 50% of a site is being modified, the portion modified must be fully brought up to standards, and the remainder of the site must be treated for quality. If more than 50% of a site is modified, the full site must be brought up to current standards. This site will be 12.7% modified (0.98 of 7.72 acres), so the modified portion will be infiltrated, with the remainder treated for quality.

**General Approach:** The site consists of BnB Boyer Loamy Sands, a Type A well-draining soil. However due to current basement flooding issues near the buildings, the project will take the storm water to the north end of the site, near Test Pit 1. Due to the very well draining soils, the project will infiltrate the entire 100-year storm event in less than 48 hours, with the only outlet pipe from the infiltration chambers being an emergency overflow pipe to the existing storm line.

Infiltration Rate: The infiltration test results from Test Pit 1 indicated a 27.75 in/hour infiltration rate. The WCWRC requires a minimum factor of safety of 2, and we are using a factory of safety of 4, to obtain a design infiltration rate of 6.94 in/hr. With this rate the full 4' high chambers can infiltrate the 100-year storm in 6.6 hours.

**Outlet Path:** Presently, most of the paved portions of the site drain through catch basins into a 6inch storm pipe running from south to north on the site, before tying into the City storm sewer on Huron River Drive. While this pipe is undersized based upon modern design standards, the facility has not faced surface ponding issues due to the generally well-draining soils and the well-established overland flow paths throughout the site. Additionally, portions of the site sheet-flow to the east, south, and north across vegetated surfaces, partially infiltrating into the ground, with the remainder eventually reaching the City's storm sewers in the adjacent roadways.

**Infiltration Chamber Design:** Due to a desire to preserve landscaping and reduce construction impacts, the infiltration system will be placed underground in chambers, near Test Pit 1. To further reduce site impacts, RTank (or engineer-approved equal) chambers with 93% voids will be used, and the pre-treatment and emergency outlet control with invert at the top of the chamber elevation will also be underground. They are sized to handle the full 100-year storage volume of the disturbed site area, and our calculations indicate that due to infiltration out of the chambers during the storm events, the tank will not overflow when handling the larger stormwater volume routed to them in a 100-year event.

Water Quality Design: Before entering the infiltration chamber, the stormwater will pass through a hydrodynamic separator (Contech CDS or approved equal) sized to handle the pipe capacity leading to it. The hydrodynamic separator will treat the 10-year design storm flow rate (2.8 cfs) to at least the 80% TSS standard, and any remaining solids will be filtered in the soils beneath the infiltration chamber.

**Conveyance Systems**: New Pipes and swales are designed to convey the 10-year storm without surcharging above the crown of pipe, flowing full, following the calculation methodology in the WCWRC Rules and Guidelines.

Free Release Areas: Certain small areas (0.28 acres) along the edge of the site free-release to the east, west, north, and south, and to the pool, as collecting the water from these areas is difficult. However they are mitigated by taking in 0.40 acres of undisturbed site runoff at Structure R-37. Calculations of the "disturbed area runoff" and of the "infiltrated area runoff" were undertaken to ensure that the stormwater requirements would be exceeded. The project intends to use this trade-off of areas to comply with the regulations.

## <u>LEGEND:</u>

LIMITS OF DISTURBANCE MAIN SITE WORK

LIMITS OF DISTURBANCE HICKORY LANE SIDEWALK WORK (EXEMPT FROM STORMWATER MANAGEMENT REUQIREMENTS)

BREAK LINE BETWEEN DETAINED AND FREE RELEASE

42

WATERSHED BOUNDARY FOR CHAMBERS

SUB-WATERSHED BOUNDARY FOR INLET DRAINAGE AREAS

INLET & SUB-WATERSHED NUMBER

ROOF AREA

PAVEMENT AREA

PERMEABLE PAVEMENT AREA

OFFSITE PAVEMENT AREA DRAINING TO CHAMBERS

![](_page_11_Figure_25.jpeg)

The underground utilities shown have been located from field survey information and existing records. The surveyor makes no guarantees that the underground utilities shown comprise all such utilities in the area, either in-service or abandoned. The surveyor further does not warrant that the underground utilities shown are in the exact location indicated. Although the surveyor does certify that they are located as accurately as possible from the information available.

|                    |            |           |              | Midw                  | estern Cons<br>5/12/2015 | sulting |
|--------------------|------------|-----------|--------------|-----------------------|--------------------------|---------|
| Rational C Values: |            |           |              |                       |                          | _       |
| Soil Type          | Roof/Pvmt. | Vegetated | Perm. Paver* | Steep Vegetated (>8%) | Water                    |         |
| А                  | 0.95       | 0.20      | 0.25         | 0.25                  | 1.00                     |         |
| В                  | 0.95       | 0.30      | 0.35         | 0.35                  | 1.00                     |         |
| С                  | 0.95       | 0.35      | 0.40         | 0.40                  | 1.00                     |         |
| D                  | 0.95       | 0.50      | 0.55         | 0.55                  | 1.00                     |         |

\* Steep Vegetated C Value used for permeable pavers.

NRCS Soils Type - Entire Site: BNB - Boyer Loamy Sand - Type A Hydrologic Soil Group - 0.60 - 6.00 in/hour infiltration

| Inlet #                      | sft total area    | sft roof     | sft pvmt.     | total imp.    | sft perm. Paver    | sft veg.   | Soil Type    | Imp. C       | Perm.        | Veg. C         | CxA      | CxA          | Area         | С  |
|------------------------------|-------------------|--------------|---------------|---------------|--------------------|------------|--------------|--------------|--------------|----------------|----------|--------------|--------------|----|
|                              |                   |              |               |               |                    |            |              |              | Paver C      |                | (sft)    | (ac)         | (ac)         |    |
| R-37 (disturbed area)        | 6,900             | 0            | 4976          | 4,976         | 72                 | 1,852      | А            | 0.95         | 0.25         | 0.20           | 5,116    | 0.117        | 0.158        |    |
| R-38                         | 1,310             | 0            | 278           | 278           | 459                | 573        | A            | 0.95         | 0.25         | 0.20           | 493      | 0.011        | 0.030        |    |
| R-40                         | 1,952             | 0            | 642           | 642           | 384                | 926        | А            | 0.95         | 0.25         | 0.20           | 891      | 0.020        | 0.045        |    |
| R-43                         | 5,018             | 0            | 1341          | 1,341         | 454                | 3,223      | А            | 0.95         | 0.25         | 0.20           | 2,032    | 0.047        | 0.115        |    |
| R-45                         | 2,537             | 0            | 51            | 51            | 0                  | 2,486      | А            | 0.95         | 0.25         | 0.20           | 546      | 0.013        | 0.058        |    |
| R-46                         | 1,099             | 0            | 302           | 302           | 0                  | 797        | A            | 0.95         | 0.25         | 0.20           | 446      | 0.010        | 0.025        |    |
| R-47                         | 1,651             | 0            | 915           | 915           | 0                  | 736        | А            | 0.95         | 0.25         | 0.20           | 1,016    | 0.023        | 0.038        |    |
| R-49 (Tennis Bldg.)          | 3,562             | 3562         | 0             | 3,562         | 0                  | 0          | А            | 0.95         | 0.25         | 0.20           | 3,384    | 0.078        | 0.082        |    |
| R-51 (Snack Shack)           | 812               | 812          | 0             | 812           | 0                  | 0          | A            | 0.95         | 0.25         | 0.20           | 771      | 0.018        | 0.019        |    |
| R-53 (Pool Bldg.)            | 4,433             | 4433         | 0             | 4,433         | 0                  | 0          | A            | 0.95         | 0.25         | 0.20           | 4,211    | 0.097        | 0.102        |    |
| East Free                    | 1,163             | 0            | 0             | 0             | 0                  | 1,163      | A            | 0.95         | 0.25         | 0.20           | 233      | 0.005        | 0.027        |    |
| South Free                   | 2,421             | 0            | 1344          | 1,344         | 0                  | 1,077      | A            | 0.95         | 0.25         | 0.20           | 1,492    | 0.034        | 0.056        |    |
| West Free                    | 1,165             | 0            | 182           | 182           | 0                  | 983        | A            | 0.95         | 0.25         | 0.20           | 370      | 0.008        | 0.027        |    |
| North Free                   | 6,637             | 0            | 3679          | 3,679         | 0                  | 2,958      | A            | 0.95         | 0.25         | 0.20           | 4,087    | 0.094        | 0.152        |    |
| To Pool Free                 | 1,976             | 0            | 1827          | 1,827         | 0                  | 149        | А            | 0.95         | 0.25         | 0.20           | 1,765    | 0.041        | 0.045        |    |
| R-37 - (From Undisturbed)    | 17,210            | 740          | 7723          | 8,463         | 0                  | 8,747      | А            | 0.95         | 0.25         | 0.20           | 9,789    | 0.225        | 0.395        |    |
| Hickory Sidewalk (Exempt)    | 6,596             | 0            | 2190          | 2,190         | 0                  | 4,406      | A            | 0.95         | 0.25         | 0.20           | 2,962    | 0.068        | 0.151        |    |
| Subtotals: A = disturbed are | eas. routed throu | uah detentio | on chamber. B | = disturbed a | areas, free releas | ed. C = ur | ndisturbed a | areas, route | d through ir | nfiltration ch | amber. D | = Total flow | s into Inlet | 37 |

Racquet Club of Ann Arbor - Sub-Watershed Analysis

| -                          | ,              | 5          |                 |               | ,     |        |   | ,    | 5    |      |        |      |
|----------------------------|----------------|------------|-----------------|---------------|-------|--------|---|------|------|------|--------|------|
| A (Dist/Inf)               | 29,274         | 8,807      | 8,505           | 17,312        | 1,369 | 10,593 | A | 0.95 | 0.25 | 0.20 | 18,907 | 0.43 |
| B (Dist/Rel)               | 13,362         | 0          | 7,032           | 7,032         | 0     | 6,330  | A | 0.95 | 0.25 | 0.20 | 7,946  | 0.18 |
| C (Undist/Inf)             | 17,210         | 740        | 7,723           | 8,463         | 0     | 8,747  | A | 0.95 | 0.25 | 0.20 | 9,789  | 0.22 |
| D (Total R-37)             | 24,110         | 740        | 12,699          | 13,439        | 72    | 10,599 | A | 0.95 | 0.25 | 0.20 | 14,905 | 0.34 |
| Totals to determine stormw | vater treatmen | t required | : A + B (All di | isturbed area | as)   |        |   |      |      |      |        |      |

| A+B (disturbed) 42,636                    | 8,807 1          | 15,537 24,344       | 1,369 16,923 A                    | 0.95 | 0.25 | 0.20 | 26,854 | 0.6 |
|-------------------------------------------|------------------|---------------------|-----------------------------------|------|------|------|--------|-----|
| Totale to determine prepaged systems. A L | C (Treating C in | stead of D to allow | for proctical water distribution) |      |      |      |        |     |

A+C (proposed) 46,484 9,547 16,228 25,775 1,369 19,340 A 0.95 0.25 0.20 28,697 0.659 1.067 0.62

Proposed stormwater treatment plan:

Because C > B, and infiltration is feasible near C but not by B, the project intends to treat C instead of B as follows:

1) Provide underground storage chambers for the 100-year storm in Area A, near Area A, to release at 0.15 cfs/acre of A 2) Provide underground infiltration chambers for the 2-year storm in Area C, instead of Area A

3) Provide additional storage for Area C, sized for the volume of the 100-year storm in Area B. Release rate will be 0.15 cfs/acre of C.

4) By City Code, public sidewalks are exempt from stormwater management requirements, and they are also off the property on City right-of-way, so the Hickory Sidewalk Area is not included in the project stormwater system.

|             |                           |                      |          |      |      |              |        | Runoff                | Formula: |       | Q =      | CIA      |          |       |            |        |          |           |
|-------------|---------------------------|----------------------|----------|------|------|--------------|--------|-----------------------|----------|-------|----------|----------|----------|-------|------------|--------|----------|-----------|
|             | STERN C                   | ONSULTI              | NG, INC. |      |      |              |        | · // <b>T</b> · · · · |          |       |          | 475      |          | 05    |            | (10    | Veen Ote |           |
| 3815 P      | laza Drive                | 100                  |          |      |      | Tune         | =<br>  | x/(1+y)               | -        |       | x =      | 175      | y=       | 25    |            | (10    | Year Sto | rm Event) |
| AIIII AI    | 001, IVII 40<br>05 0200 I | 0100<br>Eav. (212) ( | 005 0500 |      |      | туре с       |        | 0.013                 |          | -     | Min time | of conce | ntration | 15.00 | min        |        |          |           |
| (313) 9     | 90-0200, I                | rax (313)            | 990-0099 |      |      |              |        | 0.013                 |          | -     |          |          | manon    | 15.00 | 111111     |        |          |           |
|             |                           | Drainage             | Runoff   |      |      |              |        |                       |          |       |          |          |          |       | Velocity   |        |          |           |
|             |                           | Area                 | Coeff.   |      | ADD. |              | Time   | Rainfall              |          | Q     |          | Pipe     |          | H.G.  | Flowing    | Travel | Sewer    | Spare     |
| Struc       | ture No.                  | A                    | С        | CxA  | CxA  | $\Sigma$ CxA | Т      |                       | Q        | Inlet | Dia.     | Length   | Slope    | Slope | Full       | Time   | Capacity | Capac.    |
| From        | То                        | (Acres)              |          |      |      |              | (min.) | (in./hr.)             | (cfs)    | Here  | (in.)    | (ft.)    | %        | %     | (ft./sec.) | (min.) | (cfs)    | (cfs)     |
|             |                           |                      |          |      |      |              |        |                       |          |       |          |          |          |       |            |        |          |           |
| R-31        | R-30                      |                      |          |      |      |              |        |                       |          |       | 6        | 15       | 6 48     | 0.00  | 7 29       | 0.03   | 1 43     | 1 43      |
| R-34        | R-32                      |                      |          |      |      |              |        |                       |          |       | 12       | 18       | 0.40     | 0.00  | 3.99       | 0.00   | 3 13     | 3 13      |
|             |                           |                      |          |      |      |              |        |                       |          |       | 12       |          | 0.11     | 0.00  | 0.00       | 0.00   | 0.10     | 0.10      |
| R-36        | R-35                      | 0.000                | 0.00     | 0.00 |      | 0.66         | 17.31  | 4 14                  | 2 73     | 0.00  | 15       | 9        | 0 40     | 0.18  | 3 34       | 0.04   | 4 10     | 1.37      |
| R-37        | R-36                      | 0.553                | 0.62     | 0.34 |      | 0.66         | 16.50  | 4 22                  | 2.78     | 1.50  | 15       | 164      | 0.40     | 0.10  | 3.34       | 0.82   | 4.10     | 1.31      |
| R-38        | R-37                      | 0.030                | 0.38     | 0.04 |      | 0.32         | 16.00  | 4 26                  | 1.35     | 0.05  | 12       | 73       | 0.52     | 0.10  | 3.28       | 0.02   | 2.58     | 1.01      |
| R-39        | R-38                      | 0.000                | 0.00     | 0.00 |      | 0.31         | 16.05  | 4.26                  | 1.30     | 0.00  | 12       | 13       | 0.45     | 0.13  | 3.05       | 0.07   | 2.40     | 1.09      |
| R-40        | R-39                      | 0.045                | 0.46     | 0.02 |      | 0.31         | 15.87  | 4.28                  | 1.31     | 0.09  | 12       | 34       | 0.45     | 0.14  | 3.05       | 0.19   | 2.40     | 1.09      |
| R-41        | R-40                      | 0.000                | 0.00     | 0.00 | 0.10 | 0.29         | 15.82  | 4.29                  | 1.22     | 0.00  | 12       | 9        | 0.45     | 0.12  | 3.05       | 0.05   | 2.40     | 1.17      |
| R-42        | R-41                      | 0.000                | 0.00     | 0.00 | 0.03 | 0.19         | 15.72  | 4.30                  | 0.81     | 0.00  | 12       | 19       | 0.45     | 0.05  | 3.05       | 0.10   | 2.40     | 1.59      |
| R-43        | R-42                      | 0.115                | 0.40     | 0.05 |      | 0.16         | 15.56  | 4.31                  | 0.69     | 0.20  | 12       | 29       | 0.45     | 0.04  | 3.05       | 0.16   | 2.40     | 1.71      |
| R-44        | R-43                      | 0.000                | 0.00     | 0.00 | 0.10 | 0.11         | 15.30  | 4.34                  | 0.50     | 0.00  | 12       | 47       | 0.45     | 0.02  | 3.05       | 0.26   | 2.40     | 1.90      |
| R-45        | R-44                      | 0.058                | 0.22     | 0.01 |      | 0.01         | 15.00  | 4.38                  | 0.06     | 0.06  | 12       | 55       | 0.45     | 0.00  | 3.05       | 0.30   | 2.40     | 2.34      |
| <b>D</b> 40 | <b>D</b> 40               | 0.005                | 0.44     | 0.01 |      | 0.00         | 45.00  | 4.07                  | 0.40     | 0.04  | 10       | 05       | 0.50     | 0.00  | 0.00       | 0.04   | 0.50     | 0.40      |
| R-46        | R-42                      | 0.025                | 0.41     | 0.01 |      | 0.03         | 15.06  | 4.37                  | 0.12     | 0.04  | 12       | 65       | 0.50     | 0.00  | 3.22       | 0.34   | 2.53     | 2.40      |
| R-50        | R-46                      | 0.000                | 0.00     | 0.00 |      | 0.02         | 15.04  | 4.37                  | 0.08     | 0.00  | 8        | 8        | 2.00     | 0.00  | 4.91       | 0.03   | 1./1     | 1.63      |
| R-51        | R-50                      | 0.019                | 0.95     | 0.02 |      | 0.02         | 15.00  | 4.38                  | 0.08     | 0.08  | 8        | 11       | 2.00     | 0.00  | 4.91       | 0.04   | 1.71     | 1.63      |
| R-47        | R-44                      | 0.038                | 0.62     | 0.02 |      | 0.02         | 15.00  | 4.38                  | 0.10     | 0.10  | 12       | 26       | 0.50     | 0.00  | 3.22       | 0.13   | 2.53     | 2.42      |
|             |                           |                      |          |      |      |              |        |                       |          |       |          |          |          |       |            |        |          |           |
| R-48        | R-44                      | 0.000                | 0.00     | 0.00 |      | 0.08         | 15.02  | 4.37                  | 0.34     | 0.00  | 8        | 5        | 2.00     | 0.08  | 4.91       | 0.02   | 1.71     | 1.37      |
| R-49        | R-48                      | 0.082                | 0.95     | 0.08 |      | 0.08         | 15.00  | 4.38                  | 0.34     | 0.34  | 8        | 5        | 2.00     | 0.08  | 4.91       | 0.02   | 1.71     | 1.37      |
| R-52        | R-41                      | 0.000                | 0.00     | 0.00 |      | 0.10         | 15.01  | 4.37                  | 0.42     | 0.00  | 8        | 14       | 2.00     | 0.12  | 4.91       | 0.05   | 1.71     | 1.29      |
| R-53        | R-53                      | 0.102                | 0.95     | 0.10 |      | 0.10         | 15.00  | 4.38                  | 0.42     | 0.42  | 8        | 2        | 2.00     | 0.12  | 4.91       | 0.01   | 1.71     | 1.29      |
|             |                           |                      |          |      |      |              |        |                       |          |       |          |          |          |       |            |        |          |           |

## STORM DRAINAGE CALCULATION SHEET Racquet Club of Ann Arbor - 14058.00 - 5/15/2015

Please note that based on Manning's equation with an "n" of 0.06 for poor condition natural channel,

A 20' wide, 10% side-sloped swale (1' deep), at 1.0% minimum slope, can handle 8.574 cfs at 0.8' full, and 15.55 cfs at full depth.

No inlet > 2.5 cfs (max is 1.50 cfs at R-37)

The underground utilities shown have been located from field survey information and existing records. The surveyor makes no guarantees that the underground utilities shown comprise all such utilities in the area, either in-service or abandoned. The surveyor further does not warrant that the underground utilities shown are in the exact location indicated. Although the surveyor does certify that they are located as accurately as possible from the information available.

#### Racquet Club of Ann Arbor Preliminary Detention/Infiltration Calculations - Summary Table Midwestern Consulting, LLC

5/12/2015

Portions of the disturbed site free drain, but portions of undisturbed site flow through the stormwater treatment systems. This table compares the 2-year and 100-year runoff volumes to ensure that the flows actually reaching the stormwater treatment systems are at least as great as the volumes required.

| Infiltration Volume Required (Disturbed Area):   | 4,304  | cft | 0.099 ac-ft  |
|--------------------------------------------------|--------|-----|--------------|
| Actual 2-year Volume (Detained Area):            | 4,557  | cft | 0.105  ac-ft |
| Total 100-year Runoff Required (Disturbed Area): | 10,353 | cft | 0.24 ac-ft   |
| Actual 100-year Volume (Detained Area):          | 10,978 | cft | 0.252 ac-ft  |

Volume Provided:

RTank Chambers are used to conserve space and reduce surface demolition and construction costs.

Elevation

| Sizing Calculations<br>Storage Required:<br>Void Ratio of Chambers:<br>RTank Volume Required:        | 10,353<br>93%<br>11,132 | cft<br>cft       |                                                                        |
|------------------------------------------------------------------------------------------------------|-------------------------|------------------|------------------------------------------------------------------------|
| Bottom of Chambers:                                                                                  | 763.0                   | Infiltration Tes | at Elevation                                                           |
| Top of Chambers:                                                                                     | 767.0                   | (2.5' under lov  | <i>w</i> point of 769.5, 3' under pavement of 770.0)                   |
| Height of Chambers                                                                                   | 4.0                     | ft               |                                                                        |
| Rtank Area Required:                                                                                 | 2,783                   | sft              | minimum area required to store stormwater in 4' height.                |
| Check for Infiltration:<br>Infiltration Rate by TP-1<br>Factor of Safety<br>Design Infiltration Rate | 27.75<br>4<br>6.94      | in/hr<br>in/hr   | (WCWRC 2 minimum - also accounting for soils variation)<br>0.578 ft/hr |
| Time to Infiltrate                                                                                   | 48                      | hr               |                                                                        |
| Minimum Volume to Infiltrate per hour                                                                | 216                     | cft/hr           |                                                                        |
| Minimum Infiltration Area                                                                            | 373                     | sft              | minimum infiltration area required.                                    |
| RTank Area Provided                                                                                  | 2,700                   | sft              |                                                                        |
| W13 - Storage-Elevation Data                                                                         |                         |                  |                                                                        |

**Basin Storage Information** 

| -                                  | (ft)   | (sft)     | (cft)       | (cft)     | (ac-ft)  |
|------------------------------------|--------|-----------|-------------|-----------|----------|
| Bottom of Basin                    | 763    | 2,800     | 2,604       | 2,604     | 0.06     |
|                                    | 764    | 2,800     | 2,604       | 5,208     | 0.12     |
|                                    | 765    | 2,800     | 2,604       | 7,812     | 0.18     |
|                                    | 766    | 2,800     | 2,604       | 10,416    | 0.24     |
| Top of Basin and Overflow Weir     | 767    | 0         | 0           | 10,416    | 0.24     |
| Low Point Ground Elevation         | 769.5  | 0         | 0           | 10,416    | 0.24     |
|                                    |        |           |             |           |          |
| Storago Volumos                    |        |           |             |           |          |
| 1" Event                           | 2 201  | off       | 0.05        | 00 ft     |          |
|                                    | 2,391  |           | 0.05        |           |          |
| 2-year Event volume                | 4,557  | CIL       | 0.10        |           |          |
| Full lank volume                   | 10,353 | ctt       | 0.24        | ac-tt     |          |
| Infiltration Rate                  | 1,561  | cft/hr    | 0.036       | ac-ft/hr  | 0.43 cfs |
| Time to infiltrate 1" event        | 1.5    | hr        | (<24 hours) |           |          |
| Time to infiltrate 2-year event    | 2.9    | hr        | (<48 hours) |           |          |
| Tiime to infiltrate 100-year event | 6.6    | hr        | · · · ·     |           |          |
|                                    |        |           |             |           |          |
| Storage Elevations                 |        |           |             |           |          |
| Elevation for 1" event             | 763.92 | Elevation | 0.92        | ft. depth |          |
| Elevation for 2-year event         | 764.75 | Elevation | 1.75        | ft. depth |          |
| Elevation for 100-year event       | 766.98 | Elevation | 3.98        | ft. depth |          |

Area

Volume | Cum. Volume |Cum. Volume

Area C Value (ac) 0.158 0.030 0.045 0.115 0.058 0.025 0.038 0.082 0.019 0.102 0.027 0.056 0.027 0.152 0.045 0.395 0.151

4 0.672 0.307 0.395 0.553

16 0.979 0.63

#### **Racquet Club of Ann Arbor Outlet Certification** 5/12/2015

#### **Outlet from Chambers:**

The infiltration chambers are designed to infiltrate the full 100-year storm into the ground in less than 24 hours. The measured infiltration rate at Test Pit 1 was 27.75 in/hr, and we have applied a factor of safety of 4 (twice the required level) to use a design rate of 6.94 in/hr. This matches the NRCS soils type of BnB Boyer Loamy Sand, a Type A soil.

In case of a failure of the infiltration bed or a storm exceeding the design capacity, and overflow outlet with an invert at the height of the infiltration chamber top has been provided to the existing 6" drainage pipe through the site. Although the 6" pipe is undersized to handle a 10-year storm, the existing site's sandy soils and overland overflow paths have ensured that water ponding on the existing site has not been a problem. The renovations to the site will be reducing the flow through the existing system, and reducing the overland flow off of the site, improving the existing drainage conditions.

#### Outlet Certification:

Based upon the data and criteria outlined above, I hereby certify that the existing drain is the only reasonably achievable stormwater outlet for the proposed stormwater management system, and that the exiting drain has sufficient capacity to serve as an adequate outlet for the proposed system, without detriment to or diminution of the drainage serve that the existing outlet presently provides.

illeto M

Jeremy Matthei, PE #62010 53590

![](_page_12_Picture_43.jpeg)

![](_page_12_Picture_44.jpeg)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Main Infiltration                                                                                                                                                                                                      | Chamber)                                                                                                                                                                                             | 0.98 ac             |                   |                                                       |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|-------------------------------------------------------|------------------|
| Rational Method Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cover Type<br>Roofs                                                                                                                                                                                                     | Soil Type                                                                                                                                                                                            | Area (sft)<br>8,807 | Area (ac)<br>0.20 | Runoff Coeff. (C)<br>0.95                             | (C) (Area)<br>0. |
| (for first flush)<br>0.95 for impervious surfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pavements<br>Perm. Pavers                                                                                                                                                                                               | A<br>A                                                                                                                                                                                               | 15,537<br>1,369     | 0.36<br>0.03      | 0.95<br>0.25                                          | 0.<br>0.         |
| 0.25 for permeable pavers (use "steep vegetated" valu<br>0.20 for pervious surfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e) Landscaping<br>Total                                                                                                                                                                                                 | A                                                                                                                                                                                                    | 16,923<br>42,636    | 0.39<br>0.98      | 0.20<br>0.63                                          | 0.<br>0.         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |                                                                                                                                                                                                      | Weighted C          | Tota              | al - Sum(C)(Area)<br>Area Total<br>rea))/(Area Total) | 0.<br>0.         |
| Pervio<br>NRCS Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ous Cover Type<br>Perm. Pavers                                                                                                                                                                                          | Soil Type                                                                                                                                                                                            | Area (sft)          | Area (ac)<br>0.03 | Curve Number                                          | (CN) (Area<br>0. |
| (for bankfull and 100-year calculations)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Landscaping                                                                                                                                                                                                             | A                                                                                                                                                                                                    | 16,923              | 0.39              | 39                                                    | 0.               |
| (use "Landscaping, Poor Condition, Soil Type A" values of the Landscaping, Good Condition, Soil Type A" values of the Landscaping and Condition and Conditio | ie)<br>Total                                                                                                                                                                                                            |                                                                                                                                                                                                      | 18,292              | 0.42              | 41                                                    | 0.               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |                                                                                                                                                                                                      |                     | Tota              | al - Sum(C)(Area)<br>Area Total                       | 0.<br>0.         |
| Impervio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dus Cover Type                                                                                                                                                                                                          | Soil Type                                                                                                                                                                                            | Weighted C          | - (Sum(C)(A       | rea))/(Area Total)                                    | 4<br>(CN) (Area  |
| NRCS Variables<br>(for bankfull and 100-year calculations)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Roofs<br>Pavements                                                                                                                                                                                                      | A<br>A<br>A                                                                                                                                                                                          | 8,807<br>15,537     | 0.20              | 98<br>98                                              | 0.<br>0.         |
| 98 for Roofs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                      |                     | -                 |                                                       |                  |
| 98 for Pavements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total                                                                                                                                                                                                                   |                                                                                                                                                                                                      | 24,344              | 0.56              | 98                                                    | 0.               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |                                                                                                                                                                                                      | Weighted C          | Tota              | al - Sum(C)(Area)<br>Area Total<br>rea))/(Area Total) | 0.<br>0.<br>g    |
| W2 - First Flush Runoff Calculations (Vff)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                                      |                     | (00(0)()          | ,                                                     |                  |
| A. Vff = 1" x 1/12" x 43560 sft/ac x A x C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,238                                                                                                                                                                                                                   | cft                                                                                                                                                                                                  |                     |                   |                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05                                                                                                                                                                                                                    | ac-ft                                                                                                                                                                                                |                     |                   |                                                       |                  |
| W3 - Pre-Development Bankfull Runoff Calculatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ons (Vbf-pre)                                                                                                                                                                                                           | in                                                                                                                                                                                                   |                     |                   |                                                       |                  |
| <ul> <li>A. 2 year / 24 hour storm event. P=</li> <li>B. Pre-Development CN</li> <li>(Cood Court M(code, Turce A Soile))</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.30                                                                                                                                                                                                                    | )<br>)                                                                                                                                                                                               |                     |                   |                                                       |                  |
| (Good Cover Woods, Type A Solis)<br>C. $S = (1000 / CN) - 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.333                                                                                                                                                                                                                  | in<br>Nin                                                                                                                                                                                            |                     |                   |                                                       |                  |
| <ul> <li>D. Q = [(P-0.2S)<sup>A</sup>2] / [P+0.8S]</li> <li>E. Total Site Area excluding "Self-Crediting" BMPs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000<br>42,636                                                                                                                                                                                                         | sft                                                                                                                                                                                                  |                     |                   |                                                       |                  |
| F. Vbf-pre = Q x (1/12) x Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                       | cft<br><i>ac-ft</i>                                                                                                                                                                                  |                     |                   |                                                       |                  |
| W4 - Pervious Cover Post-Development Bankfull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Runoff Calculatio                                                                                                                                                                                                       | ns (Vbf-per-post)                                                                                                                                                                                    |                     |                   |                                                       |                  |
| A. 2 year / 24 hour storm event: P=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.35                                                                                                                                                                                                                    | in                                                                                                                                                                                                   |                     |                   |                                                       |                  |
| B. Pervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41<br>14.289                                                                                                                                                                                                            | ) in                                                                                                                                                                                                 |                     |                   |                                                       |                  |
| <ul> <li>D. Q = [(P-0.2S)<sup>2</sup>] / [P+0.8S]</li> <li>E. Pervious Cover Area from Worksheet 1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000<br>18,292                                                                                                                                                                                                         | ) in<br>sft                                                                                                                                                                                          |                     |                   |                                                       |                  |
| F. Vbf-per-post = Q x (1/12) x Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                       | cft<br><i>ac-ft</i>                                                                                                                                                                                  |                     |                   |                                                       |                  |
| W5 - Impervious Cover Post-Development Bankfu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | III Runoff Calculat                                                                                                                                                                                                     | ions (Vbf-imp-po                                                                                                                                                                                     | st)                 |                   |                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |                                                                                                                                                                                                      |                     |                   |                                                       |                  |
| A. 2 year / 24 hour storm event: P=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.35                                                                                                                                                                                                                    | in                                                                                                                                                                                                   |                     |                   |                                                       |                  |
| <ul> <li>A. 2 year / 24 hour storm event: P=</li> <li>B. Impervious Cover CN From Worksheet 1</li> <li>C. S = (1000 / CN) - 10</li> <li>D. A = V(D A 20)(21 / UD + 0.001)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.35<br>98<br>0.204                                                                                                                                                                                                     | in<br>in                                                                                                                                                                                             |                     |                   |                                                       |                  |
| <ul> <li>A. 2 year / 24 hour storm event: P=</li> <li>B. Impervious Cover CN From Worksheet 1</li> <li>C. S = (1000 / CN) - 10</li> <li>D. Q = [(P-0.2S)^2] / [P+0.8S]</li> <li>E. Impervious Cover Area from Worksheet 1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.35<br>98<br>0.204<br>2.122<br>24,344                                                                                                                                                                                  | in<br>in<br>sft                                                                                                                                                                                      |                     |                   |                                                       |                  |
| A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.35<br>98<br>0.204<br>2.122<br>24,344<br>4,304<br><i>0.10</i>                                                                                                                                                          | in<br>in<br>sft<br>cft<br><i>ac-ft</i>                                                                                                                                                               |                     |                   |                                                       |                  |
| <ul> <li>A. 2 year / 24 hour storm event: P=</li> <li>B. Impervious Cover CN From Worksheet 1</li> <li>C. S = (1000 / CN) - 10</li> <li>D. Q = [(P-0.2S)^2] / [P+0.8S]</li> <li>E. Impervious Cover Area from Worksheet 1</li> <li>F. Vbf-imp-post = Q x (1/12) x Area</li> </ul> W6 - Pervious Cover Post-Development 100-Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.35<br>98<br>0.204<br>2.122<br>24,344<br>4,304<br><i>0.10</i><br>Runoff Calculatio                                                                                                                                     | in<br>in<br>sft<br>cft<br><i>ac-ft</i><br><b>ns (V100-per-pos</b>                                                                                                                                    | t)                  |                   |                                                       |                  |
| <ul> <li>A. 2 year / 24 hour storm event: P=</li> <li>B. Impervious Cover CN From Worksheet 1</li> <li>C. S = (1000 / CN) - 10</li> <li>D. Q = [(P-0.2S)^2] / [P+0.8S]</li> <li>E. Impervious Cover Area from Worksheet 1</li> <li>F. Vbf-imp-post = Q x (1/12) x Area</li> </ul> W6 - Pervious Cover Post-Development 100-Year A. 100 year / 24 hour storm event: P= Deprise Cover 2015 - Minimized and the state of the state o                  | 2.35<br>98<br>0.204<br>2.122<br>24,344<br>4,304<br><i>0.10</i><br>Runoff Calculatio<br>5.11                                                                                                                             | in<br>in<br>sft<br>cft<br><i>ac-ft</i><br><b>ns (V100-per-pos</b>                                                                                                                                    | t)                  |                   |                                                       |                  |
| A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area<br>W6 - Pervious Cover Post-Development 100-Year<br>A. 100 year / 24 hour storm event: P=<br>B. Pervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.35<br>98<br>0.204<br>2.122<br>24,344<br>4,304<br><i>0.10</i><br>Runoff Calculatio<br>5.11<br>41<br>14.289                                                                                                             | in<br>in<br>sft<br>cft<br><i>ac-ft</i><br><b>ns (V100-per-pos</b><br>in                                                                                                                              | t)                  |                   |                                                       |                  |
| A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area<br><b>W6 - Pervious Cover Post-Development 100-Year</b><br>A. 100 year / 24 hour storm event: P=<br>B. Pervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Pervious Cover Area from Worksheet 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.35<br>98<br>0.204<br>2.122<br>24,344<br>4,304<br><i>0.10</i><br>Runoff Calculatio<br>5.11<br>41<br>14.289<br>0.307<br>18,292                                                                                          | in<br>in<br>sft<br>cft<br><i>ac-ft</i><br><b>ns (V100-per-pos</b><br>in<br>in<br>sft                                                                                                                 | t)                  |                   |                                                       |                  |
| A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. $S = (1000 / CN) - 10$<br>D. $Q = [(P-0.2S)^2] / [P+0.8S]$<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area<br><b>W6 - Pervious Cover Post-Development 100-Year</b><br>A. 100 year / 24 hour storm event: P=<br>B. Pervious Cover CN From Worksheet 1<br>C. $S = (1000 / CN) - 10$<br>D. $Q = [(P-0.2S)^2] / [P+0.8S]$<br>E. Pervious Cover Area from Worksheet 1<br>F. V100-per-post = Q x (1/12) x Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.35<br>98<br>0.204<br>2.122<br>24,344<br>4,304<br><i>0.10</i><br><b>Runoff Calculatio</b><br>5.11<br>41<br>14.289<br>0.307<br>18,292<br>467<br><i>0.01</i>                                                             | in<br>in<br>sft<br>cft<br><i>ac-ft</i><br><b>ns (V100-per-pos</b><br>in<br>in<br>sft<br>cft<br><i>ac-ft</i>                                                                                          | t)                  |                   |                                                       |                  |
| A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area<br>W6 - Pervious Cover Post-Development 100-Year<br>A. 100 year / 24 hour storm event: P=<br>B. Pervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Pervious Cover Area from Worksheet 1<br>F. V100-per-post = Q x (1/12) x Area<br>W7 - Impervious Cover Post-Development 100-Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.35<br>98<br>0.204<br>2.122<br>24,344<br>4,304<br>0.10<br>Runoff Calculatio<br>5.11<br>41<br>14.289<br>0.307<br>18,292<br>467<br>0.01<br>ar Runoff Calculat                                                            | in<br>sft<br>cft<br><i>ac-ft</i><br>ns (V100-per-pos<br>in<br>in<br>sft<br>cft<br><i>ac-ft</i><br>tions (V100-imp-p                                                                                  | t)<br>post)         |                   |                                                       |                  |
| A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. $S = (1000 / CN) - 10$<br>D. $Q = [(P-0.2S)^2] / [P+0.8S]$<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area<br>W6 - Pervious Cover Post-Development 100-Year<br>A. 100 year / 24 hour storm event: P=<br>B. Pervious Cover CN From Worksheet 1<br>C. $S = (1000 / CN) - 10$<br>D. $Q = [(P-0.2S)^2] / [P+0.8S]$<br>E. Pervious Cover Area from Worksheet 1<br>F. V100-per-post = Q x (1/12) x Area<br>W7 - Impervious Cover Post-Development 100-Ye<br>A. 2 year / 24 hour storm event: P=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.35<br>98<br>0.204<br>2.122<br>24,344<br>4,304<br>0.10<br>Runoff Calculatio<br>5.11<br>41<br>14.289<br>0.307<br>18,292<br>467<br>0.01<br>ar Runoff Calculatio                                                          | in<br>sft<br>cft<br><i>ac-ft</i><br><b>ns (V100-per-pos</b><br>in<br>in<br>sft<br>cft<br><i>ac-ft</i><br><b>tions (V100-imp-p</b><br>in                                                              | t)<br>post)         |                   |                                                       |                  |
| A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area<br><b>W6 - Pervious Cover Post-Development 100-Year</b><br>A. 100 year / 24 hour storm event: P=<br>B. Pervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Pervious Cover Area from Worksheet 1<br>F. V100-per-post = Q x (1/12) x Area<br><b>W7 - Impervious Cover Post-Development 100-Ye</b><br>A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.35<br>98<br>0.204<br>2.122<br>24,344<br>4,304<br>0.10<br>Runoff Calculatio<br>5.11<br>41<br>14.289<br>0.307<br>18,292<br>467<br>0.01<br>ar Runoff Calculat<br>5.11<br>98<br>0.204                                     | in<br>sft<br>cft<br>ac-ft<br>ns (V100-per-pos<br>in<br>in<br>sft<br>cft<br>ac-ft<br>tions (V100-imp-p                                                                                                | t)<br>oost)         |                   |                                                       |                  |
| A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area<br><b>W6 - Pervious Cover Post-Development 100-Year</b><br>A. 100 year / 24 hour storm event: P=<br>B. Pervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Pervious Cover Area from Worksheet 1<br>F. V100-per-post = Q x (1/12) x Area<br><b>W7 - Impervious Cover Post-Development 100-Ye</b><br>A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Impervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Impervious Cover Area from Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Impervious Cover Area from Worksheet 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.35<br>98<br>0.204<br>2.122<br>24,344<br>4,304<br>0.10<br>Runoff Calculatio<br>5.11<br>41<br>14.289<br>0.307<br>18,292<br>467<br>0.01<br>ar Runoff Calculat<br>5.11<br>98<br>0.204<br>4.873<br>24,344                  | in<br>sft<br>cft<br><i>ac-ft</i><br>ns (V100-per-pos<br>in<br>in<br>sft<br>cft<br><i>ac-ft</i><br>tions (V100-imp-p<br>in<br>in<br>sft                                                               | t)<br>bost)         |                   |                                                       |                  |
| A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = (1000 / CN) - 10<br>D. Q = [(P-0.2S)^2] / [P+0.8S]<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area<br><b>W6 - Pervious Cover Post-Development 100-Year</b><br>A. 100 year / 24 hour storm event: P=<br>B. Pervious Cover CN From Worksheet 1<br>C. S = (1000 / CN) - 10<br>D. Q = [(P-0.2S)^2] / [P+0.8S]<br>E. Pervious Cover Area from Worksheet 1<br>F. V100-per-post = Q x (1/12) x Area<br><b>W7 - Impervious Cover Post-Development 100-Ye</b><br>A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = (1000 / CN) - 10<br>D. Q = [(P-0.2S)^2] / [P+0.8S]<br>E. Impervious Cover CN From Worksheet 1<br>C. S = (1000 / CN) - 10<br>D. Q = [(P-0.2S)^2] / [P+0.8S]<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.35<br>98<br>0.204<br>2.122<br>24,344<br>4,304<br>0.10<br>Runoff Calculatio<br>5.11<br>41<br>14.289<br>0.307<br>18,292<br>467<br>0.01<br>ar Runoff Calculat<br>5.11<br>98<br>0.204<br>4.873<br>24,344<br>9,886<br>0.23 | in<br>sft<br>cft<br>ac-ft<br>ns (V100-per-pos<br>in<br>in<br>in<br>sft<br>cft<br>ac-ft<br>tions (V100-imp-p<br>in<br>sft<br>cft<br>ac-ft<br>tions (V100-imp-p                                        | t)<br>post)         |                   |                                                       |                  |
| A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = (1000 / CN) - 10<br>D. Q = [(P-0.2S)^2] / [P+0.8S]<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area<br><b>W6 - Pervious Cover Post-Development 100-Year</b><br>A. 100 year / 24 hour storm event: P=<br>B. Pervious Cover CN From Worksheet 1<br>C. S = (1000 / CN) - 10<br>D. Q = [(P-0.2S)^2] / [P+0.8S]<br>E. Pervious Cover Area from Worksheet 1<br>F. V100-per-post = Q x (1/12) x Area<br><b>W7 - Impervious Cover Post-Development 100-Ye</b><br>A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = (1000 / CN) - 10<br>D. Q = [(P-0.2S)^2] / [P+0.8S]<br>E. Impervious Cover CN From Worksheet 1<br>C. S = (1000 / CN) - 10<br>D. Q = [(P-0.2S)^2] / [P+0.8S]<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area<br><b>W8 - Time of Concentration (Tc-hrs)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.35<br>98<br>0.204<br>2.122<br>24,344<br>4,304<br>0.10<br>Runoff Calculatio<br>5.11<br>41<br>14.289<br>0.307<br>18,292<br>467<br>0.01<br>ar Runoff Calculat<br>5.11<br>98<br>0.204<br>4.873<br>24,344<br>9,886<br>0.23 | in<br>sft<br>cft<br>ac-ft<br>ns (V100-per-pos<br>in<br>in<br>sft<br>cft<br>ac-ft<br>tions (V100-imp-p<br>in<br>sft<br>cft<br>ac-ft<br>tions (Childrent to the structure<br>in<br>sft<br>cft<br>ac-ft | t)<br>bost)         |                   |                                                       |                  |
| A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^{2}] / [P+0.8S]$<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area<br><b>W6 - Pervious Cover Post-Development 100-Year</b><br>A. 100 year / 24 hour storm event: P=<br>B. Pervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^{2}] / [P+0.8S]$<br>E. Pervious Cover Area from Worksheet 1<br>F. V100-per-post = Q x (1/12) x Area<br><b>W7 - Impervious Cover Post-Development 100-Ye</b><br>A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^{2}] / [P+0.8S]$<br>E. Impervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^{2}] / [P+0.8S]$<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area<br><b>W8 - Time of Concentration (Tc-hrs)</b><br>A. Assume 15-minute minimum time of concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.35<br>98<br>0.204<br>2.122<br>24,344<br>4,304<br>0.10<br>Runoff Calculatio<br>5.11<br>41<br>14.289<br>0.307<br>18,292<br>467<br>0.01<br>ar Runoff Calculat<br>5.11<br>98<br>0.204<br>4.873<br>24,344<br>9,886<br>0.23 | in<br>sft<br>cft<br>ac-ft<br>ns (V100-per-pos<br>in<br>in<br>sft<br>cft<br>ac-ft<br>tions (V100-imp-p<br>in<br>sft<br>cft<br>ac-ft<br>tions (V100-imp-p                                              | t)<br>bost)         |                   |                                                       |                  |
| A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area<br><b>W6 - Pervious Cover Post-Development 100-Year</b><br>A. 100 year / 24 hour storm event: P=<br>B. Pervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Pervious Cover Area from Worksheet 1<br>F. V100-per-post = Q x (1/12) x Area<br><b>W7 - Impervious Cover Post-Development 100-Ye</b><br>A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Impervious Cover CN From Worksheet 1<br>F. V5 = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area<br><b>W8 - Time of Concentration (Tc-hrs)</b><br>A. Assume 15-minute minimum time of concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.35<br>98<br>0.204<br>2.122<br>24,344<br>4,304<br>0.10<br>Runoff Calculatio<br>5.11<br>41<br>14.289<br>0.307<br>18,292<br>467<br>0.01<br>ar Runoff Calculat<br>5.11<br>98<br>0.204<br>4.873<br>24,344<br>9,886<br>0.23 | in<br>sft<br>cft<br>ac-ft<br>ns (V100-per-pos<br>in<br>in<br>in<br>sft<br>cft<br>ac-ft<br>tions (V100-imp-p<br>in<br>sft<br>cft<br>ac-ft<br>tions (V100-imp-p<br>in<br>sft<br>cft<br>ac-ft           | t)<br>Dost)         |                   |                                                       |                  |
| A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Impervious Cover Area from Worksheet 1<br>F. Vbf-imp-post = Q x (1/12) x Area<br><b>W6 - Pervious Cover Post-Development 100-Year</b><br>A. 100 year / 24 hour storm event: P=<br>B. Pervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Pervious Cover Area from Worksheet 1<br>F. V100-per-post = Q x (1/12) x Area<br><b>W7 - Impervious Cover Post-Development 100-Ye</b><br>A. 2 year / 24 hour storm event: P=<br>B. Impervious Cover CN From Worksheet 1<br>C. S = $(1000 / CN) - 10$<br>D. Q = $[(P-0.2S)^2] / [P+0.8S]$<br>E. Impervious Cover CN From Worksheet 1<br>F. V100-per-post = Q x (1/12) x Area<br><b>W8 - Time of Concentration (Tc-hrs)</b><br>A. Assume 15-minute minimum time of concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.35<br>98<br>0.204<br>2.122<br>24,344<br>4,304<br>0.10<br>Runoff Calculatio<br>5.11<br>41<br>14.289<br>0.307<br>18,292<br>467<br>0.01<br>ar Runoff Calculat<br>5.11<br>98<br>0.204<br>4.873<br>24,344<br>9,886<br>0.23 | in<br>sft<br>cft<br>ac-ft<br>ns (V100-per-pos<br>in<br>in<br>in<br>in<br>sft<br>cft<br>ac-ft<br>tions (V100-imp-p<br>in<br>sft<br>cft<br>ac-ft<br>tions (V100-imp-p<br>in<br>hr                      | t)<br>post)         |                   |                                                       |                  |

| W9 - Runoff Summary & On-Site Infiltration Requirement                                                                                                                                                                                                                                                                                              | W3 - Pre-Development Bankfull Runoff Calculations (Vbf-pre)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| A. Summary from Previous Worksheets<br>First Flush Volume (Vff)2,238 cft0.05 ac-ft                                                                                                                                                                                                                                                                  | A. 2 year / 24 hour storm event: P= 2.35 in 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           |
| Pre-Development Bankfull Runoff Volume (Vbf-pre) - cft - ac-ft                                                                                                                                                                                                                                                                                      | (Good Cover Woods, Type A Soils)<br>C = S = (1000 / CN) - 10 $23 333 in$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drive                                                                                     |
| Pervious Cover Post-Development Bankfull Volume (Vbf-per-post)     - cft     - ac-ft       Impervious Cover Post-Development Bankfull Volume (Vbf-imp-post)     4,304 cft     0.10 ac-ft                                                                                                                                                            | D. $Q = [(P-0.2S)^2] / [P+0.8S]$<br>E. Total Site Area excluding "Self-Crediting" BMPs<br>46,484 sft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aza [<br>34.99                                                                            |
| Potrieur Cover Reet Development 100 Year Volume (V100 per peet)                                                                                                                                                                                                                                                                                     | F. Vbf-pre = Q x (1/12) x Area - cft<br>- ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LS PL<br>Arb                                                                              |
| Pervious Cover Post-Development 100-Year Volume (V100-per-post)       467 cm       0.01 ac-m         Impervious Cover Post-Development 100-Year Volume (V100-imp-post)       9,886 cft       0.23 ac-ft         Total 100-Year Volume (V100)       10.353 cft       0.24 ac-ft                                                                      | W4 - Pervious Cover Post-Development Bankfull Runoff Calculations (Vbf-per-post)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 381 Anr                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                     | A. 2 year / 24 hour storm event: P= 2.35 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and                                                                                       |
| B. Determine Onsite Infiltration Requirement<br>Subtract the Pre-Development Bankfull from the Post-Development Bankfull Volume                                                                                                                                                                                                                     | B. Pervious Cover CN From Worksheet 1         41           C. S = (1000 / CN) - 10         14.440 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ental<br>Engir                                                                            |
| Total Post-Development Bankfull Volume (Vbf-post)4,304cft0.10ac-ftPre-Development Bankfull Runoff Volume (Vbf-pre)-cft-ac-ft                                                                                                                                                                                                                        | D. $Q = [(P-0.2S)^{n}2] / [P+0.8S]$<br>E. Pervious Cover Area from Worksheet 1 20,709 sft<br>E. Vide per peet = Q x (1/12) x Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | surve<br>Surve                                                                            |
| Bankfull Volume Difference 4,304 cft 0.10 ac-ft                                                                                                                                                                                                                                                                                                     | F. VD-per-post = Q x (1/12) x Area - $ch$<br>- $ac-ft$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Envi<br>sportc                                                                            |
| Compare to First Flush Volume (Vff)     2,238 cft     0.05 ac-ft                                                                                                                                                                                                                                                                                    | W5 - Impervious Cover Post-Development Bankfull Runoff Calculations (Vbf-imp-post)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Civil, Civil, Plan                                                                        |
| Greater of Bankfull Volume or First Flush Volume 4,304 cft 0.10 ac-ft<br>To be Infiltrated                                                                                                                                                                                                                                                          | A. 2 year / 24 hour storm event: P= 2.35 in<br>B. Impervious Cover CN From Worksheet 1 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           |
| W10 - Detention/Retention Requirement                                                                                                                                                                                                                                                                                                               | C. $S = (1000 / CN) - 10$ 0.204 inD. $Q = [(P-0.2S)^2] / [P+0.8S]$ 2.122 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           |
| Detention<br>$A = Op = 238.6 \text{ Tc}^{0.0} 82$<br>743.63 cfs/(in x sq. mi)                                                                                                                                                                                                                                                                       | E. Impervious Cover Area from Worksheet 125,775 sftF. Vbf-imp-post = Q x (1/12) x Area4,557 cft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |
| B. Total Site Area excluding "Self-Crediting" BMPs 0.98 ac<br>C. Q100 = Q100-per + Q100-imp 5.180 in                                                                                                                                                                                                                                                | 0.10 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                           |
| (from W6 and W7, respectively)<br>D. Peak Flow (PF) = $Qp \times Q100 \times Area / 640$ 5.89 cfs                                                                                                                                                                                                                                                   | W6 - Pervious Cover Post-Development 100-Year Runoff Calculations (V100-per-post)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |
| E. Delta = PF - 0.15 x Area (ac) 5.74 cfs<br>[0.15 x Area (ac)] 0.15 cfs                                                                                                                                                                                                                                                                            | A. 100 year / 24 hour storm event: P= 5.11 in<br>B. Pervious Cover CN From Worksheet 1 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           |
| F. Vdet = Delta / PF x V100 - Vinf       (5,319) cft       (0.12) ac-ft         Required Detention       (All Runoff is infiltrated)                                                                                                                                                                                                                | C. $S = (1000 / CN) - 10$<br>D. $Q = [(P-0.2S)^2] / [P+0.8S]$<br>D. $Q = [(P-$ | ROR                                                                                       |
| Retention                                                                                                                                                                                                                                                                                                                                           | E. Pervious Cover Area from Worksheet 1 $20,709$ sft<br>F. V100-per-post = Q x (1/12) x Area $511$ cft<br>0.01 cs ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N AF                                                                                      |
| A. Vret = 2 x V100 20,706 cft 0.48 ac-ft                                                                                                                                                                                                                                                                                                            | u.ur au-it<br>W7 - Impervious Cover Post-Development 100-Year Runoff Calculations (\/100-imp-post)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )F AN<br>ANE<br>481(<br>ER                                                                |
| W11 - Determine Applicable BMPs and Associated Volume Credits                                                                                                                                                                                                                                                                                       | A. 2 year / 24 hour storm event: P= 511 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UB C<br>VY L/<br>MI<br>MAKE                                                               |
| Proposed BMP       Area       Stor. Vol.       Ave Inf. Rate       Inf. Storm       Total Red.                                                                                                                                                                                                                                                      | B. Impervious Cover CN From Worksheet 1         98           C. S = (1000 / CN) - 10         0.204 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LT CL<br>ICKOL<br>ICKOL<br>SCHC                                                           |
| (sft)         (cft)         (in/hr)         (cft)           Infiltration Chambers         2,700         10,353         6.9         9,366         19,719                                                                                                                                                                                             | D. Q = [(P-0.2S) <sup>2</sup> ] / [P+0.8S] 4.873 in<br>E. Impervious Cover Area from Worksheet 1 25,775 sft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LIEN<br>CQUE<br>N AR<br>ENT                                                               |
| (Area conservatively taken at bottom of pond)<br>Average infiltration rate at Test Pit 10 (pond location) is 14 in/hr, FS of 2 is 7 in/hr. 3.0in/hr is used here to be conservative.                                                                                                                                                                | F. Vbf-imp-post = Q x (1/12) x Area       10,467 cft         0.24 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AN C C BR                                                                                 |
| Total Volume Reduction Credit by Proposed Structural BMPs 19,719 cft                                                                                                                                                                                                                                                                                | W8 - Time of Concentration (Tc-hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |
| Runoff Volume Infiltration Requirement (Vinf) from Worksheet 9     4,304     cft       Runoff Volume Credit     15,415     cft                                                                                                                                                                                                                      | A. Assume 15-minute minimum time of concentration 0.25 hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ō                                                                                         |
| Minimum Surface Area Check                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |
| Contributing Total Surface 42,636 sft                                                                                                                                                                                                                                                                                                               | W9 - Runoff Summary & On-Site Infiltration Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |
| Total Surface Ratio 15.8                                                                                                                                                                                                                                                                                                                            | A. Summary from Previous Worksneets         First Flush Volume (Vff)       2,391 cft       0.05 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |
| W12 - Natural Features Inventory                                                                                                                                                                                                                                                                                                                    | Pre-Development Bankfull Runoff Volume (Vbf-pre) - cft - ac-ft - ac-ft - ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           |
| Existing Natural Resources       Mapped       Total Area       Protected Area         (ac)       (ac)                                                                                                                                                                                                                                               | Impervious Cover Post-Development Bankfull Volume (Vbf-imp-post)4,557 cft0.10 ac-ftTotal BF Volume (Vbf-post)4.557 cft0.10 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>A</b>                                                                                  |
| Wetlands         Yes         0.00         0.00           Woodlands         Yes         0.00         0.00                                                                                                                                                                                                                                            | Pervious Cover Post-Development 100-Year Volume (V100-per-post) 511 cft 0.01 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |
| Total Existing 0.00 0.00                                                                                                                                                                                                                                                                                                                            | Impervious Cover Post-Development 100-Year Volume (V100-imp-post)10,467 cft0.24 ac-ftTotal 100-Year Volume (V100)10,978 cft0.25 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |
| Racquet Club of Ann Arbor<br>Preliminary Detention/Infiltration Calculations - Detained Area                                                                                                                                                                                                                                                        | B. Determine Onsite inflitration Requirement<br>Subtract the Pre-Development Bankfull from the Post-Development Bankfull Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |
| 5/12/2015                                                                                                                                                                                                                                                                                                                                           | Pre-Development Bankfull Runoff Volume (Vbf-pre) - cft - ac-ft<br>Bankfull Volume Difference 4,557 cft 0.10 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                         |
| Total Disturbed Area Calculations (to Determine Actual Flow Rates and Volumes to Chambers)                                                                                                                                                                                                                                                          | Compare to First Flush Volume (Vff) 2.391 cft 0.05 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |
| W1 - Determining Post-Development Cover Types, Areas, Curve Numbers, and Runoff Coefficients                                                                                                                                                                                                                                                        | Greater of Bankfull Volume or First Flush Volume 0.10 ac-ft 0.10 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |
| Total Site Area (Proposed Detained Area)       1.07 ac         Total Site Area Excluding "Self-Crediting" BMPs* (Main Detention Basin)       1.07 ac                                                                                                                                                                                                | To be Infiltrated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |
| * Used for remainder of calculations below                                                                                                                                                                                                                                                                                                          | W10 - Detention/Retention Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |
| Rational Method VariablesCover TypeSoil TypeArea (stt)Area (ac)Runoff Coeff. (C)(C) (Area)Ref red finablesRoofsA9,5470.220.950.21(for finat finable)RememberA16.2290.950.25                                                                                                                                                                         | Detention<br>A. Qp = 238.6 Tc^-0.82<br>743.63 cfs/(in x sq. mi)<br>B. Tatal Site Area evaluating "Self Crediting" BMDs 107 cs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A                                                                                         |
| (for first flush)       Pavements       A       16,228       0.37       0.95       0.35         0.95 for impervious surfaces       Perm. Pavers       A       1,369       0.03       0.25       0.01         0.25 for permechle pavers       (use "steep vegeteted" velue)       Landscapping       A       19,340       0.44       0.30       0.09 | B. Total Site Area excluding "Self-Crediting" BMPS $1.07$ ac<br>C. Q100 = Q100-per + Q100-imp $5.169$ in<br>(from )/(6 and )/(7, respectively)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           |
| 0.25 for pervious surfacesCalloscapingA19,5400.440.200.090.20 for pervious surfacesTotal46,4841.070.620.66                                                                                                                                                                                                                                          | D. Peak Flow (PF) = Qp x Q100 x Area / 640 $6.41 \text{ cfs}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |
| Total - Sum(C)(Area) 0.66<br>Area Total 1.07 ac                                                                                                                                                                                                                                                                                                     | [0.15 x Area (ac)]<br>F. Vdet = Delta / PF x V100 - Vinf (4.457.50) cft (0.10) ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           |
| Weighted C - (Sum(C)(Area))/(Area Total) 0.62 ac                                                                                                                                                                                                                                                                                                    | Required Detention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                        |
| PerviousCover TypeSoil TypeArea (sft)Area (ac)Curve Number(CN) (Area)NRCS VariablesPerm. PaversA1,3690.03680.02                                                                                                                                                                                                                                     | Retention         21,956 cft         0.50 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |
| (for bankfull and 100-year calculations) Landscaping A 19,340 0.44 39 0.17                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |
| 68 for Permeable Pavers, Soil Type A                                                                                                                                                                                                                                                                                                                | W11 - Determine Applicable BMPs and Associated Volume Credits 6-hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                                                                                        |
| 39 for Landscaping, Good Condition, Soil Type ATotal20,7090.48410.19                                                                                                                                                                                                                                                                                | Proposed BMP     Area     Stor. Vol.     Ave Inf. Rate     Inf. Storm     Total Red.       (sft)     (cft)     (in/hr)     (cft)     (cft)     (cft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15/20<br>J<br>B<br>·                                                                      |
| Total - Sum(C)(Area)0.19Area Total0.48                                                                                                                                                                                                                                                                                                              | Initiation Champers       2,700       10,353       6.9       9,366       19,719         (Area conservatively taken at bottom of pond)         Average infiltration rate at Test Bit 10 (read leastion) is 11 in (hr. 50 of 2 i                                                                                                                                                                                                                                                         | TE: 5/<br>IEET 1<br>DD: WA<br>CH: SW<br>CH: SW<br>CH: CH: CH: CH: CH: CH: CH: CH: CH: CH: |
| Weighted C - (Sum(C)(Area))/(Area Total) 40.9                                                                                                                                                                                                                                                                                                       | Total Volume Reduction Credit by Proposed Structural RMPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E CA                                                                                      |
| Impervious     Cover Type     Soil Type     Area (stt)     Area (ac)     Curve Number     (CN) (Area)       NRCS Variables     Roofs     A     9,547     0.22     98     0.21       (for bankfull and 100-year calculations)     Roometric     A     16,222     0.37     0.0     0.37                                                               | Runoff Volume Infiltration Requirement (Vinf) from Worksheet 9     4,557     cft       Runoff Volume Credit     15.162     cft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>/. DAT</u>                                                                             |
| Partner     Partner     A     16,228     U.37     98     U.37       98 for Roofs     98     98     0.37     98     0.37                                                                                                                                                                                                                             | Minimum Surface Area Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | REV.                                                                                      |
| 98 for Pavements         Total         25 775         0.50         0.92         0.50                                                                                                                                                                                                                                                                | Contributing Impervious Surface       25,775 sft         Contributing Total Surface       46.484 sft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           |
| Total - Sum(C)(Area) 0.58                                                                                                                                                                                                                                                                                                                           | Impervious Surface Ratio9.5 Type A soils at 6.9"/hour drain quickly.Total Surface Ratio17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           |
| Area Total0.50Weighted C - (Sum(C)(Area))/(Area Total)98.0                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                     | W12 - Natural Features Inventory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b> 4</b>                                                                                 |
| W2 - First Flush Runoff Calculations (Vff)                                                                                                                                                                                                                                                                                                          | Existing Natural Resources       Mapped       Total Area       Protected Area         (ac)       (ac)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |
| A. Vff = 1" x 1/12" x 43560 sft/ac x A x C 2,391 cft<br>0.05 ac-ft                                                                                                                                                                                                                                                                                  | WetlandsYes0.000.00WoodlandsYes0.000.00Total Evicting0.000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No.                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JOE                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |

![](_page_14_Figure_0.jpeg)

#### WETLAND SEED MIX "B" (JF New Wetland Edge & Annual/Perennial Forbs Mixes, or equal)

#### For Use in Bioswale/Rain Gardens

Scientific Name Carex lurida Carex sp. Carex vulpinoidea Eleocharis palustris major Elymus canadensis Glyceria striata Leersia oryzoides Scirpus atrovirens Scirpus pungens Scirpus validus creber Avena sativa Lolium multiflorum Actinomeris alternifolia Agalinis tenuifolia Alisma subcordatum Asclepias incarnata Aster simplex Bidens sp. Cassia hebecarpa Eupatorium perfoliatum Helenium autumnale lris virginica shrevei Lobelia siphilitica Mirnulus ringens Rudbeckia laciniata Verbena hastata Vernonia sp. Cassia fasciculata Coreopsis lanceolata Lupinus perennis Monarda fistulosa Ratibida pinnata Rudbeckia hirta Cosmos bipinnatus Gaillardia pulchella Papaver rhoeas

Common Name Bottlebrush Sedge Sedge Brown Fox Sedge Great Spike Rush Canada Wild Rye Fowl Manna Grass Rice Cut Grass Dark Green Rush Chairmaker's Rush Great Bulrush (softstem) Seed Oats Annual Rye Wingstem Slender False Foxglove Common Water Plantain Swamp Milkweed Panicled Aster Bidens Wild Senna Common Boneset Sneezeweed Blue Flag Iris Great Blue Lobelia Monkey Flower Wild Golden Glow Blue Vervain Ironweed Partridge Pea Sand Coreopsis Flowerwild Lupine Wild Bergamot Yellow Coneflower Black-eyed Susan Annual Cosmo

Blanket Flower

Annual Corn Poppy

- 6' HIGH OPAQUE PRIVACY FENCE (EX)

![](_page_14_Picture_7.jpeg)

5

Z

⊢

S

Ζ

0

C

Ζ

2

S

3

 $\geq$ 

LANE 48 47 48

 $\square \succ \Sigma$ 

O C

ANI 30 ANI

ſ

0

 $\mathbf{m}$ 

C

Ζ

Z

0

 $\mathbf{m}$ 

D

C

C

C

ſ

S

0

4

Know what's **below**.

Call before you dig.

5

LANDSCAPE REQUIREMENTS:

Provided/existing.

Note applicable.

daylight in the morning.

- VII. TREE MITIGATION: Not applicable.
- VIII. NATURAL FEATURES:
- Statement of Natural Features Impacts is shown on Sheet 2.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                 |                                                                      |                                                                                |                                                                                                                                            | (                                                                                 | OPEF                                                  | RATIO                                         | N TI                                       | ME                    | SCH                       | EDUI                     | E -          | – BE | GIN | NING | S  | EPT | ЕМЕ | 3ER       | 20    | 15                                    |           |      |           |               |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|--------------------------------------------|-----------------------|---------------------------|--------------------------|--------------|------|-----|------|----|-----|-----|-----------|-------|---------------------------------------|-----------|------|-----------|---------------|-----------------|
| CONSTRUCTION SEQUENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AUG                                                                                             | 15                                                                   | SEP                                                                            | 15                                                                                                                                         | OCT                                                                               | 15                                                    | NC                                            | DV 15                                      | 5 [                   | DEC                       | 15                       | JAI          | V 16 | F   | ΈB   | 16 | MA  | ٨R  | 16        | AP    | R 1                                   | 6         | MAY  | 16        | JU            | N 16            |
| FINALIZE PERMITS AND HOLD PRE-GRADING<br>MEETING WITH THE CITY OF ANN ARBOR                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |                                                                      |                                                                                |                                                                                                                                            |                                                                                   |                                                       |                                               |                                            |                       |                           |                          |              |      |     |      |    |     |     |           |       |                                       |           |      |           |               |                 |
| FACILITY CLOSED TO PUBLIC USE                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |                                                                      |                                                                                |                                                                                                                                            |                                                                                   |                                                       |                                               |                                            |                       |                           |                          |              |      |     |      |    |     |     |           |       | i i i i i i i i i i i i i i i i i i i |           |      |           |               |                 |
| INSTALL MEASURES AND MAINTAIN SOIL EROSION                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                 |                                                                      |                                                                                |                                                                                                                                            |                                                                                   |                                                       |                                               |                                            |                       |                           |                          |              |      |     |      |    |     |     |           |       |                                       |           |      |           |               |                 |
| DEMOLISH EXISTING BUILDINGS AND                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                 |                                                                      |                                                                                |                                                                                                                                            |                                                                                   |                                                       | $\square$                                     |                                            | T                     |                           |                          |              |      |     |      |    |     |     | Π         |       | $\square$                             |           |      | $\square$ | $\square$     |                 |
| INSTALL STORMWATER MANAGEMENT SYSTEM<br>AND HYDRANT LEAD EXTENSION                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 |                                                                      |                                                                                |                                                                                                                                            |                                                                                   |                                                       |                                               |                                            | ╈                     | $\square$                 |                          |              |      | t   |      |    |     |     | $\square$ |       |                                       |           |      |           |               |                 |
| RESTORE PAVEMENT AND LANDSCAPING<br>IN PARKING LOT AREA                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                 |                                                                      |                                                                                |                                                                                                                                            |                                                                                   |                                                       |                                               |                                            |                       |                           |                          |              |      |     |      |    |     |     |           |       |                                       |           |      |           |               |                 |
| ROUGH GRADE SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                                      |                                                                                |                                                                                                                                            |                                                                                   |                                                       |                                               |                                            | Τ                     |                           |                          |              |      | Γ   |      |    |     |     | Π         |       | Π                                     | $\square$ |      |           |               |                 |
| CONSTRUCT BUILDING FOOTINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |                                                                      |                                                                                |                                                                                                                                            |                                                                                   |                                                       |                                               |                                            | Т                     |                           |                          |              |      | Γ   |      |    |     |     | Π         |       | $\square$                             |           |      |           |               |                 |
| CONSTRUCT UTILITY SERVICES AND GRADE SITE<br>ADJACENT TO BUILDINGS                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 |                                                                      |                                                                                |                                                                                                                                            |                                                                                   |                                                       |                                               |                                            |                       |                           |                          |              |      | T   |      |    |     |     |           |       |                                       |           |      |           |               |                 |
| CONSTRUCT BUILDING STRUCTURE AND SHELL                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |                                                                      |                                                                                |                                                                                                                                            |                                                                                   |                                                       |                                               |                                            |                       |                           |                          |              |      |     |      |    |     |     |           |       |                                       |           |      |           |               |                 |
| CONSTRUCT BUILDING INTERIOR                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |                                                                      |                                                                                |                                                                                                                                            |                                                                                   |                                                       |                                               |                                            |                       |                           |                          |              |      |     |      |    |     |     |           |       |                                       |           |      |           |               |                 |
| FINE GRADE SITE, INSTALL FENCES,<br>PAVEMENTS, AND_TRELLISES                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 |                                                                      |                                                                                |                                                                                                                                            |                                                                                   |                                                       |                                               |                                            |                       |                           |                          |              |      |     |      |    |     |     |           |       |                                       |           |      |           |               |                 |
| INSTALL LANDSCAPE                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                                                                      |                                                                                |                                                                                                                                            |                                                                                   |                                                       |                                               |                                            |                       |                           |                          |              |      |     |      |    |     |     |           |       |                                       |           |      |           |               |                 |
| PROJECT CLOSEOUT AND MISC. CLEANUP                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 |                                                                      |                                                                                |                                                                                                                                            |                                                                                   |                                                       |                                               |                                            |                       |                           |                          |              |      |     |      |    |     |     |           |       |                                       |           |      |           |               |                 |
| IMPLICATIONS OF SAID MAINTENANCE<br>CLUB MANAGEMENT STAFF.                                                                                                                                                                                                                                                                                                                                                                                                                      | WILL                                                                                            | BE                                                                   | ADE                                                                            | RE                                                                                                                                         | SSED                                                                              | ) B,                                                  | Y TH                                          | HE F                                       | RAC                   | QUI                       | ΕT                       |              |      |     |      |    |     |     |           |       |                                       |           |      |           |               |                 |
| CONSTRUCTION SEQUENCE:                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |                                                                      |                                                                                |                                                                                                                                            |                                                                                   |                                                       |                                               |                                            |                       |                           |                          |              |      |     |      |    |     |     |           |       |                                       |           |      |           |               |                 |
| <ol> <li>OBTAIN SOIL EROSION AND SEDIMENT<br/>FROM THE CITY OF ANN ARBOR.</li> <li>TO INSPECT SITE ONCE A WEEK AN<br/>PRECIPITATION EVENT. MAINTAIN V</li> <li>SCHEDULE AND ATTEND A SOIL ER<br/>PRE-GRADING MEETING WITH THE C</li> <li>MARK TREES AND BRUSHFOR REMC</li> <li>CLOSE FACILITY TO THE PUBLIC ON</li> <li>CLEAR BRUSH AND TREES WHERE IN</li> <li>INSTALL TREE PROTECTION FENCE,<br/>FILTER SILT SACKS, AND OTHER SE<br/>EROSION CONTROL PLAN FOR FURT</li> </ol> | NTAT<br>CERT<br>ID IM<br>VRITT<br>OSIOI<br>CITY<br>VAL<br>I LAE<br>NDIC<br>SITE<br>SSC [<br>HEP | ION<br>IFIEE<br>EN<br>N AI<br>OF<br>ANE<br>3OR<br>ATE<br>SE(<br>DEVI | CON<br>MD<br>IATE<br>REP(<br>ND S<br>ANN<br>DAY<br>DAY<br>O, A<br>CURI<br>CES. | TRO<br>EQ<br>ILY<br>DRT<br>DRT<br>DRT<br>C<br>EDI<br>AR<br>OTE<br>()<br>EDI<br>()<br>2<br>BO<br>()<br>EDI<br>()<br>2<br>BO<br>()<br>5<br>C | DL, A<br>STC<br>FOL<br>S ON<br>BOR<br>BOR<br>CTIC<br>015.<br>VE S<br>FENC<br>EE [ | ND<br>RM<br>OW<br>S<br>TAT<br>ON.<br>TUN<br>E,<br>DEM | GR<br>WA<br>ING<br>ITE.<br>ION<br>VPS<br>SILT | ADII<br>TER<br>EA<br>CO<br>CO<br>ONI<br>FE | NG<br>OF<br>CH<br>NTF | PEF<br>PER<br>ROL<br>E, I | RMIT<br>ATC<br>NLE<br>AN | r<br>DR<br>T |      |     |      |    |     |     |           |       |                                       |           |      |           |               |                 |
| <ul> <li>PROTECTION.</li> <li>7. REMOVE PAVEMENT, STUMPS, AND</li> <li>8. STRIP TOPSOIL AND STOCKPILE ON</li> <li>9. CONSTRUCT STORMWATER MANAGEN<br/>INSTALL INLET FILTER SILT SACKS</li> </ul>                                                                                                                                                                                                                                                                                | SITE<br>– SITE<br>/ENT<br>IN AI                                                                 | STF<br>STF<br>SYS<br>L N                                             | AILS<br>RUCT<br>R R<br>STEN<br>EW                                              | URE<br>EUS<br>I IN                                                                                                                         | ES, N<br>SE.<br>PAI<br>ETS                                                        | VHE<br>RKII<br>AS                                     | RE<br>NG L<br>SOC                             | INDI<br>LOT                                | CA <sup>-</sup><br>AR | TED<br>REA.<br>THE        | ><br>EY ,                | ARE          | -    |     |      |    |     |     | SI        | TAPLE | ES                                    | Γ         | STRA | W BAL     | Ē             | BINI            |
| CONSTRUCTED.<br>10.EXTEND HYDRANT LEAD.<br>11.INSTALL COMMUNICATIONS CONDUCT                                                                                                                                                                                                                                                                                                                                                                                                    | IN F                                                                                            | PARI                                                                 | KING                                                                           |                                                                                                                                            | τ Δι                                                                              | ۶FΔ                                                   |                                               |                                            |                       |                           |                          |              |      |     |      |    |     | (   | 2 PER     | BAL   | E)                                    |           | - 10 | mil PL    | ASTIC         | LINING<br>ERIAL |
| 12. WHILE PARKING LOT UTILITY WORK<br>REMOVE UTILITIES WHERE INDICATED                                                                                                                                                                                                                                                                                                                                                                                                          | S IS I<br>S ON                                                                                  | N P<br>RE                                                            | ROG<br>MOV/                                                                    | RES                                                                                                                                        | SS, C<br>PLA                                                                      | NSC                                                   | ONN                                           | IECT                                       | Ā                     | ND                        |                          |              |      |     |      |    |     |     |           |       | ţ                                     | K         | e::  |           |               |                 |
| 13. WHILE PARKING LOT UTILITY WORK<br>WHERE INDICATED ON REMOVALS P                                                                                                                                                                                                                                                                                                                                                                                                             | IS IN<br>LAN                                                                                    | i pr<br>ANC                                                          | OGR<br>AR                                                                      | ESS<br>CHI                                                                                                                                 | S, DE<br>TECT                                                                     | MÖ<br>UR/                                             | LISH<br>AL F                                  | I ST<br>PLAP                               | RU<br>NS.             | СТИ                       | IRES                     | 5            |      |     |      |    |     |     | WO        |       | R                                     |           | S    |           | ON B-<br>SCAL | B               |

14. WHILE PARKING LOT UTILITY WORK IS IN PROGRESS, ROUGH GRADE SITE NEAR BUILDINGS.

15. RESTORE PAVEMENT IN PARKING LOT AREA, AS SOON AS POSSIBLE, IN THE FALL OF 2015. 16. RESTORE LANDSCAPE IN PARKING LOT AREA, WITHIN 5 DAYS OF THE FINAL

EARTH CHANGE, AS SOON AS POSSIBLE. IN THE FALL OF 2015. 17. INSTALL SANITARY SEWER AND STORM SEWER NEAR BUILDINGS. INSTALL INLET FILTER SILT SACKS ON ALL NEW INLETS AS SOON AS THEY ARE

CONSTRUCTED. 18. AFTER STORMWATER SYSTEM IS OPERATIONAL, OBTAIN BUILDING PERMITS AND INSTALL BUILDING FOOTINGS. 19. INSTALL REMAINDER OF SITE UTILITIES NEAR BUILDINGS, AND GRADE SITE.

20.CONSTRUCT BUILDING STRUCTURE AND SHELL.

21. CONSTRUCT BUILDING INTERIOR. 22.IN EARLY SPRING 2016, CONSTRUCT SITE PAVEMENTS, FENCES, AND

TRELLISES. 23.PLACE TOPSOIL AND LANDSCAPE SITE. ALL SOILS MUST BE LANDSCAPED (WITH ALL PERMANENT SESC CONTROLS) WITHIN FIVE DAYS OF THE FINAL ÈARTH CHANGE. 24.CLEAN UP SITE.

25.0PEN FACILITY TO THE PUBLIC ON MEMORIAL DAY, 2016.

26.MAINTAIN ALL SESC DEVICES UNTIL VEGETATION IS FULLY ESTABLISHED, THEN REMOVE TEMPORARY SESC DEVICES. 27.CLOSE OUT SITE PERMITS.

![](_page_15_Figure_10.jpeg)

CONCRETE WA NOT TO SCAL

![](_page_15_Picture_12.jpeg)

MAINTENANCE REQUIREMENTS

1. ALL SILT FENCE SHALL BE MAINTAINED THROUGHOUT THE DURATION OF THE PROJECT. IF AT ANY TIME THE DEPTH OF SILT AND SEDIMENT COMES TO WITHIN 12" OF THE TOP OF ANY SILT FENCE, ALL SILT AND SEDIMENT SHALL BE REMOVED TO ORIGINAL GRADE.

2. ALL TEMPORARY GRAVEL FILTERS SHOULD BE ADJUSTED AS TO LOCATION PER ACTUAL FIELD CONDITIONS. THE REMOVAL OF TRAPPED SEDIMENT AND THE CLEANOUT OR REPLACEMENT OF CLOGGED STONE MAY BE NECESSARY AFTER EACH STORM EVENT DURING THE PROJECT.

3. ONLY UPON STABILIZATION OF ALL DISTURBED AREAS MAY EROSION CONTROL DEVICES BE REMOVED. ALSO, ALL STORM SEWERS MUST BE CLEANED OF ALL SEDIMENT.

# SOIL EROSION AND SEDIMENTATION CONSTRUCTION NOTES:

1. ALL SOIL EROSION CONTROL MEASURES SHALL COMPLY WITH THE CURRENT CITY OF ANN ARBOR ORDINANCES. WASHTENAW COUNTY STANDARDS AND SPECIFICATIONS FOR SOIL EROSION AND SEDIMENT CONTROL, AND STATE OF MICHIGAN "SOIL EROSION AND SEDIMENTATION CONTROL ACT" (ACT #347).

2. CONTRACTOR SHALL HAVE A PRE-GRADING MEETING WITH THE CITY OF ANN ARBOR SOIL EROSION CONTROL STAFF PRIOR TO ANY GRADING ACTVITIES.

3. THE SITE REQUIRES AN SESC PERMIT FROM THE CITY OF ANN ARBOR. INSPECTIONS WILL BE PERFORMED BY A CERTIFIED MDEQ STORM WATER OPERATOR AT LEAST ONCE A WEEK AND IMMEDIATELY FOLLOWING EACH PRECIPITATION EVENT.

4. PRIOR TO COMMENCING EARTHMOVING OPERATIONS, THE GRADING CONTRACTOR SHALL INSTALL THE MUD TRACKING MAT, THE SILT FENCE AND TEMPORARY GRAVEL FILTER(S) SHOWN ON THE PLANS.

5. ANY LAWN AREA WHICH WILL HAVE A SLOPE STEEPER OR EQUAL TO 3:1 (3 FT. MEASURED HORIZONTALLY AND 1 FT. MEASURED VERTICALLY) SHALL BE SODDED AND PEGGED OR SEEDED AND MULCHED USING A SOIL EROSION CONTROL FABRIC OR BLANKET. HYDROSEEDING MAY BE USED IN LIEU OF SEED AND MULCH OR SOD WHERE SLOPES ARE FLATTER THAN 3:1.

6. THE ACTUAL LOCATION OF THE MUD TRACKING MATS AND THE GRAVEL FILTERS MAY BE ADJUSTED BY THE CONTRACTOR TO MATCH CONTRACTOR'S OPERATIONS AND FIELD CONDITIONS BUT ONLY IF APPROVED BY THE ENGINEER.

7. ALL DISTURBED AREAS, EVEN WHERE FUTURE PAVEMENT AND BUILDINGS ARE PROPOSED, ARE TO BE REVEGETATED PER COUNTY STANDARDS FOR TEMPORARY SEEDING.

8. BOTH INTERNAL AND EXTERNAL STREETS WILL BE CLEANED OF ANY MUD IMMEDIATELY FOLLOWING EACH MUD TRACKING OCCURRENCE.

9. PERMANENT SOIL EROSION CONTROLS ARE REQUIRED TO BE INSTALLED WITHIN 5 DAYS AFTER FINAL GRADING OR FINAL EARTH CHANGE.

10. DRAINAGE FROM ALL IMPERVIOUS AREAS IS TO BE DIRECTED TO THE ON-SITE STORM WATER MANAGEMENT SYSTEM.

11. THE OBTAINING OF BUILDING PERMITS, AND BUILDING FOOTING CONSTRUCTION MAY NOT BEGIN UNTIL THE SITE STORMWATER MANAGEMENT SYSTEM IS INSTALLED AND OPERATIONAL.

12. THE ESTIMATE COST TO ESTABLISH A GRASS SEED MIX IN DISTURBED AREAS, IF CONSTRUCTION WERE TO BE DISCONTINUED, IS \$8,000, FOR TOPSOIL SPREADING, SEEDING, AND WATERING.

13. THE PROJECT WILL INVOLVE APPROXIMATELY 600 CYD OF CUT, 800 OF FILL, AND 1,900 CYD OF UTILITY TRENCH CUT AND BACKFILL. THIS NUMBER WILL VARY BASED UPON CONTRACTOR TECHNIQUES, AND ALL BIDDERS ARE REQUIRED TO PERFORM THEIR OWN EARTHWORK CALCULATIONS BEFORE BIDDING.

#### DURING CONSTRUCTION: TASK Inspect for sediment accumulation Removal of sediment accumulation Inspect for floatables and debris Cleaning for floatables and debris Inspect for erosion Reestablish permanent vegetation on eroded Clean drives and parking lots Water disturbed areas to provide dust control Inspect structural elements during wet weath compare to as-built plans (by a professional engineer reporting to the owner) Make adjustments or replacements as deterr by wet weather inspection \* "as needed" means when sediment has acc Maintenance of soil erosion and sedimentatio PERMANENT MAINTENANCE: TASI Inspect for sediment accumulation Removal of sediment accumulation Inspect for floatables and debris Cleaning for floatables and debris Inspect for erosion Reestablish permanent vegetation on eroded Clean drives and parking lots Mowing Inspect structural elements during wet weath compare to as-built plans (by a professional engineer reporting to the owner) Make adjustments or replacements as deterr by wet weather inspection Keep records of all inspections and maintena Keep records of all costs for inspections, Property owner to review cost-effectiveness o preventative maintenance program and make necessary adjustments. Onwer to hire a professional engineer to carry emergency inspections upon identification of problems.

| 14. THE P                                                                        | ROJECT'S DISTURBED AREA IS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PPROXIMATELY 1.13 ACRES.                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| PLYWOOD<br>48"X24" BLACK LETTERS<br>PAINTED WHITE 7 6" HEIGHT                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
| 36" WOOD POST<br>3.5"X3.5"X8'                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
| 36°                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
| CONCRETE WASHOUT<br>SIGN DETAIL<br>(OR EQUIVALENT)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
| STAPLE                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
| LE DETAIL<br>ON PAVEMENT, DRY-LAID CONCR<br>BLOCKS MAY BE USED INSTEAD           | ETE<br>DF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | 40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444<br>40444 40444<br>40444<br>40444<br>40444<br>40444 40444<br>40444<br>40444 40444<br>40444<br>40444 40444<br>40444 40044<br>400444 40044<br>400444 40044<br>40044 40044<br>40044 40044 |                                                      |
| TRAW BALES STRAW BALES AND STAKES                                                | FLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
| <u>ashout</u><br>e                                                               | The second |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
|                                                                                  | PUMP DISCHARGE HOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 | I, LEAF/WOOD COMPOST,<br>CHIPS, SAND, OR STRAW BALES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>PLAN VIEW</u>                                     |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 | SLOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SULT STOP FENCE FAE                                  |
| <u>PLAN</u><br>                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2'-6" WIDE                                           |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ELEVATION                                                                                                                                       | FILTER BAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |
| <ul> <li>STANDARD 48" HIGH SNOW FENCE OR<br/>ORANGE PLASTIC FENCE</li> </ul>     | CONSTRUCTION SPECIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ONS                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
|                                                                                  | 1. TIGHTLY SEAL SLEEVE AROUND TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E PUMP DISCHARGE HOSE WITH A STR                                                                                                                | AP OR SIMILAR DEVICE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
|                                                                                  | 2. PLACE FILTER BAG ON SUITABLE<br>STRAW BALES) LOCATED ON A LE<br>STABILIZED AREA. EXTEND BASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BASE (E.G., MULCH, LEAF/WOOD COMPO<br>IVEL OR 5% MAXIMUM SLOPING SURFACE<br>A MINIMUM OF 12 INCHES FROM EDGES                                   | DST, WOODCHIPS, SAND, OR<br>E. DISCHARGE TO A<br>OF BAG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
| <u>ELEVATION</u><br>SNOW FENCE SHALL BE LOCATED<br>AT THE OUTER PERIMETER OF THE | <ol> <li>CONTROL PUMPING RATE TO PREV<br/>WITH THE MANUFACTURER RECOM<br/>RATE.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /ENT EXCESSIVE PRESSURE WITHIN THE<br>MENDATIONS. AS THE BAG FILLS WITH S                                                                       | FILTER BAG IN ACCORDANCE<br>SEDIMENT, REDUCE PUMPING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |
| SPREAD OF THE BRANCHES, OR<br>CLOSER ONLY AT THE DIRECTION<br>OF THE ENGINEER.   | <ol> <li>REMOVE AND PROPERLY DISPOSE<br/>AFTER BAG HAS REACHED CAPAC<br/>FROM THE BAG IN AN APPROVED<br/>OF THE WORK DAY. RESTORE THE<br/>REMOVAL OF THE DEVICE.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OF FILTER BAG UPON COMPLETION OF<br>ITY, WHICHEVER OCCURS FIRST. SPREAD<br>UPLAND AREA AND STABILIZE WITH SE<br>SURFACE AREA BENEATH THE BAG TO | PUMPING OPERATIONS OR<br>) THE DEWATERED SEDIMENT<br>ED AND MULCH BY THE END<br>) ORIGINAL CONDITION UPON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FRONT VIEV<br>UPHILL SIDE<br>FENCE TO E<br>COMPACTED |
|                                                                                  | <ol> <li>USE NONWOVEN GEOTEXTILE WITH<br/>SLEEVE TO ACCOMMODATE A MAX<br/>MANUFACTURED FROM A NONWOV<br/>VALUES (MARV) FOR THE FOLLOW</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DOUBLE STITCHED SEAMS USING HIGH<br>(IMUM 4 INCH DIAMETER PUMP DISCHAR)<br>EN GEOTEXTILE THAT MEETS OR EXCEED<br>(ING:                          | STRENGTH THREAD. SIZE<br>GE HOSE. THE BAG MUST BE<br>DS MINIMUM AVERAGE ROLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |
|                                                                                  | GRAB TENSILE<br>PUNCTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250 LB<br>150 LB                                                                                                                                | ASTM D-4632<br>ASTM D-4833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |
| TECTION FENCE                                                                    | FLOW RATE<br>PERMITTIVITY (SEC <sup>-1</sup> )<br>UV RESISTANCE<br>APPARENT OPENING SIZE (AOS)<br>SEAM STRENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 GAL/MIN/FT <sup>2</sup><br>1.2 SEC <sup>-1</sup><br>70% STRENGTH @ 500 HOURS<br>0.15-0.18 MM<br>90%                                          | ASTM D-4491<br>ASTM D-4491<br>ASTM D-4355<br>ASTM D-4751<br>ASTM D-4632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>CROSS-SEC</u>                                     |
| NOT TO SCALE                                                                     | <ol> <li>REPLACE FILTER BAG IF BAG CLO<br/>CONNECTION BETWEEN PUMP HOS<br/>DISPLACED.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GS OR HAS RIPS, TEARS, OR PUNCTURE<br>E AND FILTER BAG WATER TIGHT. REPL/                                                                       | ES. DURING OPERATION KEEP<br>ACE BEDDING IF IT BECOMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>SILT F</u>                                        |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DEWATERING FILTER B                                                                                                                             | AG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NOT TO SCALE                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |

| STORMWATER /SESC MAINTENANCE SCHEDULE<br>RACQUET CLUB OF ANN ARBOR                                                                                                            | E                        |                              |                       |                 |                           |                 |                                                                                                                |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     | B108                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|-----------------------|-----------------|---------------------------|-----------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DURING CONSTRUCTION:<br>FASK                                                                                                                                                  | Paved Area               | s Pervious Areas             | Riprap &              | Storm           | Catch Basins              | Inlet           | Flow Restriction                                                                                               | n Chambers a                                                                                                                                            | & SCHEDULE                                                                                                                                                                                                                                                                                                                                          | e gan 4                                                                                                                                                                                          |
| nspect for sediment accumulation                                                                                                                                              | X                        |                              | Silt Fence            | Pipes<br>X<br>X | and Manholes<br>X<br>X    | Grates          | Devices<br>X<br>X                                                                                              | QC Devices                                                                                                                                              | s       Weekly       As needed* & prior to turnover                                                                                                                                                                                                                                                                                                 | Drive<br>Michi<br>0599                                                                                                                                                                           |
| Icening for floatables and debris                                                                                                                                             | X                        |                              |                       | X<br>X<br>X     | X<br>X<br>X               | X<br>X          | X<br>X<br>X                                                                                                    | X<br>X<br>X                                                                                                                                             | Quarterly           Quarterly and at tumover                                                                                                                                                                                                                                                                                                        | <b>SC</b><br>Plaze<br>734.(<br>34.995                                                                                                                                                            |
| nspect for erosion<br>Reestablish permanent vegetation on eroded slopes<br>Clean drives and parking lots                                                                      | X                        | X<br>X                       | X                     |                 |                           |                 |                                                                                                                |                                                                                                                                                         | Weekly<br>As needed* & prior to turnover<br>Weekly or as determined by permitting agency                                                                                                                                                                                                                                                            | Ann A<br>Phone:<br>Fax 7.                                                                                                                                                                        |
| Nater disturbed areas to provide dust control<br>nspect structural elements during wet weather and                                                                            | X                        | X                            |                       |                 |                           |                 |                                                                                                                |                                                                                                                                                         | As needed* & prior to turnover                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                  |
| compare to as-built plans (by a professional<br>engineer reporting to the owner)<br>Make adjustments or replacements as determined                                            |                          |                              | x                     | x               |                           |                 | Х                                                                                                              | Х                                                                                                                                                       | Annually and at turnover                                                                                                                                                                                                                                                                                                                            | ntal a<br>nginee<br>ors                                                                                                                                                                          |
| by wet weather inspection<br>"as needed" means when sediment has accumulate                                                                                                   | ed to a minim            | um of one foot dept          | x<br>h.               | Х               |                           |                 | Х                                                                                                              | Х                                                                                                                                                       | As needed* & prior to turnover<br>Total Project Phase Cost                                                                                                                                                                                                                                                                                          | nmen<br>on Er<br>Archit                                                                                                                                                                          |
| Maintenance of soil erosion and sedimentation during                                                                                                                          | construction             | to be the repsonsi           | bility of the to      | o-be-sele       | ected contractor,         | and ultin       | nately to the deve                                                                                             | loper.                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                     | Enviro<br>ortatio<br>rs, Si                                                                                                                                                                      |
| PERMANENT MAINTENANCE:                                                                                                                                                        |                          |                              |                       |                 |                           |                 |                                                                                                                |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     | tivil, E<br>ransp<br>Ilanne<br>andsc                                                                                                                                                             |
| TASK                                                                                                                                                                          | Paved Area               | s Pervious Areas             | Riprap                | Storm<br>Pipes  | Catch Basins and Manholes | Inlet<br>Grates | Flow Restriction<br>Devices                                                                                    | n Chambers a<br>QC Devices                                                                                                                              | & SCHEDULE<br>s                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                  |
| nspect for sediment accumulation<br>Removal of sediment accumulation                                                                                                          | X<br>X                   |                              | X<br>X                | X<br>X<br>X     | X<br>X<br>X               | x               | X<br>X<br>X                                                                                                    | X<br>X<br>X                                                                                                                                             | Annually<br>Annually, and as needed*                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                  |
| Cleaning for floatables and debris                                                                                                                                            |                          | X                            | X                     | X               | X                         | X               | X                                                                                                              | X                                                                                                                                                       | Annually, and as needed*<br>Every six months                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                  |
| Reestablish permanent vegetation on eroded slopes<br>Clean drives and parking lots                                                                                            | Х                        | X                            |                       |                 |                           |                 |                                                                                                                |                                                                                                                                                         | As needed*<br>Annually                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                  |
| Nowing<br>nspect structural elements during wet weather and<br>compare to as-built plans (by a professional                                                                   |                          | X                            |                       |                 |                           |                 |                                                                                                                |                                                                                                                                                         | Weekly during growing season                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                  |
| Angineer reporting to the owner)<br>Nake adjustments or replacements as determined                                                                                            |                          |                              | X                     | X               |                           |                 | Х                                                                                                              | X                                                                                                                                                       | Annually                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                  |
| we weather inspection<br>Keep records of all inspections and maintenance                                                                                                      |                          |                              | X                     | X               |                           |                 | Х                                                                                                              | X                                                                                                                                                       | As needed* Annually                                                                                                                                                                                                                                                                                                                                 | SOR                                                                                                                                                                                              |
| Keep records of all costs for inspections,<br>Property owner to review cost-effectiveness of the<br>preventative maintenance program and make                                 |                          |                              |                       |                 |                           |                 |                                                                                                                |                                                                                                                                                         | Annually                                                                                                                                                                                                                                                                                                                                            | ARB                                                                                                                                                                                              |
| ecessary adjustments.<br>Drwer to hire a professional engineer to carry out                                                                                                   |                          |                              |                       |                 |                           |                 |                                                                                                                |                                                                                                                                                         | Annually                                                                                                                                                                                                                                                                                                                                            | ANN<br>E<br>8104                                                                                                                                                                                 |
| emergency inspections upon identification of severe problems.                                                                                                                 |                          |                              |                       |                 |                           |                 |                                                                                                                |                                                                                                                                                         | As needed*                                                                                                                                                                                                                                                                                                                                          | ~ 0F<br>LAN<br>AKER<br>79                                                                                                                                                                        |
| "as needed" mana when addiment has a second by                                                                                                                                | ed to a minim            | um of one fact days          |                       |                 |                           |                 |                                                                                                                |                                                                                                                                                         | Total Annual Cost                                                                                                                                                                                                                                                                                                                                   | CLUE<br>CLUE<br>XORY<br>NR, M<br>HOM/                                                                                                                                                            |
| Permanent maintenance of soil erosion and sedimen                                                                                                                             | tation control           | to be the resPonsit          | nility of the R       | acquet (        | Club of Ann Arbo          | r and en        | forced by the City                                                                                             | of Ann Arbor                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                     | ENT<br>UET<br>HIC<br>ARBC<br>T SC                                                                                                                                                                |
| PLAN VIEW                                                                                                                                                                     |                          |                              |                       | _               |                           |                 | GRATE –                                                                                                        | POL,                                                                                                                                                    | YPROPYLENE<br>BOOT"<br>HIGH FLOW<br>OVERFLOW<br>POLYPROPYLENE<br>FILTER BAG                                                                                                                                                                                                                                                                         | RACQUET CLUB OF<br>SITE PLAN<br>SESC NOTES AND DE                                                                                                                                                |
| N MIN.<br>OR<br>ANCE<br>DING<br>OR<br>MENT<br>PON<br>ZE<br>ST BE<br>OL<br>CROSS-SECTIO<br>SILT FEN<br>MES<br>2'-6" WIDE<br>TOR<br>TOR<br>TOR<br>TOR<br>TOR<br>TOR<br>TOR<br>T |                          | $\frac{2^{n}x}{1^{n}-6^{n}}$ | 2" STAKES<br>"INTO GR |                 | N <u>INS</u>              | TALLA           | TION DETA<br>TO STRAP –<br>TO STRAP –<br>TION DETA<br>DUMP STRAP –<br>TREBAR FOR<br>REMOVAL FROM<br>SILTSACK – | ART INLET S<br>ED ON ALL I<br>INLETS. INL<br>REAMGUARD"<br>(ATER SERVIC<br>TSACK" AS N<br>UCTION FABF<br>FILTER AS N<br>ALL<br>BAG<br>MINLET<br>ENGTH=L | SEDIMENT FILTER TO BE<br>PAVED CATCH BASINS OR<br>ET FILTER TO BE SIMILAR<br>AS MANUFACTURED BY<br>CES CORPORATION (206–767–0441)<br>MANUFACTURED BY ATLANTIC<br>RICS, INC.; (800–448–3636).<br>EEDED.<br>2 EACH<br>DUMP STRAPS<br>EXPANSION RESTRAINT<br>(1/4" NYLON ROPE.<br>2" FLAT WASHERS)<br>BAG DETAIL<br>MIDTH=W<br>(INLET FILTER)<br>SCALE | 14058     Date: 5/15/2015       Rev. Date     Date: 5/15/2015       Rev. Date     CadD: WaJ       Rev. Date     CadD: WaJ       PM: SWB     PM: SWB       PM: SWB     PM: SWB       14058DT1.dwg |
| KEEP<br>OMES <u>SILT FEN</u>                                                                                                                                                  | <u>NCE [</u><br>no scale | Detail                       |                       |                 |                           |                 | <u>SILT S</u>                                                                                                  | SACK<br>NO                                                                                                                                              | (INLET FILTER)<br>scale                                                                                                                                                                                                                                                                                                                             | OB No. <b>1405</b><br>EVISIONS:                                                                                                                                                                  |

![](_page_16_Figure_0.jpeg)

(3d\_Proj\14058\Site Plan\14058DT1.dwg, 13.1, 5/14/2015 4:30:19 PM, JAM, DWG to PDF.pc3

![](_page_17_Figure_0.jpeg)

![](_page_18_Figure_0.jpeg)

![](_page_18_Figure_3.jpeg)

-6"-10" NOTCHES CUT IN SHADED AREAS

![](_page_18_Figure_7.jpeg)

![](_page_18_Figure_8.jpeg)

R-TANKHD\_ TYPICAL MAINTENANCE PORT

![](_page_18_Figure_11.jpeg)

## FABRIC PIPE BOOT FOR R-TANKHD

![](_page_18_Figure_13.jpeg)

![](_page_18_Figure_14.jpeg)

![](_page_19_Figure_3.jpeg)

STRUCTURE R-36: CDS3030-6-C (OR ENGINEER APPROVED EQUAL) 2.8 MIN. CFS RATED CAPACITY - 10.0 CFS BYPASS CAPACITY

DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH

4. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS

5. STRUCTURE SHALL MEET AASHTO HS20 AND CASTINGS SHALL GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE

6. PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM

OF SCREEN CYLINDER. REMOVE AND REPLACE AS NECESSARY

PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS

D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS SUGGESTED THAT ALL JOINTS BELOW PIPE

## HYDRODYNAMIC SEPARATOR GENERAL NOTES (CONSTRUCT CDS OR ENGINEER-APPROVED EQUAL IN ACCORDANCE WITH ALL MANUFACTURER INSTRUCTIONS.)

| MIDWFSTERN CONSIII TING           | Civil, Environmental and 3815 Plaza Drive      | Transportation Engineers Ann Arbor, Michigan 48108<br>Planners, Surveyors Phone: 734.995.0200<br>Landscape Architects Fax 734.995.0599 |
|-----------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| CLIENT                            | RACQUET CLUB OF ANN ARBOR<br>3010 HICKORY LANE | ANN ARBOR, MI 48104<br>BRENT SCHOMAKER<br>(734) 216-0579                                                                               |
| RACOUFT CLUR OF ANN ARROR         |                                                | STORMWATER QUALITY DEVICE DETAILS                                                                                                      |
|                                   | 2                                              | 0                                                                                                                                      |
| DATE: 5/15/2015<br>SHEET 20 OF 22 | REV. DATE CADD: WAJ                            | ENG: JAM<br>PM: SWB<br>TECH:<br>14058DT1.dwg                                                                                           |
| l₀. <b>14058</b>                  | IONS:                                          |                                                                                                                                        |

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_4.jpeg)

![](_page_20_Picture_5.jpeg)

A2.4

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)