PROPOSAL FOR SOLAR AND ENERGY STORAGE INSTALLATIONS FOR CITY SITES CITY OF ANN ARBOR RFP # 23-15

Submitted To

City of Ann Arbor c/o Customer Service 301 East Huron Street Ann Arbor, MI 48107

Submitted By NOVA Consultants, Inc. 21580 Novi Road, Suite 300 Novi, MI 48375

(248) 347-3512 www.novaconsultants.com

April 14, 2023

Table of Contents

Α.	PRO	FESSIONAL QUALIFICATIONS
A	\.1	Company Information1
A	A.2	Sub-proposer1
A	٩.3	Personnel2
ļ	\. 4	Summary of Main Qualifications of Key Personnel3
A	٨.5	Company History and Unique Qualifications
В.	Past	involvement with Similar Projects7
C.	Wor	k Plan10
D.	Prel	iminary System Designs11
۵	D.1	Inverter locations
۵	0.2	Product Specification Sheets11
0).3	Product Warranty
۵).4	First Year Monthly Energy Production Estimates14
[).5	20-Year Energy Production14
[D.6	Battery Readiness15
[).7	City Hall / Justice Center
[D.8	Ann Arbor Fire Station 116
0).9	Ann Arbor Fire Station 316
0	0.10	Justice Center
۵	D.11	Bryant Community Center16
۵	0.12	Buhr Park17
0	0.13	Southeast Area Park17
[0.14	West Park
[0.15	Veterans Park18
[0.16	Allmendinger Park18
[0.17	Argo Canoe Livery
[0.18	Gallup Park Maas Shelter
۵	0.19	Gallup Park Fast Shelter
۵	0.20	Gallup Park Parking Area19

City of Ann Arbor Solar & Energy Storage at City Sites RFP Response

۵	D.21	Wheeler Service Center	20
[0.22	Water Recovery Plant	20
		Proposal	
		norized Negotiator	
G.	Atta	chments	20

<u>Attachments</u>

Attachment 1	Detailed proposal, 66 pages
Attachment 2	Helioscope model simulation reports
Attachment 3	Equipment datasheets
Attachment 4	Personnel resumes
Attachment 5	JRanck Electric company information and project experience
Attachment 6	Required bid forms
Attachment 7	Cost proposal (in separate envelope)

THIS PROPOSAL CONFORMS TO THE 10-PAGE (20-SIDE) LIMIT OF THE RFP. FOR A LONGER AND MORE DETAILED PROPOSAL INCLUDING IMAGES AND LAYOUTS, PLEASE REFER TO ATTACHMENT 1

Proposal for RFP # 23-15 Solar and Energy Storage Installations for City Sites

NOVA Consultants, Inc. (NOVA) is pleased to present this proposal to the City of Ann Arbor (City) in response to RFP # 23-15 for Solar and Energy Storage Installations for City Sites. NOVA has received and carefully reviewed the Request For Proposals (RFP) and subsequent Addendum 1 and Addendum 2.

A. PROFESSIONAL QUALIFICATIONS

A.1 Company Information

- Full name of organization: NOVA Consultants, Inc.
- Address: 21580 Novi Road

Suite 300 Novi, MI 48375

- NOVA Consultants, Inc. (NOVA) operates as a corporation, and is incorporated in the State of Michigan.
- NOVA is licensed to operate and practice in the State of Michigan.
- If awarded a contract, the address shown above would be used for all correspondence.
- Person authorized to receive and sign a resulting contract and / or subsequent assignment(s):

Sunil Agrawal, *PhD*, *PE*. President NOVA Consultants, Inc. 21580 Novi Road, Suite 300 Novi, MI 48375 <u>sunil.agrawal@novaconsultants.com</u> Office: 248-347-3512 x 114 Cell: 248-866-1476

• Certification and Addendum Acknowledgment forms are included at the end of this RFP as part of NOVA's proposal response.

A.2 Sub-proposer

NOVA will utilize JRanck Electric (JRE), a union electrical contractor based in Mt. Pleasant, for the installation of the solar PV, battery storage, and electric vehicle (EV) chargers. The NOVA and JRE team has successfully completed almost 30 projects for DTE since 2009.

Page 2 of 20

A.3 Personnel

NOVA has complete design and engineering services in-house including professional electrical, civil, structural, and geotechnical engineers registered in the State of Michigan as Professional Engineers (PE).

- NABCEP certified Solar PV Installer
- Electrical engineering, including PE stamping by Michigan registered engineer
- Structural engineering, including PE stamping by Michigan registered engineer
- Geotechnical engineering, including PE stamping by Michigan registered engineer
- Civil engineering, including PE stamping by Michigan registered engineer
- Construction oversight
- Project Management / Construction Management

JRE has complete electrical construction capabilities in-house in terms of construction equipment and personnel. The NOVA and JRE team has extensive resources available that can demonstrate to the City the **Team's ability to handle several projects simultaneously**. At this time, JRE has approximately 300 personnel. Being a Union affiliated firm, JRE can hire additional skilled tradesmen from the local Union Hall as necessary for the successful and timely completion of U-M projects. Additionally, the **Team has a demonstrated and proven track record of design and building almost 30 projects for DTE at multiple locations in Michigan under one contract.**

To better serve City needs, NOVA has clearly identified various teams within NOVA that can better address U-M project requirements as they occur from project concept to final closeout. NOVA and JRE have the following personnel either as full- or part-time employees, or accessible as sub-consultants or as skilled-tradesmen through the local Union Hall.

The following personnel are available to work this project. Summary qualifications are provided below. Resumes are attached as requested. Percentage availability for these personnel for the current project will vary from 10% to 100% depending upon the activities in progress at any given time. For example, our electrical engineer may be engaged 100% of the time during the design phase, but the field supervisor may only have 10% involvement at that stage of the project. The effort may be reversed during the construction phase between these two personnel. All personnel are direct employees of NOVA and located in the metro-Detroit area.

Program Director	Sunil Agrawal, PhD, PE
Project Coordinator	Sachit Verma, <i>MS</i>
Project Manager	Jeff Eckhout
	James Mann (JRE)
Electrical Engineers	Jerry Young, <i>PE</i>
	Clayton Cox, PE
	Clayton Cox, PE

Page 3 of 20

Civil Engineer Structural Engineer Registered Architect PV System design/layout PV System modelling AutoCAD Specialist AutoCAD operator Contract Supervisor Accounts Safety Officer NOVA Site Supervisors Electrical Supervisors Electricians Installers	Paul Baluja, <i>MS, PE</i> Mark Mahajan, <i>MS, PE</i> Mike McKelvey George Kachadoorian John Witte, NABCEP Cert. Installer Rick Marble Bruce Dickieson Joe Ruffing Sushma Agrawal Greg Wagner, <i>BA</i> John Gembarski Several Master Electricians, Journeymen, and Apprentices Several PV installers via the Union Hall
Field Foremen	Jason LeCreux (JRE)

1. Physical Location of Key Personnel: Novi, Michigan and Mt. Pleasant, MI

2. Functions each Key Personnel will perform:

- Program Manager/Contractor Representative: Sachit Verma will be responsible for overall program management and will serve as the single point of contact for the contract
- Project Manager: Jeff Eckhout will be responsible for the design and construction management of each project
- Clayton Cox and Mark Mahajan will provide electrical and structural design assistance respectively
- Site Superintendent: John Gembarski will provide oversight for the onsite inspections
- Rick Marble will lead the AutoCAD team
- 3. Current Chronological Résumés: Resumes are attached as requested.

A.4 Summary of Main Qualifications of Key Personnel

Program Director

Dr. Sunil Agrawal, PhD, P.E. Length

of Time with NOVA: 30 Years

Dr. Sunil Agrawal will be the Executive-in-charge of the entire team and will be the managerial contact person regarding all contractual matters. Dr. Agrawal has over twenty-five years of experience including his leadership of NOVA Consultants for over fifteen years. His specialties include value engineering, out of the box technical approach, alternative energy, energy savings, steam plants and environmental engineering projects.

BS, Civil Engineering, University of Jabalpur, India

MS, Environmental Engineering, Asian Institute of Technology, Bangkok, Thailand PhD, Civil/Environmental Engineering, University of Windsor, Canada

Page 4 of 20

Registered Professional Engineer - State of Michigan **Diplomate - American Academy of Environmental Engineers**

Program Manager Sachit Verma, MS Length of Time with NOVA: 28 Years Mr. Verma has been in the engineering field for over 20 years. He specializes in the energy/solar field. He is the program manager for the Detroit Edison 15 MW solar program. He is responsible for technology selection, and ensuring consistency of processes across various projects, and overall project management.

M.S., Chemical Engineering, Louisiana State University, Baton Rouge, LA B.S., Chemical Engineering, I.I.T.

Project Manager

Jeff Eckhout, BS

Length of Time with NOVA: 28 Years

Mr. Eckhout has over 15 years of experience as a project engineer/project manager for a variety of environmental, facilities, and energy projects. He has successfully managed several DTE Energy projects including ground-mount and roof-mount projects totaling about 3 MW. His duties include the oversight of engineering, communication between DTE Energy and the customer, equipment procurement, budgeting, health and safety management, and construction oversight.

BS, University of Michigan, Ann Arbor, Michigan **Certifications:** Engineer-In-Training (EIT) **40 Hour HAZWOPER**

8 Hour Annual Refresher for HAZWOPER

Senior Electrical Engineer

Length of Time with NOVA: 10 Years

Mr. Gerald A. Young, P.E. has more than 35 years of experience as an electrical engineer. He has designed electrical systems over 4 MW of solar photovoltaic projects. Mr. Young has extensive experience in the design of electrical power systems, both medium voltage and low voltage. He has also designed many lighting systems, including industrial and commercial lighting and roadway and other outdoor lighting. He has considerable experience in resolving construction issues in the field.

Education:

MBA, Wayne State University, Detroit, MI

BS, Electrical Engineering, University of Detroit, Detroit, MI **Registered Professional Engineer** – State of Michigan

Senior Civil Engineer

Length of Time with NOVA: 12 Years

Mr. Baluja has more than 35 years of civil engineering experience. He has engineered the grading plan for several solar projects to ensure adequate site drainage following

Jerry Young, P.E.

Paul Baluja, MS, P.E.

Page 5 of 20

precipitation events. Additional tasks include design of access roads and driveways to access the site and various pieces of equipment. Mr. Baluja also designs the fences around the array area and the inverter area to prevent unauthorized access to the electrical equipment. His experience includes civil engineering, foundation design, grading and drainage of solar fields, engineering design, resource optimization, process engineering, and project management.

BS, Civil Engineering, University of Nebraska

MS, Structural Engineering, University of Nebraska

Registered Professional Engineer - State of Michigan and State of Nebraska

Senior Structural Engineer

Length of Time with NOVA: 12 Years

Mr. Mark Mahajan has had over 20 years of civil and structural engineering experience. He will provide engineering services related to structural analysis for carports, racking structures, and building roof load calculations.

MS, Civil (Structural) Engineering, Wayne State University, Detroit, MI

MS, Geotechnical Engineering, Indian Institute of Technology, Bombay, India

BS, Civil Engineering, Victoria Jubilee Technical Institute, Bombay, India

AutoCAD and Computer software specialist Length of Time with NOVA: 7 Years

Mr. Marble is responsible for Construction Document and report preparation, PV Array modeling and shade analysis, and other activities as necessary for the successful implementation of the solar PV projects.

Education and Professional Certifications: Production Drafting degree

Document Control Supervisor/Reg. ArchitectMichael McKelvey, RALength of Time with NOVA: 10 Years

Mr. Michael McKelvey will act as the Document Control Supervisor/Registered Architect. Mr. McKelvey has had more than 35 years of experience in architectural design. His responsibilities include design of many PV solar arrays. Currently he is involved in the design of numerous solar car ports, code compliance, and as built drawings, etc. Mr. McKelvey will manage all documents related to bid specifications, drawings, and AIA (American Institute of Architects) specifications.

BS, Architecture, University of Michigan, Ann Arbor, Michigan **Registered Architect** – State of Michigan

Accounts Specialist

Length of Time with NOVA: 8 Years

Mr. Ruffing is responsible for tracking accounts payable and receivable, making payments to contractors, payroll processing etc.

Rick Marble

Mark Mahajan, MS, P.E.

Joe Ruffing, BS

Education: BS, Accounting

Safety Officer

Greg Wagner, BA

Length of Time with NOVA: 22 Years

Mr. Greg Wagner will coordinate and manage all the health and safety aspects of this project during the construction and commissioning phases of this project. He is certified and experienced in many areas of health and safety systems. He has worked in this capacity on several projects.

Education: BA, Earth Sciences, Adrian College, Adrian, Michigan

Certifications:

Contractor/Supervisor for Asbestos, Michigan

Certified Asbestos Building Inspector, Michigan (A20617) Certified Lead Inspector/Risk Assessor, Michigan (P-1615) NITON XRF Trained

OSHA 40-Hour HAZWOPER

OSHA Confined Space Entry - Entrant/Attendant/Supervisor

Troxler Nuclear Moisture/Density Gauge

Site Supervisor

John Gembarski, Licensed Electrician

Length of Time with NOVA: 11 Years

Mr. John Gembarski has had more than 20 years of electrical installations and project management experience. He has successfully completed and supervised several solar PV projects for NOVA under the DTE Energy program.

A.5 Company History and Unique Qualifications

NOVA Consultants, Inc. (NOVA) was founded in Novi, Michigan in 1992, and continues to operate from its office in Novi 32 years later. Over the years, NOVA has provided a variety of professional engineering services such as engineering, environmental, energy (including renewable energy – solar and wind) to various clients in the industrial sector as well as in the public sector. It has maintained profitability continually since inception and carries zero debt. Through its ownership, it has maintained a Minority Business Enterprise (MBE) status and is committed to Equal Employment Opportunity (EEO) objectives. It has distinguished itself by its high degree of professional integrity, flexibility in meeting client needs, and providing high quality cost-effective services.

For the last 14 years, NOVA has been extensively involved in solar PV projects, both as Owner's Advisor (often referred as Owner's Engineer) as well as a contractor for Engineering, Procurement, and Construction (EPC) based on client preference.

Page 7 of 20

Owner's Engineer Services

Owner's Engineer Services refers to the approach where an independent engineering firm assists the client (City of Ann Arbor in this case) with site evaluation and selection, and subsequently prepares the construction documents for the project. The construction work is then bid out to several bidders and one or more bidders are selected for the work based on various selection criteria.

NOVA has provided Owner's Engineer and EPC services for DTE Energy Solar Currents program for a portfolio of almost 30 projects totaling about 70MW of solar PV capacity from 2009 until the end of the program in 2017. NOVA has also **provided Owner's Engineer services to Consumers Energy** for their 6 MW Solar Gardens project.

NOVA is currently **providing Owner's Engineer services to Ann Arbor Public Schools** for solar PV projects for eight school projects and is on track to complete additional projects in future. Additionally, NOVA is currently **providing Owner's Engineer services for the State of Michigan to MDOT and the St. Louis Correctional Facility** for solar PV projects.

EPC Services

EPC Services refers to the approach where a complete turnkey contract is awarded to a firm for completing the project from start to finish. The awarded firm can subcontract various project tasks to subcontractors, but essentially the process follows a single award process to the EPC firm instead of the two-step process implemented for the Owner's Engineer approach with one contract with the design firm and a separate contract with the construction firm.

Both processes have their advantages and disadvantages and both are commonly utilized in the construction industry. NOVA has provided services to clients under both arrangements, depending upon client preference.

NOVA has provided EPC services to DTE Energy for several solar PV projects in Michigan, as well as to <u>City of Ann Arbor</u> (DDA), City of Wyandotte, City of Ferndale, City of Petoskey, and City of Huntington Woods.

B. PAST INVOLVEMENT WITH SIMILAR PROJECTS

Since 2009, NOVA has been actively engaged in the design and installation of solar PV systems across metro Detroit, including Ann Arbor, as well elsewhere in Michigan and other states. Currently, NOVA is serving as Owner's Engineer for Ann Arbor Public Schools (AAPS). Under this program, nine schools in the AAPS District have already installed or are in the process of installing solar PV systems at their facilities. Additionally, NOVA is currently the Owner's Engineer for the Michigan Dept. of Transportation (MDOT) for three solar PV

Page 8 of 20

systems, and for the St. Louis Correctional Campus in St. Louis, Michigan for possibly two solar PV systems to be installed at their facilities.

Prior to these projects for AAPS, MDOT and others, NOVA served as the Owner's Engineer as well as EPC contractor for several solar PV projects for DTE Energy and other clients. A partial list of such projects is included below.

The Solar PV Limited Project Summary in the table below includes projects that have been completed over the last few years, along with relevant information such as PV system size, racking etc. **This is only a sample subset of projects successfully completed by NOVA**.

Project Name	Type of Install.	kW DC
Consumers Energy GVSU	Ground mount with driven post	3,700 kW
Greenwood Energy Center	Ground mount with driven post	1,900 kW
Wolverine Power	Ground mount with driven post	1,200 kW
Ford World HQ	Solar PV Carport Canopy	1.038 MW
Domino's Farms	Ground Mount with Helical Piers	1,089 kW
McPhail Properties	Ground Mount with Helical Piers	816 kW
Thumb Solar	Ground Mount	665 kW
Sisters, Servants of the Immaculate Heart of Mary	Ground Mount with Helical Piers	518 kW
St. Clair Regional Education Service Agency	Ground Mount	517 kW
GM - Hamtramck Assembly Plant	Ballasted Ground Mount	516 kW
Riopelle Farms	Ground Mount with Helical Piers	514 kW
Monroe County Community College	Ground Mount with driven post	513 kW
Leipprandt Orchard	Ground Mount with (3 kW) Edu. Array	511 kW
Ford Wayne Assembly Plant	Ballasted Ground Mount	502 kW
Huron Clinton Metroparks-Indian Springs Park	Ground Mount with Helical Piers	495 kW
Wil-Le Farms	Ground Mount with Helical Piers	485 kW
Hartland Consolidated Schools	Ground Mount with (3 kW) Educational Array	444 kW

City of Ann Arbor Solar & Energy Storage at City Sites RFP Response

Page	9	of	20
------	---	----	----

Project Name	Type of Install.	kW DC
University of Michigan North Campus Research Complex	Ground Mount with Helical Piers	430 kW
Mercy High School	Ballasted Roof Mount	402 kW
DTE - Training and Dev. Center	Ground Mount Helical Piers	391 kW
GM Orion Assembly Plant	Ground Mount with Helical Piers in Concrete	345 kW
University of Michigan Information, Science and Technology	225kW Fixed Ground Mount with 17kW on 7 Dual-Axis Trackers	241 kW
Blue Cross Blue Shield	Ballasted Roof Mount	220 kW
Warren Consolidated Schools	Ballasted Roof Mount	189 kW
WMS Water Tank Solar Array	Ballasted Roof Mount	162 kW
MDOT Grand Rapids Canopy	Solar PV Carport Canopy	100 kW

With the extensive experience shown above, the NOVA team is the most experienced in the State of Michigan, especially with regard to city, municipality, and state projects, and will provide the best value to the City of Ann Arbor for this work.

Please see the list of references below for projects within the last five years:

- Ann Arbor Public Schools, Solar PV projects at 9 schools mentioned above Jason Bing Construction Projects Auditor, Capital Projects (734) 994-8118 <u>bingj@aaps.k12.mi.us</u>
- MDOT/Office of Passenger Transportation Pontiac & Southfield Terminals Sheryl Ananich Project Director DTMB Design & Construction (517) 243-7605 <u>ananichS@michigan.gov</u>
- DTMB/St. Louis Correctional Facility Solar Project Susan Wheaton Project Director DTMB | State Facilities Administration | Design and Construction Division (517) 242-9945

Page 10 of 20

wheatons1@michigan.gov

 DTE Energy 31 Solar Currents Projects mentioned above Timothy O'Connor, CHMM | Project Engineer Major Enterprise Projects (734) 309-6181 <u>tim.oconnor@dteenergy.com</u>

C. WORK PLAN

Management Summary

The solar PV projects will be managed by a very capable and experienced NOVA team with several years of hands-on project experience and a proven track record of successfully delivering solar PV projects on time and under budget. Though all personnel mentioned above in Section II-3 will be available, the primary personnel include Sachit Verma (Program Manager), Jeff Eckhout (Project Manager), Clayton Cox (Electrical PE), Mark Mahajan (Structural & Geotechnical PE), John Gembarski (Site Supervisor), Rick Marble (AutoCAD lead), John Witte (NABCEP certified professional), Joe Ruffing (Administrative tasks and accounts).

Site Visits

Site visits will be required to gather additional existing information about the sites such as as-built drawings, especially those showing the electrical infrastructure. NOVA will require information about existing underground utilities in the proposed installation area, as well as geotechnical information for the soils to evaluate foundation design for the solar PV system involving solar carports.

Rooftop projects will require a structural evaluation of the structure to ensure that the roof can successfully support the additional loads resulting from the installation of the solar PV system on the roof.

Construction Documents

Once the site information is available, NOVA will develop construction documents and submit to the City for review at various completion levels. The objective is to address any issues early on in the design phase since a particular early decision may affect several other later decisions in a cascading manner.

Duration for the design varies by size of project. **Time needed by City staff for review is determined by them and can be added accordingly.**

Small Site	Intermediate Site	Large Site
< 10 kW	< 50kW	< 350 kW

City of Ann Arbor Solar & Energy Storage at City Sites RFP Response

30% completion	3 days	1 week	2 weeks	
60% completion	3 days	2 weeks	4 weeks	
90% completion	3 days	1 weeks	1 week	
100% completion	3 days	1 weeks	1 week	
Total	2 weeks	5 weeks	8 weeks	

Page 11 of 20

During construction, NOVA will provide Construction Administration – Office Services and Construction Administration – Field Inspection services as necessary to ensure the successful and timely completion of all projects.

Construction Administration - Office services include responding to contractor submittals for Request for Information (RFI), reviewing contractor submittals, answering questions, providing clarifications, evaluating the use of substitute products, and other tasks as necessary.

Construction Administration - Field inspections include site visits at regular intervals to monitor construction progress, ensure construction quality, perform construction testing if required, and address contractor concerns as necessary.

D. PRELIMINARY SYSTEM DESIGNS

Preliminary system designs are provided below in compliance with the RFP requirements. Detailed model simulation reports created using Helioscope software are attached. The Helioscope reports also contain the PV system design parameters such as array location, tilt, azimuth, and first year energy production.

D.1 Inverter locations

Rooftop solar Flat roof - either on the roof or in or near the electrical room Pitched roof – on the ground near the electrical room Carport Inverters will be mounted on carport support columns

D.2 Product Specification Sheets

Product specification sheets are attached for PV modules, inverters, racking, and carports. The reasoning for selecting certain products is discussed below in accordance with RFP requirements.

Material Selection Rationale

NOVA has paid careful attention to material selection. It not necessarily based on lowest cost, but what is best suited for this particular portfolio, and for each specific installation. **PV module selection**

Page 12 of 20

NOVA only uses PV modules from global top Tier 1 manufacturers with a proven track record of supporting solar PV projects in USA. This approach ensures a high-quality product, with the backing and support of a reliable company in the event that warranty service is needed. NOVA remains open to using PV modules from any one of several global Tier 1 manufacturers to ensure product availability and maintain project schedule. Some examples include JA Solar, Jinko Solar, Trina Solar, VSun, Heliene, Longi and others. At this time NOVA has selected JA Solar, but actual product selection will be determined during the design engineering phase of the project, in addition to pricing and availability at the time of ordering.

Inverter selection

Due to the different voltages across the sites, different PV system sizes, and types of PV systems (rooftop, carport), NOVA is seeking to utilize different inverter models from the same brand so that monitoring can be provided under the same platform for all sites. Inverter brands such as Fronius, SolarEdge, and AP Systems meet this requirement, along with few other brands. At this time NOVA has selected Fronius, but actual product selection will be determined during the design engineering phase of the project, in addition to pricing and availability situation prevailing at the time of ordering.

Racking selection – Ballasted rooftop

NOVA has selected the Ecolibrium Ecofoot2+ rooftop ballasted racking for this project. It is made of synthetic materials so that there is no metal-to-roof contact that could potentially result in a roof puncture, thus causing roof leaks. This particular racking utilizes wind deflectors on the back side to reduce the effects of wind uplift on the solar panel. The reduced wind uplift results in a lower ballast requirement. This racking has only three main components, and can be shipped at low cost due to easy stacking on a pallet.

Racking selection – Pitched roof (Shingles)

Racking for pitched roof requires a system of rails and clamps to attach PV modules to the roof. NOVA will use metal racking components from proven companies such as Unirac, Ironridge, Everest, K2 or other reputable manufacturers. A key component is the attachment to the roof that requires roof penetration. NOVA always uses attachments that are flashed in beneath roof shingles to ensure a long-life water tight seal. Attachments that rely purely on sealant to prevent water leaks may be risky since the sealants get weathered and may crack over time.

Racking selection – Pitched roof (Standing seam metal roof)

For standing seam roofs, NOVA utilizes S-5! Clamps to attach the PV modules directly to the roof seams without any roof penetrations. This is the lowest cost approach as well as the most secure in terms of roof leaks since no penetrations are required.

Page 13 of 20

Carport Selection

NOVA is proposing the use of carports from Sinclair located in Albion, Michigan. It is one of the leading solar carport manufacturers and can offer low shipping cost to Ann Arbor. NOVA has successfully used their carport on several projects, and JRE is familiar with the installation procedure, having recently installed one for MDOT in Pontiac, Michigan.

EV Charger Selection

NOVA is proposing EV chargers from Mid-Cour, a Michigan company, to save material shipping costs and personnel travel costs, ensure prompt local service for commissioning, and easy warranty service if needed. The company is familiar with DTE rebate requirements for Level 2 EV chargers currently available to EV charger owners that own a publicly accessible EV charger. The charger complies with City requirements for a Level 2 charger on a 40 A circuit.

Battery Storage Selection

At this time, NOVA is proposing that battery storage be added at a later date to allow collection of necessary information that is required for the proper selection of the battery and associated components. For example, the following information is required:

- 1. Existing site one-line wiring diagram to see where the battery would connect, and which loads are to be backed up
- 2. Is there a climate-controlled space available at each location for the battery? The batteries available today are sensitive to operating temperature, and capacity may be significantly reduced at extreme ambient temperatures.
- 3. A control mechanism is necessary to make the utility service, generator (if present), battery, and solar PV system all work together seamlessly in a trouble-free manner. It is not a trivial matter to ensure that all three or four power sources work properly within their operating parameters in a safe and efficient manner. It would take a considerable effort, collaboration with manufacturers, and significant engineering to achieve this objective.

D.3 Product Warranty

The various PV system products carry the following **transferable** warranties:

PV modules 10-year warranty on minimum of 90% nameplate energy production and 25-year warranty on minimum of 80% nameplate energy production

Inverters 10 years Racking 25 years

Page 14 of 20

D.4 First Year Monthly Energy Production Estimates

NOVA utilized Helioscope software to prepare PV system layouts and energy production estimates based on the proposed materials. The first year monthly production is shown in the Helioscope model simulation reports.

D.5 20-Year Energy Production

Long term energy production over 20-years is provided below. An annual degradation of 0.5% is assumed for the PV modules.

				Bryant			
	City Hall /	Fire	Fire	Community	Buhr	Southeast	
Year	Justice Center	Station 1	Station 3	Center	Park	Area Park	West Park
1	146,792	104,455	32,930	24,691	137,902	76,264	59,828
2	146,058	103,933	32,765	24,568	137,212	75,882	59,529
3	145,328	103,413	32,601	24,445	136,526	75 <i>,</i> 503	59,231
4	144,601	102,896	32,438	24,323	135,843	75,126	58,935
5	143,878	102,382	32,276	24,201	135,164	74,750	58,640
6	143,159	101,870	32,115	24,080	134,488	74,376	58,347
7	142,443	101,360	31,954	23,960	133,816	74,004	58,056
8	141,731	100,854	31,794	23,840	133,147	73,634	57,765
9	141,022	100,349	31,635	23,721	132,481	73,266	57,476
10	140,317	99,848	31,477	23,602	131,819	72,900	57,189
11	139,615	99,348	31,320	23,484	131,160	72,535	56,903
12	138,917	98,852	31,163	23,367	130,504	72,173	56,619
13	138,223	98,357	31,007	23,250	129,851	71,812	56,336
14	137,531	97,866	30,852	23,134	129,202	71,453	56,054
15	136,844	97,376	30,698	23,018	128,556	71,095	55,774
16	136,160	96,889	30,545	22,903	127,913	70,740	55,495
17	135,479	96,405	30,392	22,788	127,274	70,386	55,217
18	134,801	95 <i>,</i> 923	30,240	22,674	126,637	70,034	54,941
19	134,127	95,443	30,089	22,561	126,004	69,684	54,666
20	133,457	94,966	29,938	22,448	125,374	69,336	54,393

Year	Veterans Park	Allmendinger Park	Argo Canoe Livery	Gallup Park - Maas Shelter	Gallup Park - Fast Shelter	Gallup Park - Parking	Wheeler Service Center	Water Recovery Plant
1	50,264	5,729	6,665	5,935	7,071	114,557	381,957	172,484
2	50,013	5,701	6,632	5,905	7,035	113,985	380,047	171,622
3	49,763	5,672	6,599	5,876	7,000	113,415	378,147	170,763
4	49,514	5,644	6,566	5,846	6,965	112,848	376,256	169,910
5	49,266	5,616	6,533	5,817	6,930	112,283	374,375	169,060

City of Ann Arbor Solar & Energy Storage at City Sites RFP Response

			A	Gallup	Gallup	Callura	Wheeler	Motor
	Veterans	Allmendinger	Argo Canoe	Park - Maas	Park - Fast	Gallup Park -	Wheeler Service	Water Recovery
Vee		-						-
Year	Park	Park	Livery	Shelter	Shelter	Parking	Center	Plant
6	49,020	5,588	6,500	5,788	6,896	111,722	372,503	168,215
7	48,775	5,560	6,468	5,759	6,861	111,163	370,640	167,374
8	48,531	5,532	6,435	5,730	6,827	110,608	368,787	166,537
9	48,288	5,504	6,403	5,702	6,793	110,054	366,943	165,704
10	48,047	5,477	6,371	5,673	6,759	109,504	365,109	164,876
11	47,807	5,449	6,339	5 <i>,</i> 645	6,725	108,957	363,283	164,051
12	47,568	5,422	6,308	5,617	6,691	108,412	361,467	163,231
13	47,330	5,395	6,276	5,588	6,658	107,870	359,659	162,415
14	47,093	5,368	6,245	5,560	6,625	107,331	357,861	161,603
15	46,858	5,341	6,214	5,533	6,591	106,794	356,072	160,795
16	46,624	5,314	6,183	5,505	6,558	106,260	354,291	159,991
17	46,390	5,288	6,152	5,478	6,526	105,729	352,520	159,191
18	46,158	5,261	6,121	5,450	6,493	105,200	350,757	158,395
19	45,928	5,235	6,090	5,423	6,461	104,674	349,004	157,603
20	45,698	5,209	6,060	5,396	6,428	104,151	347,259	156,815

Page 15 of 20

D.6 Battery Readiness

NOVA is proposing AC-coupled battery systems that can be installed at a future date. For most outdoor locations such park shelters and carports, there may not be a suitable temperature-controlled enclosed space to keep the battery. Commercial batteries available today are very sensitive to temperature and may not be able to operate in Michigan weather that may range from -20F to 120F over the year. Secondly load data is not available at this time to perform battery sizing calculations to determine the required battery power (kW) or energy (kWh). Keeping the batteries AC-coupled will allow the PV system installation to proceed with any inverter that is acceptable for the project without requiring battery compatibility. A control method will be required to ensure that the utility service, generator (if present), solar PV system, and battery can operate together properly with necessary safety procedures in place.

D.7 City Hall / Justice Center

City guidance for PV system City estimate for system size Prorated 365-day site usage Carport or Rooftop solar + storage 100 kW – 120 kW 3,027,270 kWh

NOVA proposal

PV system type DC size Ballasted rooftop + future storage 111.8 kW

Page 16 of 20

AC size Assumed site voltage First year solar PV generation DTE energy offset	90 kW 480V / 277V three phase 146,791.9 kWh 4.8%
D.8 Ann Arbor Fire Station 1	4.070
City guidance for PV systemRoofto	op + storage
City estimate for system size	120 kW – 150 kW
Prorated 365-day site usage	222,723 kWh
NOVA proposal PV system type DC size AC size	Ballasted rooftop + future storage 79.9 kW 60 kW
Assumed site voltage	208V / 120V three phase
First year solar PV generation	104,455.2 kWh
DTE energy offset	46.9%

D.9 Ann Arbor Fire Station 3

City guidance for PV system	Ground + storage
City estimate for system size	50 kW – 80 kW
Prorated 365-day site usage	43,007 kWh

NOVA proposal

PV system type	Ballasted rooftop + future storage
DC size	25.4 kW
AC size	20 kW
Assumed site voltage	208V / 120V three phase
First year solar PV generation	32,929.8 kWh
DTE energy offset	76.6%

D.10 Justice Center

As mentioned by the City in Addendum 1, the Justice Center and City Hall share the same electrical service and meter. Hence, this PV system is combined with City Hall as shown in Section D.7 above. The green roof is not being proposed for solar PV since the proposed PV system size is already consistent with City guidance.

D.11 Bryant Community Center

City guidance for PV systemRoofte	op + storage
City estimate for system size	40 kW – 50 kW
Prorated 365-day site usage	42,301 kWh

Page 17 of 20

NOVA proposal

Attached flush mount rooftop + future storage
22.7 kW
17.6 kW
240V / 120V single phase
24,691.2 kWh
58.4%

D.12 Buhr Park

City guidance for PV systemCarport solar + EV Charger + storageCity estimate for system size100 kW – 110 kWProrated 365-day site usage306,712 kWh

NOVA proposal

PV system type	Carport solar + EV Charger + future storage
DC size	108 kW
AC size	90 kW
Assumed site voltage	240V / 120V single phase
First year solar PV generation	137,901.5 kWh
DTE energy offset	45%

D.13 Southeast Area Park

City guidance for PV system	
City estimate for system size	
Prorated 365-day site usage	

Carport solar + EV Charger + storage 50 kW – 60 kW 4,734 kWh

NOVA proposal

PV system type DC size AC size Assumed site voltage First year solar PV generation DTE energy offset Carport solar + EV Charger + future storage 58.3 kW 48 kW 240V / 120V single phase 76,263.8 kWh 1,611%

D.14 West Park

City guidance for PV system City estimate for system size Prorated 365-day site usage Carport solar + EV Charger + storage 20 kW – 50 kW 782 kWh

NOVA proposal

PV system type

Carport solar + EV Charger + future storage

Page 18 of 20

DC size	48.6 kW
AC size	40 kW
Assumed site voltage	240V / 120V single phase
First year solar PV generation	59,828.1 kWh
DTE energy offset	7,649%
D.15 Veterans Park	
City guidance for PV system	Carport solar + EV Charger + storage
City estimate for system size	20 kW – 40 kW
Prorated 365-day site usage	69,753 kWh
NOVA proposal	
PV system type	Carport solar + EV Charger + future storage
DC size	38.9 kW
AC size	30 kW
Assumed site voltage	240V / 120V single phase
First year solar PV generation	50,264.2 kWh
DTE energy offset	72.1%
D.16 Allmendinger Park	
City guidance for PV system	Rooftop solar + storage
City estimate for system size	40 kW – 50 kW
Prorated 365-day site usage	2,119 kWh
NOVA proposal	
PV system type	Rooftop solar + future storage
DC size	4.32 kW
AC size	3.8 kW
Assumed site voltage	240V / 120V single phase
First year solar PV generation	5,729.4 kWh
DTE energy offset	270%
D.17 Argo Canoe Livery	
City quidance for PV system	Roofton solar + storage

City guidance for PV system City estimate for system size Prorated 365-day site usage Rooftop solar + storage 40 kW – 50 kW 4,710 kWh

NOVA proposal

PV system type DC size AC size Rooftop solar + future storage 5.94 kW 5 kW

Page 19 of 20

Assumed site voltage First year solar PV generation	240V / 120V single phase 6,665.3 kWh
DTE energy offset	142%
D.18 Gallup Park Maas Shelter	
City guidance for PV system	Rooftop solar
City estimate for system size	5 kW – 10 kW
Prorated 365-day site usage	No data available
NOVA proposal	
PV system type	Rooftop solar
DC size	6.48 kW
AC size	5 kW
Assumed site voltage	240V / 120V single phase
First year solar PV generation	5,791.9 kWh
DTE energy offset	No data available
D.19 Gallup Park Fast Shelter	
City guidance for PV system	Rooftop solar
City estimate for system size	5 kW – 10 kW
Prorated 365-day site usage	No data available
NOVA proposal	
PV system type	Rooftop solar
DC size	6.48 kW
AC size	6 kW
Assumed site voltage	240V / 120V single phase
First year solar PV generation	7,070.6 kWh
DTE energy offset	No data available
D.20 Gallup Park Parking Area	
City guidance for PV system	Carport solar + EV Chargers + Storage
City estimate for system size	70 kW – 80 kW
Prorated 365-day site usage	No data available

NOVA proposal

PV system type DC size AC size Assumed site voltage First year solar PV generation Carport solar + EV chargers + future storage 90.7 kW 75 kW 240V / 120V single phase 114,557.4 kWh

	Page 20 of 20
DTE energy offset	No data available
D.21 Wheeler Service Center City guidance for PV system City estimate for system size Prorated 365-day site usage	Carport solar + EV Chargers + Storage 50 kW – 300 kW 1,766,352 kWh
NOVA proposal PV system type DC size AC size Assumed site voltage First year solar PV generation DTE energy offset	Carport solar + EV chargers + future storage 311 kW 255 kW 480V / 277V single phase 381,956.9 kWh 21.6%
D.22 Water Recovery Plant City guidance for PV system City estimate for system size Prorated 365-day site usage	Rooftop solar+carport solar+EV Chargers+Storage 60 kW – 70 kW 12,489,551 kWh
NOVA proposal PV system type DC size AC size Assumed site voltage First year solar PV generation	Rooftop solar+carport solar+EV charger+future storage 101 kW 75 kW 480V / 277V single phase 127,483.7 kWh

Ε. FEE PROPOSAL

DTE energy offset

The fee proposal is provided in separate envelope as requested.

F. AUTHORIZED NEGOTIATOR

Person authorized to receive and sign a resulting contract and / or subsequent assignment(s):

Please refer to Section A of this document for this information.

1.0%

G. ATTACHMENTS

The requested forms are filled out completely and attached as requested.

Sunil Agrawal, President

Attachment 1 – Detailed Proposal, 66 pages

PROPOSAL FOR SOLAR AND ENERGY STORAGE INSTALLATIONS FOR CITY SITES CITY OF ANN ARBOR RFP # 23-15

Submitted To

City of Ann Arbor c/o Customer Service 301 East Huron Street Ann Arbor, MI 48107

Submitted By NOVA Consultants, Inc. 21580 Novi Road, Suite 300 Novi, MI 48375

(248) 347-3512 www.novaconsultants.com

April 14, 2023

Table of Contents

A. PRO	DFESSIONAL QUALIFICATIONS1
A.1	Company Information1
A.2	Sub-proposer2
A.3	Personnel2
A.4	Summary of Main Qualifications of Key Personnel6
A.5	Company History and Unique Qualifications9
B. Pas	t involvement with Similar Projects15
C. Wo	rk Plan26
D. Pre	liminary System Designs
D.1	Inverter locations
D.2	Product Specification Sheets
D.3	Product Warranty
D.4	First Year Energy Production Estimates
D.5	20-Year Energy Production40
D.6	Battery Readiness41
D.7	City Hall / Justice Center42
D.8	Ann Arbor Fire Station 144
D.9	Ann Arbor Fire Station 346
D.10	Justice Center
D.11	Bryant Community Center49
D.12	Buhr Park
D.13	Southeast Area Park52
D.14	West Park53

Table of Contents (Continued)

D.1	15 Veterans Park	54
D.1	16 Allmendinger Park	55
D.1	17 Argo Canoe Livery	57
D.1	8 Gallup Park Maas Shelter	58
D.1	19 Gallup Park Fast Shelter	59
D.2	20 Gallup Park Parking Area	60
D.2	21 Wheeler Service Center	62
D.2	22 Water Recovery Plant	64
E. F	ee Proposal	66
F. A	Authorized Negotiator	66
G. A	Attachments	66

Attachments

Attachment 2	Helioscope model	simulation reports

- Attachment 3 Equipment datasheets
- Attachment 4 Personnel resumes
- Attachment 5 JRanck Electric company information and project experience
- Attachment 6 Required bid forms
- Attachment 7 Cost proposal (in separate envelope)

Proposal for RFP # 23-15 Solar and Energy Storage Installations for City Sites

NOVA Consultants, Inc. (NOVA) is pleased to present this proposal to the City of Ann Arbor (City) in response to RFP # 23-15 for Solar and Energy Storage Installations for City Sites. NOVA has received and carefully reviewed the Request For Proposals (RFP) and subsequent Addendum 1 and Addendum 2.

A. PROFESSIONAL QUALIFICATIONS

A.1 Company Information

- Full name of organization: NOVA Consultants, Inc.
- Address:

21580 Novi Road Suite 300 Novi, MI 48375

- NOVA Consultants, Inc. (NOVA) operates as a corporation, and is incorporated in the State of Michigan.
- NOVA is licensed to operate and practice in the State of Michigan.
- If awarded a contract, the address shown above would be used for all correspondence.
- Person authorized to receive and sign a resulting contract and / or subsequent

assignment(s):

Sunil Agrawal, *PhD, PE.* President NOVA Consultants, Inc. 21580 Novi Road, Suite 300 Novi, MI 48375

sunil.agrawal@novaconsultants.com

Office: 248-347-3512 x 114 Cell: 248-866-1476 • Certification and Addendum Acknowledgment forms are included at the end of this RFP as part of NOVA's proposal response.

A.2 Sub-proposer

NOVA will utilize JRanck Electric (JRE), a union electrical contractor based in Mt. Pleasant, for the installation of the solar PV, battery storage, and electric vehicle (EV) chargers. The NOVA and JRE team has successfully completed almost 30 projects for DTE since 2009.

A.3 Personnel

NOVA has complete design and engineering services in-house including professional electrical, civil, structural, and geotechnical engineers registered in the State of Michigan as Professional Engineers (PE).

- NABCEP certified Solar PV Installer
- Electrical engineering, including PE stamping by Michigan registered engineer
- Structural engineering, including PE stamping by Michigan registered engineer
- Geotechnical engineering, including PE stamping by Michigan registered engineer
- Civil engineering, including PE stamping by Michigan registered engineer
- Construction oversight
- Project Management / Construction Management

JRE has complete electrical construction capabilities in-house in terms of construction equipment and personnel. The NOVA and JRE team has extensive

Page 3 of 66

resources available that can demonstrate to the City the **Team's ability to handle several projects simultaneously**. At this time, JRE has approximately 300 personnel. Being a Union affiliated firm, JRE can hire additional skilled tradesmen from the local Union Hall as necessary for the successful and timely completion of U-M projects. Additionally, the **Team has a demonstrated and proven track record of design and building almost 30 projects for DTE at multiple locations in Michigan under one contract.**

To better serve City needs, NOVA has clearly identified various teams within NOVA that can better address U-M project requirements as they occur from project concept to final closeout. NOVA and JRE have the following personnel either as fullor part-time employees, or accessible as sub-consultants or as skilled-tradesmen through the local Union Hall.

The following personnel are available to work this project. Summary qualifications are provided below. Resumes are attached as requested. Percentage availability for these personnel for the current project will vary from 10% to 100% depending upon the activities in progress at any given time. For example, our electrical engineer may be engaged 100% of the time during the design phase, but the field supervisor may only have 10% involvement at that stage of the project. The effort may be reversed during the construction phase between these two personnel. All personnel are direct employees of NOVA and located in the metro-Detroit area.

Management

Program Director

Sunil Agrawal, PhD, PE

City of Ann Arbor Solar & Energy Storage at City Sites RFP Response

Page 4 of 66

Project Coordinator	Sachit Verma, <i>MS</i>
Project Manager	Jeff Eckhout
	James Mann (JRE)

Professional Engineers

Electrical Engineers	Jerry Young, <i>PE</i>
	Clayton Cox, PE
Civil Engineer	Paul Baluja, <i>MS, PE</i>
Structural Engineer	Mark Mahajan, <i>MS, PE</i>

Registered Architects

Registered Architect	Mike McKelvey
Registered Architect	George Kachadoorian

Solar

PV System design/layout	John Witte, NABCEP Cert. Installer
PV System modelling	Rick Marble

AutoCAD

AutoCAD Specialist	Rick Marble
AutoCAD operator	Bruce Dickieson

Administration

Contract Supervisor	Joe Ruffing
Accounts	Sushma Agrawal

Page 5 of 66

Safety

Safety Officer

Greg Wagner, BA

Field Personnel

NOVA Site Supervisors	John Gembarski
Electrical Supervisors	Several
Electricians	Master Electricians, Journeymen, and
	Apprentices
Installers	Several PV installers via the Union Hall
Field Foremen	Jason LeCreux (JRE)

1. Physical Location of Key Personnel: Novi, Michigan and Mt. Pleasant, MI

2. Functions each Key Personnel will perform:

- Program Manager/Contractor Representative: Sachit Verma will be responsible for overall program management and will serve as the single point of contact for the contract
- Project Manager: Jeff Eckhout will be responsible for the design and construction management of each project
- Clayton Cox and Mark Mahajan will provide electrical and structural design assistance respectively
- Site Superintendent: John Gembarski will provide oversight for the onsite inspections
- Rick Marble will lead the AutoCAD team
- 3. Current Chronological Résumés: Resumes are attached as requested.

Page 6 of 66

A.4 Summary of Main Qualifications of Key Personnel

Program Director

Dr. Sunil Agrawal, PhD, P.E.

Length of Time with NOVA: 30 Years

Dr. Sunil Agrawal will be the Executive-in-charge of the entire team and will be the managerial contact person regarding all contractual matters. Dr. Agrawal has over twenty-five years of experience including his leadership of NOVA Consultants for over fifteen years. His specialties include value engineering, out of the box technical approach, alternative energy, energy savings, steam plants and environmental engineering projects.

BS, Civil Engineering, University of Jabalpur, India

MS, Environmental Engineering, Asian Institute of Technology, Bangkok, Thailand PhD, Civil/Environmental Engineering, University of Windsor, Canada

Registered Professional Engineer - State of Michigan

Diplomate - American Academy of Environmental Engineers

Program Manager Sachit Verma, MS Length of Time with NOVA: 28 Years

Mr. Verma has been in the engineering field for over 20 years. He specializes in the energy/solar field. He is the program manager for the Detroit Edison 15 MW solar program. He is responsible for technology selection, and ensuring consistency of processes across various projects, and overall project management.

M.S., Chemical Engineering, Louisiana State University, Baton Rouge, LA

B.S., Chemical Engineering, I.I.T.

Project Manager

Jeff Eckhout, BS

Length of Time with NOVA: 28 Years

Mr. Eckhout has over 15 years of experience as a project engineer/project manager for a variety of environmental, facilities, and energy projects. He has successfully managed several DTE Energy projects including ground-mount and roof-mount projects totaling about 3 MW. His duties include the oversight of engineering, communication between DTE Energy and the customer, equipment procurement, budgeting, health and safety management, and construction oversight.

BS, University of Michigan, Ann Arbor, Michigan

Certifications: Engineer-In-Training (EIT)

40 Hour HAZWOPER

8 Hour Annual Refresher for HAZWOPER

Page 7 of 66

Senior Electrical Engineer Length of Time with NOVA: 10 Years

Jerry Young, P.E.

Mr. Gerald A. Young, P.E. has more than 35 years of experience as an electrical engineer. He has designed electrical systems over 4 MW of solar photovoltaic projects. Mr. Young has extensive experience in the design of electrical power systems, both medium voltage and low voltage. He has also designed many lighting systems, including industrial and commercial lighting and roadway and other outdoor lighting. He has considerable experience in resolving construction issues in the field.

Education:

MBA, Wayne State University, Detroit, MI
BS, Electrical Engineering, University of Detroit, Detroit, MI
Registered Professional Engineer – State of Michigan

Senior Civil Engineer

Length of Time with NOVA: 12 Years

Mr. Baluja has more than 35 years of civil engineering experience. He has engineered the grading plan for several solar projects to ensure adequate site drainage following precipitation events. Additional tasks include design of access roads and driveways to access the site and various pieces of equipment. Mr. Baluja also designs the fences around the array area and the inverter area to prevent unauthorized access to the electrical equipment. His experience includes civil engineering, foundation design, grading and drainage of solar fields, engineering design, resource optimization, process engineering, and project management.

BS, Civil Engineering, University of Nebraska

MS, Structural Engineering, University of Nebraska

Registered Professional Engineer - State of Michigan and State of Nebraska

Senior Structural Engineer

Mark Mahajan, MS, P.E.

Length of Time with NOVA: 12 Years

Mr. Mark Mahajan has had over 20 years of civil and structural engineering experience. He will provide engineering services related to structural analysis for carports, racking structures, and building roof load calculations.

MS, Civil (Structural) Engineering, Wayne State University, Detroit, MI MS, Geotechnical Engineering, Indian Institute of Technology, Bombay, India BS, Civil Engineering, Victoria Jubilee Technical Institute, Bombay, India

Paul Baluja, *MS, P.E*.

Page 8 of 66

AutoCAD and Computer software specialist Marble

Length of Time with NOVA: 7 Years

Mr. Marble is responsible for Construction Document and report preparation, PV Array modeling and shade analysis, and other activities as necessary for the successful implementation of the solar PV projects.

Education and Professional Certifications: Production Drafting degree

Document Control Supervisor/Reg. ArchitectMichael McKelvey,RA

Length of Time with NOVA: 10 Years

Mr. Michael McKelvey will act as the Document Control Supervisor/Registered Architect. Mr. McKelvey has had more than 35 years of experience in architectural design. His responsibilities include design of many PV solar arrays. Currently he is involved in the design of numerous solar car ports, code compliance, and as built drawings, etc. Mr. McKelvey will manage all documents related to bid specifications, drawings, and AIA (American Institute of Architects) specifications. **BS, Architecture,** University of Michigan, Ann Arbor, Michigan **Registered Architect** – State of Michigan

Accounts Specialist

Length of Time with NOVA: 8 Years

Mr. Ruffing is responsible for tracking accounts payable and receivable, making payments to contractors, payroll processing etc.

Education: BS, Accounting

Safety Officer

Length of Time with NOVA: 22 Years

Mr. Greg Wagner will coordinate and manage all the health and safety aspects of this project during the construction and commissioning phases of this project. He is certified and experienced in many areas of health and safety systems. He has worked in this capacity on several projects.

Education: BA, Earth Sciences, Adrian College, Adrian, Michigan

Certifications:

Contractor/Supervisor for Asbestos, Michigan

Certified Asbestos Building Inspector, Michigan (A20617) Certified Lead Inspector/Risk Assessor, Michigan (P-1615) NITON XRF Trained

Greg Wagner, BA

Joe Ruffing, BS

Rick

Page 9 of 66

OSHA 40-Hour HAZWOPER OSHA Confined Space Entry - Entrant/Attendant/Supervisor Troxler Nuclear Moisture/Density Gauge

Site Supervisor Length of Time with NOVA: 11 Years

John Gembarski, Licensed Electrician

Mr. John Gembarski has had more than 20 years of electrical installations and project management experience. He has successfully completed and supervised several solar PV projects for NOVA under the DTE Energy program.

A.5 Company History and Unique Qualifications

NOVA Consultants, Inc. (NOVA) was founded in Novi, Michigan in 1992, and continues to operate from its office in Novi 32 years later. Over the years, NOVA has provided a variety of professional engineering services such as engineering, environmental, energy (including renewable energy – solar and wind) to various clients in the industrial sector as well as in the public sector. It has maintained profitability continually since inception and carries zero debt. Through its ownership, it has maintained a Minority Business Enterprise (MBE) status and is committed to Equal Employment Opportunity (EEO) objectives. It has distinguished itself by its high degree of professional integrity, flexibility in meeting client needs, and providing high quality cost-effective services.

For the last 14 years, NOVA has been extensively involved in solar PV projects, both as Owner's Advisor (often referred as Owner's Engineer) as well as a contractor for Engineering, Procurement, and Construction (EPC) based on client preference.

Page 10 of 66

Owner's Engineer Services

Owner's Engineer Services refers to the approach where an independent engineering firm assists the client (City of Ann Arbor in this case) with site evaluation and selection, and subsequently prepares the construction documents for the project. The construction work is then bid out to several bidders and one or more bidders are selected for the work based on various selection criteria.

NOVA has provided Owner's Engineer and EPC services for DTE Energy Solar Currents program for a portfolio of almost 30 projects totaling about 70MW of solar PV capacity from 2009 until the end of the program in 2017. NOVA has also provided Owner's Engineer services to Consumers Energy for their 6 MW Solar Gardens project.

NOVA is currently **providing Owner's Engineer services to Ann Arbor Public Schools** for solar PV projects for eight school projects and is on track to complete additional projects in future. Additionally, NOVA is currently **providing Owner's Engineer services for the State of Michigan to MDOT and the St. Louis Correctional Facility** for solar PV projects.

EPC Services

EPC Services refers to the approach where a complete turnkey contract is awarded to a firm for completing the project from start to finish. The awarded firm can subcontract various project tasks to subcontractors, but essentially the process follows a single award process to the EPC firm instead of the two-step process

Page 11 of 66

implemented for the Owner's Engineer approach with one contract with the design firm and a separate contract with the construction firm.

Both processes have their advantages and disadvantages and both are commonly utilized in the construction industry. NOVA has provided services to clients under both arrangements, depending upon client preference.

NOVA has provided EPC services to DTE Energy for several solar PV projects in Michigan, as well as to <u>City of Ann Arbor</u> (DDA), City of Wyandotte, City of Ferndale, City of Petoskey, and City of Huntington Woods.

Unique Qualifications and Differentiators

Over the years, NOVA has developed certain unique capabilities that set it apart from the competition. These differentiators will be very helpful for the City projects.

1. Local company

Being local in metro-Detroit, it would be very easy and inexpensive for NOVA personnel to attend meetings in-person, and provide construction oversight and inspections at low cost. Flights, airfare, hotels, rental cars, and per-diem charges would not be required.

2. Experience with municipal solar PV projects

NOVA has extensive experience with municipal solar PV projects. Examples include:

a. Three rooftop solar projects for **Wyandotte Municipal Services**

Page 12 of 66

- b. One solar carport canopy for **City of Ann Arbor**, DDA
- c. One solar carport canopy project for **City of Ferndale**
- d. One rooftop solar project for City of Petoskey
- e. One rooftop solar project for **City of Huntington Woods**

3. Extensive Solar PV Experience

NOVA has provided services for solar PV projects to several clients already including DTE Energy (almost 30 projects over 70 MW total), AAPS, MDOT and others. As a result, NOVA is well versed and familiar with typical tasks, scope of work, site evaluation, preparation of construction documents, communication protocols, construction oversight, report preparation and such matters. Obviously, each project has certain unique requirements that will be need to be addressed, but overall, we do not need to start from scratch and go through a steep learning curve to understand the project.

4. Solar PV Project at Wastewater Treatment Plant

NOVA is currently working on a solar PV project at a wastewater treatment plant in Pennsylvania. The lessons and learnings from that project can be implemented at the City project at the Wastewater Treatment Plant.

5. Projects in Ann Arbor

Over the years, NOVA has successfully completed several projects in Ann Arbor, and as well as neighboring areas, including one in downtown Ann Arbor, one at Domino Farms, two at the University of Michigan, and two in Scio Township.

Page 13 of 66

6. Rapid Response

Being a small company with wide capabilities allows NOVA to respond quickly to rapidly changing project requirements. This flexibility and rapid response ensure that the project stays on schedule with no delays and associated cost overruns.

7. Low overheads and hourly rates

Being a small local company allows NOVA to operate with low overhead costs. The resulting savings are passed on to our clients and reflected in low hourly rates for our personnel.

8. Stable and consistent staffing

As can be seen from the staffing profiles, a majority of the NOVA personnel available to work on the City project have been with NOVA for several years, and have worked extensively on prior solar PV projects where NOVA has provided identical services to what is required for this RFP.

9. Working with JRE since 2009

NOVA and JRE have a proven track record of working together since 2009. JRE has built almost 30 solar PV projects designed and engineered by NOVA, and our personnel have an excellent working relationship, communication, and cooperation.

Page 14 of 66

10.Equipment

It is imperative that the firm that is awarded this contract should have sufficient equipment, including heavy equipment, to service the various job locations. NOVA's installation Partners own hundreds of items of equipment including semi-trucks, excavators, backhoes, bucket trucks, trailers, pickup trucks, street sweepers, trailers, scissor lifts, booms, trailers, generators, air compressors, electrical test equipment, bob cats, bulldozers, compactor, boring machines, mini excavator, forklifts, several trucks, hammer drills, jack hammer, lifts, plasma cutter, trailers, trenchers, welders, generators etc. Having hundreds of pieces of equipment available allows NOVA and its installation Partners to perform electrical work at multiple projects simultaneously.

11. Financial Strength

Both NOVA and JRE are financially sound firms that can easily carry the expenses associated with equipment costs, payroll, overhead costs, insurance, and inventory until payment is received from U-M.

NOVA Advantage

- 1. NOVA is a minority owned enterprise
- 2. Installation partners is Union affiliated electrical contractors
- 3. NOVA and JRE are located in Michigan near Ann Arbor
- 4. Ability to handle several projects simultaneously
- 5. Both NOVA and installation Partners are **financially sound firms**

Page 15 of 66

B. PAST INVOLVEMENT WITH SIMILAR PROJECTS

Since 2009, NOVA has been actively engaged in the design and installation of solar PV systems across metro Detroit, including Ann Arbor, as well elsewhere in Michigan and other states. Currently, NOVA is serving as Owner's Engineer for Ann Arbor Public Schools (AAPS). Under this program, nine schools in the AAPS District have already installed or are in the process of installing solar PV systems at their facilities. Additionally, NOVA is currently the Owner's Engineer for the Michigan Dept. of Transportation (MDOT) for three solar PV systems, and for the St. Louis Correctional Campus in St. Louis, Michigan for possibly two solar PV systems to be installed at their facilities.

Prior to these projects for AAPS, MDOT and others, NOVA served as the Owner's Engineer as well as EPC contractor for several solar PV projects for DTE Energy and other clients. A partial list of such projects is included below.

<u>All these projects were completed by the same team of NOVA personnel.</u> <u>Hence, personnel are not indicated separately for each project mentioned</u> <u>below.</u>

- Sachit Verma, *MS* Program Manager
- Jeff Eckhout Project Manager
- John Gembarski
 Construction Supervisor
- Jerry Young, *PE* Electrical Engineer
- Clayton Cox , PE
 Electrical Engineer
- Paul Baluja, *PE* Civil Engineer
- Mark Mahajan, *PE* Structural Engineer

Page 16 of 66

- Sunil Agrawal, PE Civil / Wastewater Engineer
- Greg Wagner Safety Officer
- Joe Ruffing Scheduler, Document Control

Owner's Advisor Projects for Ann Arbor Public Schools (AAPS)

- 1. Huron High School
- 2. Forsythe Middle School
- 3. A2STEAM Elementary
- 4. Haisley Elementary
- 5. Bryant Elementary
- 6. Pioneer High School
- 7. Westerman Early Education Center
- 8. Tappan Middle School
- 9. Scarlett Middle School

EPC Turnkey **Project in Ann Arbor** for Downtown Development Authority (DDA)

1. Solar photovoltaic carport canopy, parking lot at 4th & Catherine, Ann Arbor

EPC Turnkey Contractor Solar PV Project at Wastewater Treatment Plant

1. Solar photovoltaic canopy over treatment tanks, Lower Bucks County, PA (currently in progress)

EPC Turnkey Contractor for General Contractors

- 1. Washtenaw High Point School for Clark Construction
- 2. Ypsilanti Public Library for O'Neal Construction

Page 17 of 66

Owner's Advisor / EPC Turnkey Contractor for DTE Energy Projects

- 1. Blue Cross Blue Shield
- 2. Domino's Farms
- 3. DTE HQ Solar Carport
- 4. Ford Wayne Assembly Plant
- 5. Ford World HQ Solar Carport
- 6. GM Hamtramck
- 7. GM Orion
- 8. DTE Greenwood
- 9. GM Warren
- 10. Hartland Schools
- 11. Huron County Metropark
- **12.IHM Sisters**
- 13. Leipprandt Orchards
- 14. McPhail Properties
- 15. Mercy High School
- 16. Monroe County Community College
- 17. Riopelle Farms
- 18.St. Claire RESA
- 19. Scio Twp.
- 20. DTE Training & Development Center
- 21.Thumb Solar
- 22. University of Michigan IST
- 23. University of Michigan NCRC
- 24. Warren Consolidated Schools

- 25. Wil-Le Farms
- 26.Ypsilanti Highlands
- 27.DTE Brownstown
- 28.DTE Demille
- 29. DTE Turrill
- 30. DTE O'Shea Park
- 31.DTE Romulus

Owners Engineer for State of Michigan

- 1. MDOT/Office of Passenger Transportation Pontiac & Southfield Terminals
- 2. DTMB/St. Louis Correctional Facility Solar Project

Owner's Engineer for Consumers Energy Project

- 1. Grand Valley State University Solar Gardens project, Allendale, MI
- 2. Circuit West project, Grand Rapids, MI

EPC Turnkey Contractor for General Contractors

- 3. Washtenaw High Point School for Clark Construction
- 4. Ypsilanti Public Library for O'Neal Construction

Photographs from few prior projects

Photographs from few prior projects are included below to demonstrate the variety of projects that NOVA has worked on. There is a diversity of installation locations (roof vs. ground), as well as installation types (embedded posts, ballasted ground, curved roof, attached roof, ballasted roof, carport canopy).

Page 19 of 66

• 20 kW rooftop PV system for **City of Huntington Woods**

• 12 kW carport canopy at for **City of Ann Arbor**, Michigan.

Page 20 of 66

• 1 MW carport canopy at Ford World Headquarters, Dearborn, Michigan

• 80 kW rooftop PV system for US Fish & Wildlife Service, Trenton, MI

Page 21 of 66

• 27 kW carport canopy at for **City of Ferndale**, Michigan

• 400 kW ballasted rooftop at Mercy High School, Farmington Hills, Michigan

Page 22 of 66

- 500 kW ground mount at IHM Sisters, Monroe, Michigan

• 15 kW on rooftop of Lansing Board of Water and Light

Page 23 of 66

• 210 kW rooftop PV systems for **City of Wyandotte**, Michigan

Page 24 of 66

The Solar PV Limited Project Summary in the table below includes projects that have been completed over the last few years, along with relevant information such as PV system size, racking etc. **This is only a sample subset of projects successfully completed by NOVA**.

Project Name	Type of Install.	kW DC
Consumers Energy GVSU	Ground mount with driven post	3,700 kW
Greenwood Energy Center	Ground mount with driven post	1,900 kW
Wolverine Power	Ground mount with driven post	1,200 kW
Ford World HQ	Solar PV Carport Canopy	1.038 MW
Domino's Farms	Ground Mount with Helical Piers	1,089 kW
McPhail Properties	Ground Mount with Helical Piers	816 kW
Thumb Solar	Ground Mount	665 kW
Sisters, Servants of the Immaculate Heart of Mary	Ground Mount with Helical Piers	518 kW
St. Clair Regional Education Service Agency	Ground Mount	517 kW
GM - Hamtramck Assembly Plant	Ballasted Ground Mount	516 kW
Riopelle Farms	Ground Mount with Helical Piers	514 kW
Monroe County Community College	Ground Mount with driven post	513 kW
Leipprandt Orchard	Ground Mount with (3 kW) Edu. Array	511 kW
Ford Wayne Assembly Plant	Ballasted Ground Mount	502 kW
Huron Clinton Metroparks-Indian Springs Park	Ground Mount with Helical Piers	495 kW
Wil-Le Farms	Ground Mount with Helical Piers	485 kW
Hartland Consolidated Schools	Ground Mount with (3 kW) Educational Array	444 kW

City of Ann Arbor Solar & Energy Storage at City Sites RFP Response

Page 25 of 66

Project Name	Type of Install.	kW DC
University of Michigan North Campus Research Complex	Ground Mount with Helical Piers	430 kW
Mercy High School	Ballasted Roof Mount	402 kW
DTE - Training and Dev. Center	Ground Mount Helical Piers	391 kW
GM Orion Assembly Plant	Ground Mount with Helical Piers in Concrete	345 kW
University of Michigan Information, Science and Technology	225kW Fixed Ground Mount with 17kW on 7 Dual-Axis Trackers	241 kW
Blue Cross Blue Shield	Ballasted Roof Mount	220 kW
Warren Consolidated Schools	Ballasted Roof Mount	189 kW
WMS Water Tank Solar Array	Ballasted Roof Mount	162 kW
MDOT Grand Rapids Canopy	Solar PV Carport Canopy	100 kW

With the extensive experience shown above, the NOVA team is the most experienced in the State of Michigan, especially with regard to city, municipality, and state projects, and will provide the best value to the City of Ann Arbor for this work.

Please see the list of references below for projects within the last five years:

- Ann Arbor Public Schools, Solar PV projects at 9 schools mentioned above Jason Bing Construction Projects Auditor, Capital Projects (734) 994-8118 <u>bingj@aaps.k12.mi.us</u>
- MDOT/Office of Passenger Transportation Pontiac & Southfield Terminals Sheryl Ananich Project Director DTMB Design & Construction (517) 243-7605 <u>AnanichS@michigan.gov</u>

Page 26 of 66

- DTMB/St. Louis Correctional Facility Solar Project Susan Wheaton Project Director DTMB | State Facilities Administration | Design and Construction Division (517) 242-9945 <u>Wheatons1@michigan.gov</u>
- DTE Energy 31 Solar Currents Projects mentioned above Timothy O'Connor, CHMM | Project Engineer Major Enterprise Projects (734) 309-6181 <u>tim.oconnor@dteenergy.com</u>

C. WORK PLAN

Management Summary

The solar PV projects will be managed by a very capable and experienced NOVA team with several years of hands-on project experience and a proven track record of successfully delivering solar PV projects on time and under budget. Though all personnel mentioned above in Section II-3 will be available, the primary personnel include Sachit Verma (Program Manager), Jeff Eckhout (Project Manager), Clayton Cox (Electrical PE), Mark Mahajan (Structural & Geotechnical PE), John Gembarski (Site Supervisor), Rick Marble (AutoCAD lead), John Witte (NABCEP certified professional), Joe Ruffing (Administrative tasks and accounts).

NOVA and JRE will commence the project with a kick-off meeting at the City with all stakeholders, including but not limited to City personnel, local facility personnel knowledgeable about the existing infrastructure, schedules, constraints, and risks

Page 27 of 66

at each facility. All these factors must be considered early in the project to ensure smooth and timely completion without causing undue hardship to facility users.

The preliminary design engineering phase of the project will take into consideration relevant and critical information from the kick-off meeting, information gathered during site visits and from as-built documents, along with site electrical usage details to be used for PV system sizing calculations.

Site Visits

Site visits will be required to gather additional existing information about the sites such as as-built drawings, especially those showing the electrical infrastructure. NOVA will require information about existing underground utilities in the proposed installation area, as well as geotechnical information for the soils to evaluate foundation design for the solar PV system involving solar carports.

Rooftop projects will require a structural evaluation of the structure to ensure that the roof can successfully support the additional loads resulting from the installation of the solar PV system on the roof.

The following tasks will be covered during site visits:

- Decide location of inverters and associated electrical equipment
- Determine conduit routing pathway from the PV array area to the inverter location that is clear of interferences
- Establish location of communication and monitoring equipment

Page 28 of 66

- Discuss work schedule, access control, material staging areas, etc. with facility personnel, especially at occupied sites such as City Hall and Justice Center, so that the PV system installation does not cause inconvenience to facility employees and visitors.
- Take photographs of rooftops, electrical gear, PV installation areas
- Record PV area measurements to develop accurate layout drawings

Construction Documents

Once the site information is available, NOVA will develop construction documents and submit to the City for review at various completion levels. The objective is to address any issues early on in the design phase since a particular early decision may affect several other later decisions in a cascading manner. It is obviously much quicker and lower cost to make changes on paper rather than after construction.

Typical submittal levels are:

- 1. Preliminary design (30% completion)
- 2. Intermediate design (60% completion)
- 3. Final design (90% completion)
- 4. Issued for construction (100% completion)

Typical drawings

Most solar PV system require the following drawings as part of the construction drawing set:

- 1. Cover sheet containing project and client details
- 2. General Notes containing project requirements

Page 29 of 66

- 3. Site Plan showing site relative to surrounding areas
- 4. Electrical site plan showing PV system, main disconnect, meter location, etc.
- 5. DC power plan showing DC wiring from array area to inverters
- 6. PV Module wiring plan showing wiring between PV modules
- 7. AC power plan showing wiring from inverters to point of interconnection
- 8. One-line diagram showing all electrical equipment, wiring, conduits etc.
- 9. Grounding plan showing grounding system details
- 10. Electrical details showing service rack, grounding detail, equipment mounting
- 11.Communication plan showing monitoring system details
- 12. Civil details showing transformer pad, road, driveway detail, fence detail etc.
- 13. Rooftop ballast details from racking company
- 14. Pitched roof rail installation, attachments, and module mounting detail
- 15. Carport installation details from carport supplier including foundations
- 16. Material datasheets

Duration for the design varies by size of project. For example, a small site such as a park shelter may take less than a week, while City Hall/Justice Center may take 4-6 weeks. Similarly, City staff may need less than a day to review a submittal for a park shelter PV system, but one week for the Water Recovery Plant. An overall project schedule is shown below. **Time needed by City staff for review is determined by them and can be added accordingly.** A key element is the approval of the DTE Interconnection Application, which is up to DTE to approve and over which NOVA has no control. Sometimes DTE may come back with questions and/or clarifications which adds to the project schedule. The approval time is typically 3 weeks for small

Page 30 of 66

sites, but may be 6 weeks or more for large sites that have a more complex electrical system, such as multiple transformers, generators etc.

	Small Site	Intermediate Site	Large Site	
	< 10 kW	< 50kW	< 350 kW	
30% completion	3 days	1 week	2 weeks	
60% completion	3 days	2 weeks	4 weeks	
90% completion	3 days	1 weeks	1 week	
100% completion	3 days	1 weeks	1 week	
Total	2 weeks	5 weeks	8 weeks	

Following the issuance of construction drawing sets, NOVA will work closely with JRE to ensure a smooth construction process that is safe, reliable, and provides a highquality installation of the solar PV system that should last a very long time, and allow the facility to benefit from this zero-emission energy source.

During construction, NOVA will provide Construction Administration – Office Services and Construction Administration – Field Inspection services as necessary to ensure the successful and timely completion of all projects.

Construction Administration - Office services include responding to contractor submittals for Request for Information (RFI), reviewing contractor submittals, answering questions, providing clarifications, evaluating the use of substitute products, and other tasks as necessary.

Page 31 of 66

Construction Administration - Field inspections include site visits at regular intervals to monitor construction progress, ensure construction quality, perform construction testing if required, and address contractor concerns as necessary.

Quality

Each project requires its own project-specific written quality assurance / quality control (QA/QC) plan to ensure the design engineering is of a high quality resulting in a project free of defects. The QA/QC has several forms related to QA/QC that must be filled out to document project quality. Any quality issues are thus prevented to the extent possible, or identified early in the process so that they can be addressed immediately without schedule impact. Drawing checklists are used at each stage to ensure that the required information is included, is accurate, and has been reviewed before sending to the client.

Safety

Safety is paramount in any NOVA project. The City project will require a site-specific safety plan that will include risk mitigation measures to address foreseeable safety concerns. Potential safety concerns for each project task will need to be addressed to prevent employee injury. Such tasks may include trenching, cutting, welding, rigging, lifting, manlift use, ladder safety, heavy equipment use etc.

By means of the above very strong differentiators and specialized skills and advantages, NOVA has demonstrated the merits of this proposal and the benefits to the City should NOVA be selected for this project.

Page 32 of 66

D. PRELIMINARY SYSTEM DESIGNS

Preliminary system designs are provided below in compliance with the RFP Detailed model simulation reports created using Helioscope requirements. software are attached. The Helioscope reports also contain the PV system design parameters such as array location, tilt, azimuth, and first year energy production.

NOVA has carefully analyzed the energy consumption data provided by the City and calculated the pro-rated 365-day (one year) energy consumption at each site, since the downloaded data duration was for approximately 420 days. The PV systems have been sized close to City estimates when possible. In some instances, the target capacity could not be met for various reasons that are discussed for each location.

D.1 Inverter locations

Rooftop solar Flat roof - either on the roof or in or near the electrical room Pitched roof – on the ground near the electrical room Inverters will be mounted on carport support columns

Examples of inverter on roof and mounted on column

Page 33 of 66

D.2 Product Specification Sheets

Product specification sheets are attached for PV modules, inverters, racking, and carports. The reasoning for selecting certain products is discussed below in accordance with RFP requirements.

Material Selection Rationale

NOVA has paid careful attention to material selection. It not necessarily based on lowest cost, but what is best suited for this particular portfolio, and for each specific installation.

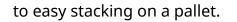
PV module selection

NOVA only uses PV modules from global top Tier 1 manufacturers with a proven track record of supporting solar PV projects in USA. This approach ensures a highquality product, with the backing and support of a reliable company in the event that warranty service is needed. The PV module industry is very dynamic and pricing and availability cannot be guaranteed until the order is actually placed. Hence, NOVA remains open to using PV modules from any one of several global Tier 1 manufacturers to ensure product availability and maintain project schedule. Some examples include JA Solar, Jinko Solar, Trina Solar, VSun, Heliene, Longi and others. At this time NOVA has selected JA Solar, but actual product selection will be determined during the design engineering phase of the project, in addition to pricing and availability at the time of ordering.

Page 34 of 66

Inverter selection

Due to the different voltages across the sites, different PV system sizes, and types of PV systems (rooftop, carport), NOVA is seeking to utilize different inverter models from the same brand so that monitoring can be provided under the same platform for all sites. Inverter brands such as Fronius, SolarEdge, and AP Systems meet this requirement, along with few other brands. At this time NOVA has selected Fronius, but actual product selection will be determined during the design engineering phase of the project, in addition to pricing and availability situation prevailing at the time of ordering.


Racking selection – Ballasted rooftop

The primary objective of rooftop racking is to support the PV modules. A key requirement is that the PV installation should result in low cost and low weight installation. For a ballasted PV system, it is important to keep the ballast weight as low as possible to avoid overloading the roof, while providing the necessary resistance against wind uplift at the same time.

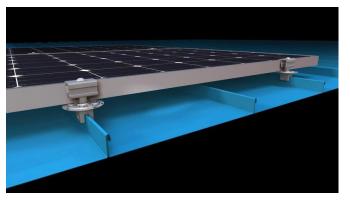
With these competing requirements in mind, NOVA has selected the Ecolibrium Ecofoot2+ rooftop ballasted racking for this project. It is made of synthetic materials so that there is no metal-to-roof contact that could potentially result in a roof puncture, thus causing roof leaks. This particular racking utilizes wind deflectors on the back side to reduce the effects of wind uplift on the solar panel. The reduced wind uplift results in a lower ballast requirement.

Page 35 of 66

This racking has only three main components, and can be shipped at low cost due

Racking selection – Pitched roof (Shingles)

Racking for pitched roof requires a system of rails and clamps to attach PV modules to the roof. NOVA will use metal racking components from proven companies such as Unirac, Ironridge, Everest, K2 or other reputable manufacturers. A key component is the attachment to the roof that requires roof penetration. NOVA always uses attachments that are flashed in beneath roof shingles to ensure a longlife water tight seal. Attachments that rely purely on sealant to prevent water leaks may be risky since the sealants get weathered and may crack over time.


Page 36 of 66

Solar panel installation on shingle roof

Racking selection – Pitched roof (Standing seam metal roof)

For standing seam roofs, NOVA utilizes S-5! Clamps to attach the PV modules directly to the roof seams without any roof penetrations. This is the lowest cost approach as well as the most secure in terms of roof leaks since no penetrations are required.

Solar panel attached directly to metal roof

Carport Selection

NOVA is proposing the use of carports from Sinclair located in Albion, Michigan. It is one of the leading solar carport manufacturers and can offer low shipping cost to Ann Arbor. NOVA has successfully used their carport on several projects, and JRE is familiar with the installation procedure, having recently installed one for MDOT in Pontiac, Michigan.

Page 37 of 66

Sample single and double row carports

EV Charger Selection

NOVA is proposing EV chargers from Mid-Cour, a Michigan company, to save material shipping costs and personnel travel costs, ensure prompt local service for commissioning, and easy warranty service if needed. The company is familiar with DTE rebate requirements for Level 2 EV chargers currently available to EV charger owners that own a publicly accessible EV charger. The charger complies with City requirements for a Level 2 charger on a 40 A circuit.

The charger will be on the EV Connect network via a cellular connection. Charger location, status, and availability will be visible to users so they can plan their travels accordingly. One charger will be mounted on a dual pedestal so that a second charger can be added at a later date. The City can set its own pricing for EV charging for customers.

Page 38 of 66

Battery Storage Selection

At this time, NOVA is proposing that battery storage be added at a later date to allow collection of necessary information that is required for the proper selection of the battery and associated components. For example, the following information is required:

- 1. Existing site one-line wiring diagram to see where the battery would connect, and which loads are to be backed up
- 2. Is there a climate-controlled space available at each location for the battery? The batteries available today are sensitive to operating temperature, and capacity may be significantly reduced at extreme ambient temperatures.
- 3. A control mechanism is necessary to make the utility service, generator (if present), battery, and solar PV system all work together seamlessly in a trouble-free manner. It is not a trivial matter to ensure that all three or four power sources work properly within their operating parameters in a safe and efficient manner. It would take a considerable effort, collaboration with manufacturers, and significant engineering to achieve this objective.

D.3 Product Warranty

The various PV system products carry the following **transferable** warranties:

PV modules 10-year warranty on minimum of 90% nameplate energy production and 25-year warranty on minimum of 80% nameplate energy production

Inverters 10 years

Racking 25 years

Page 39 of 66

NOVA will need information from the City regarding existing flat roof construction and warranties. Most roofing membrane manufacturers allow the installation of solar PV systems on their roof as long as certain installation procedures are followed, and the roof passes post-installation roofing inspection by the roof manufacturer. NOVA assumes that all roofs are currently in good condition and ready for solar PV system installation. Costs for roof upgrades are not included.

D.4 First Year Energy Production Estimates

NOVA utilized Helioscope software to prepare PV system layouts and energy production estimates based on the proposed materials.

Site No.	Site	First year PV Generation, kWh
1	City Hall / Justice Center	146,792
2	Fire Station 1	104,455
3	Fire Station 3	32,930
4	Justice Center - See 1 above	
5	Bryant Community Center	24,691
6	Buhr Park	137,902
7	Southeast Area Park	76,264
8	West Park	59,828
9	Veterans Park	50,264
10	Allmendinger Park	5,729
11	Argo Canoe Livery	6,665
12	Gallup Park - Maas Shelter	5,935
13	Gallup Park - Fast Shelter	7,071
14	Gallup Park - Parking	114,557
15	Wheeler Service Center	381,957
16	Water Recovery Plant	127,484
	Total portfolio	1,282,524

Page 40 of 66

D.5 20-Year Energy Production

Long term energy production over 20-years is provided below. An annual degradation of 0.5% is assumed for the PV modules.

				Bryant			
	City Hall /	Fire	Fire	Community	Buhr	Southeast	
Year	Justice Center	Station 1	Station 3	Center	Park	Area Park	West Park
1	146,792	104,455	32,930	24,691	137,902	76,264	59,828
2	146,058	103,933	32,765	24,568	137,212	75,882	59,529
3	145,328	103,413	32,601	24,445	136,526	75,503	59,231
4	144,601	102,896	32,438	24,323	135,843	75,126	58,935
5	143,878	102,382	32,276	24,201	135,164	74,750	58,640
6	143,159	101,870	32,115	24,080	134,488	74,376	58,347
7	142,443	101,360	31,954	23,960	133,816	74,004	58,056
8	141,731	100,854	31,794	23,840	133,147	73,634	57,765
9	141,022	100,349	31,635	23,721	132,481	73,266	57,476
10	140,317	99,848	31,477	23,602	131,819	72,900	57,189
11	139,615	99,348	31,320	23,484	131,160	72,535	56,903
12	138,917	98,852	31,163	23,367	130,504	72,173	56,619
13	138,223	98,357	31,007	23,250	129,851	71,812	56,336
14	137,531	97,866	30,852	23,134	129,202	71,453	56,054
15	136,844	97,376	30,698	23,018	128,556	71,095	55,774
16	136,160	96,889	30,545	22,903	127,913	70,740	55,495
17	135,479	96,405	30,392	22,788	127,274	70,386	55,217
18	134,801	95,923	30,240	22,674	126,637	70,034	54,941
19	134,127	95,443	30,089	22,561	126,004	69,684	54,666
20	133,457	94,966	29,938	22,448	125,374	69,336	54,393

			_	Gallup	Gallup			
	Matanaa		Argo	Park -	Park -	Gallup	Wheeler	Water
Year	Veterans Park	Allmendinger Park	Canoe Livery	Maas Shelter	Fast Shelter	Park - Parking	Service Center	Recovery Plant
Tear	Faik	Faik	Livery	Sheller	Sheller	Parking	Center	Fidill
1	50,264	5,729	6,665	5,935	7,071	114,557	381,957	172,484
2	50,013	5,701	6,632	5,905	7,035	113,985	380,047	171,622
3	49,763	5,672	6,599	5,876	7,000	113,415	378,147	170,763
4	49,514	5,644	6,566	5,846	6,965	112,848	376,256	169,910
5	49,266	5,616	6,533	5,817	6,930	112,283	374,375	169,060
6	49,020	5,588	6,500	5,788	6,896	111,722	372,503	168,215
7	48,775	5,560	6,468	5,759	6,861	111,163	370,640	167,374

City of Ann Arbor Solar & Energy Storage at City Sites RFP Response

Voor	Veterans	Allmendinger	Argo Canoe	Gallup Park - Maas Sholtor	Gallup Park - Fast	Gallup Park - Parking	Wheeler Service	Water Recovery
Year 8	Park 48,531	Park 5,532	Livery 6,435	Shelter 5,730	Shelter 6,827	Parking 110,608	Center 368,787	Plant 166,537
9	48,288	5,504	6,403	5,702	6,793	110,008	366,943	165,704
10	48,047	5,477	6,371	5,673	6,759	109,504	365,109	164,876
11	47,807	5,449	6,339	5,645	6,725	108,957	363,283	164,051
12	47,568	5,422	6,308	5,617	6,691	108,412	361,467	163,231
13	47,330	5,395	6,276	5,588	6,658	107,870	359,659	162,415
14	47,093	5,368	6,245	5,560	6,625	107,331	357,861	161,603
15	46,858	5,341	6,214	5,533	6,591	106,794	356,072	160,795
16	46,624	5,314	6,183	5,505	6,558	106,260	354,291	159,991
17	46,390	5,288	6,152	5,478	6,526	105,729	352,520	159,191
18	46,158	5,261	6,121	5,450	6,493	105,200	350,757	158,395
19	45,928	5,235	6,090	5,423	6,461	104,674	349,004	157,603
20	45,698	5,209	6,060	5,396	6,428	104,151	347,259	156,815

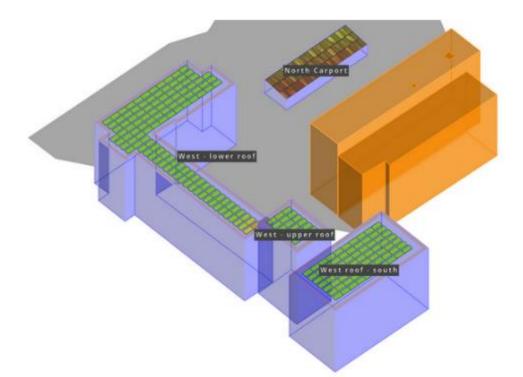
Page 41 of 66

D.6 Battery Readiness

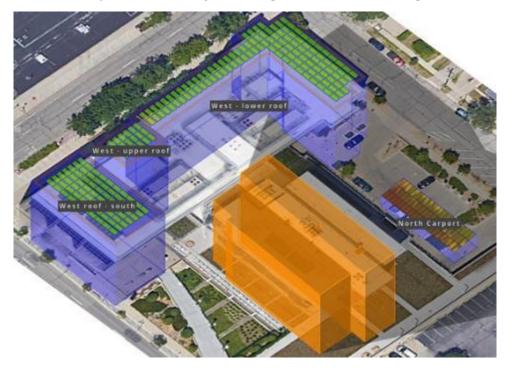
NOVA is proposing AC-coupled battery systems that can be installed at a future date. For most outdoor locations such park shelters and carports, there may not be a suitable temperature-controlled enclosed space to keep the battery. Commercial batteries available today are very sensitive to temperature and may not be able to operate in Michigan weather that may range from -20F to 120F over the year. Secondly load data is not available at this time to perform battery sizing calculations to determine the required battery power (kW) or energy (kWh). Keeping the batteries AC-coupled will allow the PV system installation to proceed with any inverter that is acceptable for the project without requiring battery compatibility. A control method will be required to ensure that the utility service, generator (if present), solar PV system, and battery can operate together properly with necessary safety procedures in place.

Page 42 of 66

City guidance for PV system	Carport or Rooftop solar + storage
City estimate for system size	100 kW – 120 kW
Prorated 365-day site usage	3,027,270 kWh


NOVA proposal

PV system type	Ballasted rooftop + future storage
DC size	111.8 kW
AC size	90 kW
Assumed site voltage	480V / 277V three phase
First year solar PV generation	146,791.9 kWh
DTE energy offset	4.8%


The proposed PV system size is consistent with that estimated by the City. NOVA is proposing a ballasted rooftop PV system for this location. No roof penetrations would be needed. It is likely that few roof attachments may be required due to building height and City Hall classification as critical infrastructure which requires a higher safety factor in the design calculations.

NOVA considered a carport for this location and modeled the location in 3D software. Modeling and simulation results indicate that the tall building will cause severe shading on the parking area which would result in significant production loss from the solar carport. Hence, the carport option is not being proposed at this location. Please see images below. The yellow to red shading of the canopy indicates the extent of production relative to unshaded areas.

Page 43 of 66

Carport shaded by building, southwestern angle

Page 44 of 66

Carport shaded by building, southeastern angle

Proposed layout for City Hall

D.8 Ann Arbor Fire Station 1

City guidance for PV system	Rooftop + storage
-----------------------------	-------------------

City estimate for system size 120 kW – 150 kW

Prorated 365-day site usage 222,723 kWh

Page 45 of 66

NOVA proposal

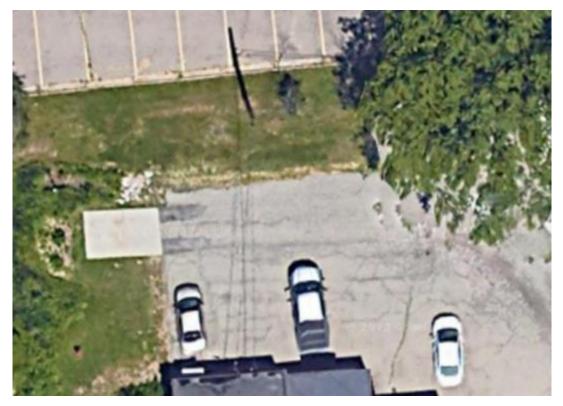
PV system type	Ballasted rooftop + future storage
DC size	79.9 kW
AC size	60 kW
Assumed site voltage	208V / 120V three phase
First year solar PV generation	104,455.2 kWh
DTE energy offset	46.9%

The proposed PV system size is smaller than the City estimate, primarily due to the presence of a gas line running north-south on the west side of the roof. This results in a loss of useable roof area for PV system installation.

Proposed layout for Fire Station 1

Page 46 of 66

D.9 Ann Arbor Fire Station 3	
City guidance for PV system	Ground + storage
City estimate for system size	50 kW – 80 kW
Prorated 365-day site usage	43,007 kWh
NOVA proposal	
PV system type	Ballasted rooftop + future storage
DC size	25.4 kW
AC size	20 kW
Assumed site voltage	208V / 120V three phase
First year solar PV generation	32,929.8 kWh
DTE energy offset	76.6%


The proposed PV system is a rooftop system instead of a ground system as estimated by the City, due to lack of suitable ground space at the site. The front of the building has a flagpole and a tree that cause shade, while the rear portion has an overhead utility line. A solar PV system cannot be built beneath it due to utility easement and safety concerns.

Additionally, the rooftop area is insufficient to support a PV system of the size desired by the City. Please see images of the ground obstructions and the proposed rooftop layout below.

Page 47 of 66

Flagpole and tree in front area

Overhead utility lines over the rear area

Page 48 of 66

Proposed layout for Fire Station 3

D.10 Justice Center

As mentioned by the City in Addendum 1, the Justice Center and City Hall share the same electrical service and meter. Hence, this PV system is combined with City Hall as shown in Section D.7 above. The green roof is not being proposed for solar PV since the proposed PV system size is already consistent with City guidance.

Page 49 of 66

D.11 Bryant Community Center		
City guidance for PV system	Rooftop + storage	
City estimate for system size	40 kW – 50 kW	
Prorated 365-day site usage	42,301 kWh	
NOVA proposal		
PV system type	Attached flush mount rooftop + future storage	
DC size	22.7 kW	
AC size	17.6 kW	
Assumed site voltage	240V / 120V single phase	
First year solar PV generation	24,691.2 kWh	
DTE energy offset	58.4%	

The proposed PV system is smaller than that estimated by the City. The primary reason is lack of sufficient suitable roof space at the site. There appears to be an existing solar PV system, as well as several trees that may cause shading. Limited suitable rooftop areas are available, and have been selected for the proposed PV system. Please note the large trees around the roof in the image below. Since removal of trees is not an option under this RFP, the shaded areas were not considered for the installation of a solar PV system.

Some unobstructed roof areas are available on the north facing side of the roof. These roof areas are considered unsuitable for the installation of solar PV systems as these areas would receive limited sun due their north orientation.

Page 50 of 66

Proposed layout for Bryant Community Center

D.12 Buhr Park

City guidance for PV system	Carport solar + EV Charger + storage
City estimate for system size	100 kW – 110 kW
Prorated 365-day site usage	306,712 kWh

NOVA proposal

PV system type

DC size

Carport solar + EV Charger + future storage 108 kW

Page 51 of 66

AC size	90 kW
Assumed site voltage	240V / 120V single phase
First year solar PV generation	137,901.5 kWh
DTE energy offset	45%

The proposed PV system size is consistent with that estimated by the City. One EV charger will be installed beneath the carport. As advised by the City in Addendum 2, the EV charger will be Level 2 on a 40 A circuit. The single charger will be installed on a dual port pedestal so that a second charger can be installed at a later date on the same pedestal. **There is room for expansion using another carport.**

Proposed layout for Buhr Park

Page 52 of 66

D.13 Southeast Area Park	
City guidance for PV system	Carport solar + EV Charger + storage
City estimate for system size	50 kW – 60 kW
Prorated 365-day site usage	4,734 kWh
NOVA proposal	
PV system type	Carport solar + EV Charger + future storage
DC size	58.3 kW
AC size	48 kW
Assumed site voltage	240V / 120V single phase
First year solar PV generation	76,263.8 kWh
DTE energy offset	1,611%

.

The proposed PV system size is consistent with that estimated by the City. **It is significantly oversized relative to existing usage.** One EV charger will be installed beneath the carport. As advised by the City in Addendum 2, the EV charger will be Level 2 on a 40 A circuit. The single charger will be installed on a dual port pedestal so that a second charger can be installed at a later date on the same pedestal.

Proposed layout for Southeast Area Park

Page 53 of 66

D.14 West Park	
City guidance for PV system	Carport solar + EV Charger + storage
City estimate for system size	20 kW – 50 kW
Prorated 365-day site usage	782 kWh
NOVA proposal	
PV system type	Carport solar + EV Charger + future storage
DC size	48.6 kW
AC size	40 kW
Assumed site voltage	240V / 120V single phase
First year solar PV generation	59,828.1 kWh
DTE energy offset	7,649%

The proposed PV system size is consistent with that estimated by the City. **It is significantly oversized relative to existing usage.** One EV charger will be installed beneath the carport. As advised by the City in Addendum 2, the EV charger will be Level 2 on a 40 A circuit. The single charger will be installed on a dual port pedestal so that a second charger can be installed at a later date on the same pedestal.

Page 54 of 66

Proposed layout for West Park

D.15 Veterans Park

City guidance for PV system	Carport solar + EV Charger + storage
City estimate for system size	20 kW – 40 kW
Prorated 365-day site usage	69,753 kWh

NOVA proposal

PV system type	Carport solar + EV Charger + future storage
DC size	38.9 kW
AC size	30 kW
Assumed site voltage	240V / 120V single phase
First year solar PV generation	50,264.2 kWh
DTE energy offset	72.1%

Page 55 of 66

The proposed PV system size is consistent with that estimated by the City. One EV charger will be installed beneath the carport. As advised by the City in Addendum 2, the EV charger will be Level 2 on a 40 A circuit. The single charger will be installed on a dual port pedestal so that a second charger can be installed at a later date on the same pedestal. **There is room for expansion using a larger carport.**

Proposed layout for Veterans Park

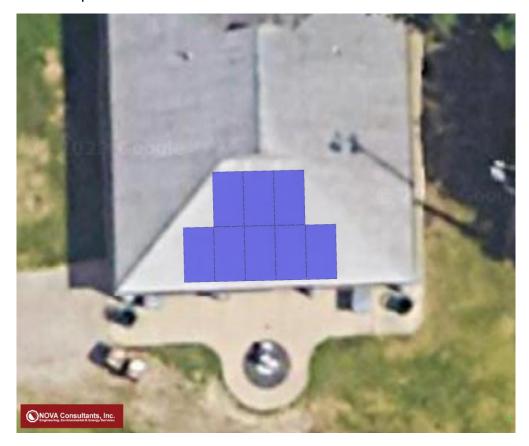
D.16 Allmendinger Park

City guidance	e for PV system	Rooftop solar + storage
erey garaarree		

City estimate for system size 40 kW – 50 kW

Prorated 365-day site usage 2,119 kWh

NOVA proposal


PV system type

Rooftop solar + future storage

Page 56 of 66

DC size	4.32 kW
AC size	3.8 kW
Assumed site voltage	240V / 120V single phase
First year solar PV generation	5,729.4 kWh
DTE energy offset	270%

The proposed PV system size is significantly smaller than that estimated by the City, but **significantly oversized relative to existing usage.** The City has requested a rooftop solar PV system, but there is insufficient suitable rooftop area for a PV system of the requested size.

Proposed layout for Allmendinger Park

Page 57 of 66

D.17 Argo	Canoe Livery
-----------	--------------

City guidance for PV system	Rooftop solar + storage
City estimate for system size	40 kW – 50 kW
Prorated 365-day site usage	4,710 kWh

NOVA proposal

PV system type	Rooftop solar + future storage
DC size	5.94 kW
AC size	5 kW
Assumed site voltage	240V / 120V single phase
First year solar PV generation	6,665.3 kWh
DTE energy offset	142%

The proposed PV system size is significantly smaller than that estimated by the City, but **significantly oversized relative to existing usage.** The City has requested a rooftop solar PV system, but there is insufficient suitable rooftop area for a PV system of the requested size. Solar panels will be installed on two sides of the roof as shown in the image below.

Page 58 of 66

Proposed layout for Argo Canoe Livery

D.18 Gallup Park Maas Shelter

City guidance for PV system	Rooftop solar
City estimate for system size	5 kW – 10 kW
Prorated 365-day site usage	No data available

NOVA proposal

PV system type	Rooftop solar
DC size	6.48 kW
AC size	5 kW
Assumed site voltage	240V / 120V single phase
First year solar PV generation	5,791.9 kWh
DTE energy offset	No data available

Page 59 of 66

The proposed PV system size is consistent with that estimated by the City. Solar panels will be installed on three sides of the roof as shown below.

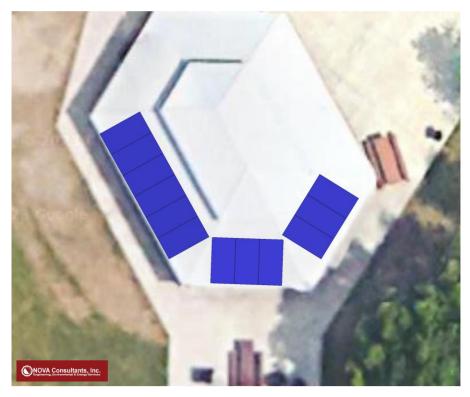
Proposed layout for Gallup Park – Maas Shelter

D.19 Gallup Park Fast Shelter

City guidance for PV system	Rooftop solar
City estimate for system size	5 kW – 10 kW

Prorated 365-day site usage No data available

NOVA proposal


PV system type

Rooftop solar

Page 60 of 66

DC size	6.48 kW
AC size	6 kW
Assumed site voltage	240V / 120V single phase
First year solar PV generation	7,070.6 kWh
DTE energy offset	No data available

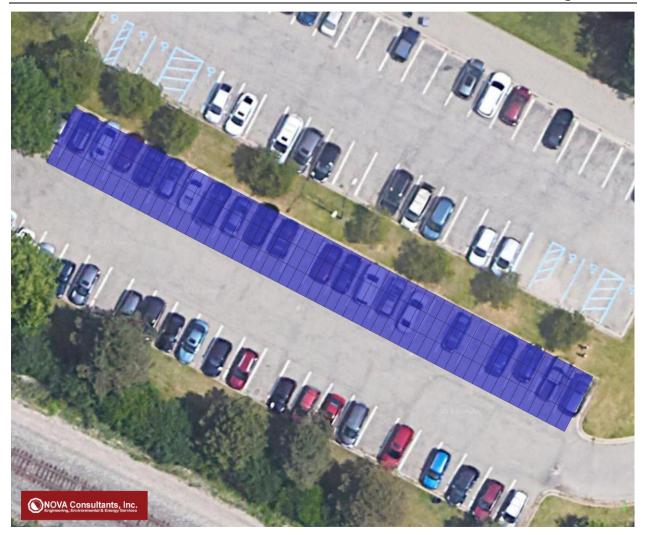
The proposed PV system size is consistent with that estimated by the City. Solar panels will be installed on three sides of the roof as shown below.

Proposed layout for Gallup Park - Fast Shelter

D.20 Gallup Park Parking Area

City guidance for PV system	Carport solar + EV Chargers + Storage
City estimate for system size	70 kW – 80 kW
Prorated 365-day site usage	No data available

Page 61 of 66


NOVA proposal

PV system type	Carport solar + EV chargers + future storage
DC size	90.7 kW
AC size	75 kW
Assumed site voltage	240V / 120V single phase
First year solar PV generation	114,557.4 kWh
DTE energy offset	No data available

The proposed PV system size is larger than that estimated by the City. This park appears to have significant usage based on aerial images of the parking lot. Hence, NOVA is proposing increasing the size of this carport to offset the size decreases at other sites and compensate for the loss of renewable energy capacity. Secondly, a carport of this size will cover the entire row of parking spaces which would be aesthetically pleasing. **There is room for expansion by adding more carports.**

One EV charger will be installed beneath the carport. As advised by the City in Addendum 2, the EV charger will be Level 2 on a 40 A circuit. The single charger will be installed on a dual port pedestal so that a second charger can be installed at a later date on the same pedestal.

Page 62 of 66

Proposed layout for Gallup Park – Parking Area

D.21 Wheeler Service Center

City guidance for PV system	Carport solar + EV Chargers + Storage

City estimate for system size 50 kW – 300 kW

Prorated 365-day site usage 1,766,352 kWh

NOVA proposal

PV system type


Carport solar + EV chargers + future storage

Page 63 of 66

DC size	311 kW
AC size	255 kW
Assumed site voltage	480V / 277V single phase
First year solar PV generation	381,956.9 kWh
DTE energy offset	21.6%

The proposed PV system size is slightly larger than that estimated by the City. NOVA is proposing increasing the size of this carport to offset the size decreases at other sites and compensate for the loss of renewable energy capacity. Secondly, a carport of this size will cover the entire row of parking spaces between existing light poles which would be aesthetically pleasing. **There is significant room for expansion by the addition of more carports.**

One EV charger will be installed beneath one of the carports. As advised by the City in Addendum 2, the EV charger will be Level 2 on a 40 A circuit. The single charger will be installed on a dual port pedestal so that a second charger can be added at a later date.

Page 64 of 66

Proposed layout for Wheeler Center

D.22 Water Recovery Plant

City guidance for PV system	Rooftop solar+carport solar+E	/ Chargers+Storage
, ,		

City estimate for system size 60 kW – 70 kW

Prorated 365-day site usage 12,489,551 kWh

NOVA proposal

PV system type

Rooftop solar+carport solar+EV charger+future storage

Page 65 of 66

DC size	101 kW
AC size	75 kW
Assumed site voltage	480V / 277V single phase
First year solar PV generation	127,483.7 kWh
DTE energy offset	1.0%

The proposed PV system size is slightly larger than that estimated by the City. NOVA is proposing increasing the size of this carport to offset the size decreases at other sites and compensate for the loss of renewable energy capacity. Secondly, a carport of this size will cover the entire row of parking spaces which would be aesthetically pleasing. One EV charger will be installed beneath the carport. As advised by the City in Addendum 2, the EV charger will be Level 2 on a 40 A circuit. The single charger will be installed on a dual port pedestal so that a second charger can be added at a later date. **There is significant room for expansion.**

Proposed layout for Water Recovery Center

Page 66 of 66

E. FEE PROPOSAL

The fee proposal is provided in separate envelope as requested.

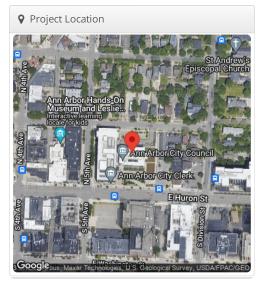
F. AUTHORIZED NEGOTIATOR

Person authorized to receive and sign a resulting contract and / or subsequent assignment(s):

Sunil Agrawal, *PhD, PE.* President NOVA Consultants, Inc. 21580 Novi Road, Suite 300 Novi, MI 48375

sunil.agrawal@novaconsultants.com Office: 248-347-3512 Cell: 248-866-1476

G. ATTACHMENTS


The requested forms are filled out completely and attached as requested.

Attachment 2 – Helioscope Reports

Proposed City of Ann Arbor - City Hall / Justice Center, 301 E. Huron St. Ann Arbor, MI 48104

🖋 Report	
Project Name	City of Ann Arbor - City Hall / Justice Center
Project Address	301 E. Huron St. Ann Arbor, MI 48104
Prepared By	Sachit Verma sachit.verma@novaconsultants.com

Lill System Metrics						
Design	Proposed					
Module DC Nameplate	111.8 kW					
Inverter AC Nameplate	90.0 kW Load Ratio: 1.24					
Annual Production	146.8 MWh					
Performance Ratio	85.1%					
kWh/kWp	1,313.2					
Weather Dataset	TMY, 10km grid (42.25,-83.75), NREL (prospector)					
Simulator Version	06c4414b94-fb80585900-1d3828b8b5- c6b0074249					

AC System: 0.5% Inverters: 3.2% Clipping: 0.3% Wiring: 0.3% Mismatch: 3.4% Clipping: 0.3% Clipping: 0.3% Clippi
--

• Sources of System Loss

	Condition Set									
	Description	Condition Set 1								
	Weather Dataset	TMY, 10km grid (42.	25,-83.75)	, NREL (prosp	pector)					
	Solar Angle Location	Meteo Lat/Lng								
	Transposition Model	Perez Model								
•	Temperature Model	Sandia Model								
•		Rack Type	а	b	Tempera	ature [Delta			
	Temperature Model	Fixed Tilt	-3.56	-0.075	3°C					
	Parameters	Flush Mount	-2.81	-0.0455	0°C					
		East-West	-3.56	-0.075	3°C					
		Carport	-3.56	-0.075	3°C					
	Soiling (%)	J F M A	A M	JJ	A S	0	Ν	D		

Irradiance (kWh/m²) Irradiance after Reflection 1,525.3 -1.2 Irradiance after Reflection 1,472.6 -3.3 Irradiance after Reflection 1,443.2 -2.0 Irradiance after Soiling 1,443.2 -0.0 Irradiance after Soiling 1,443.4 0.0 Energy Nameplate 161,317.4 -0.0 (kWh) Output at Irradiance Levels 159,972.6 -0.3 Output at Cell Temperature Derate 158,876.7 -0.3 Output After Mismatch 153,424.6 -3.4	🖣 Annual F	roduction		
Irradiance N N (kWh/m²) (1,543.8) 7.3 (kWh/m²) (1,543.8) 7.3 (kWh/m²) (1,525.3) (1,1.3) (kWh/m²) (1,743.8) (1,73.6) (kWh/m²) (1,743.8) (1,73.6) (kWh/m²) (1,743.6) (1,73.6) (kWh/m²) (1,743.6) (1,443.2) (kWh) (1,443.1) (0,00.1) (kWh) (1,1,1,1,1) (1,1,1,1) (kWh) (1,1,1,1) (1,1,1,1) (kWh)		Description	Output	% Delta
Irradiance 0.00000 0.000000000 0.000000000 0		Annual Global Horizontal Irradiance	1,432.0	
Inradiance Inradiance Instance Instance		POA Irradiance	1,543.8	7.8
Energy (kWh) Output at Cell Temperature Derate 159,972.6 Output At Cell Temperature Derate 153,424.6	Irradiance	Shaded Irradiance	1,525.3	-1.2
Energy (kWh)Total Collector Irradiance1,443.10.0ContentNameplate1161,317.40.0Output at Irradiance Levels159,972.6-0.1Output at Cell Temperature Derate158,876.7-0.1Output After Mismatch153,424.6-3.4	(kWh/m²)	Irradiance after Reflection	1,472.6	-3.5
Energy (kWh)Nameplate161,317.4Output at Irradiance Levels159,972.6-0.3Output at Cell Temperature Derate158,876.7-0.3Output After Mismatch153,424.6-3.4		Irradiance after Soiling	1,443.2	-2.0
(kWh) Output at Irradiance Levels 159,972.6 -0.4 Output at Cell Temperature Derate 158,876.7 -0.1 Output After Mismatch 153,424.6 -3.4		Total Collector Irradiance	1,443.1	0.0
Output at Matiance Levels 153,572.0 -0.1 Output at Cell Temperature Derate 158,876.7 -0.1 Output After Mismatch 153,424.6 -3.4	Energy	Nameplate	161,317.4	
Output After Mismatch 153,424.6 -3.4	(kWh)	Output at Irradiance Levels	159,972.6	-0.8
		Output at Cell Temperature Derate	158,876.7	-0.7
Optimal DC Output 152,904.7 -0.3		Output After Mismatch	153,424.6	-3.4
		Optimal DC Output	152,904.7	-0.3

	Constrained DC Output	152,442.7	-0.3%
	Inverter Output	147,529.5	-3.2%
	Energy to Grid	146,791.9	-0.5%
Temperature M	etrics		
	Avg. Operating Ambient Temp		11.1 °C
	Avg. Operating Cell Temp		18.4 °C
Simulation Met	rics		
	C	Operating Hours	4641
		Solved Hours	4641

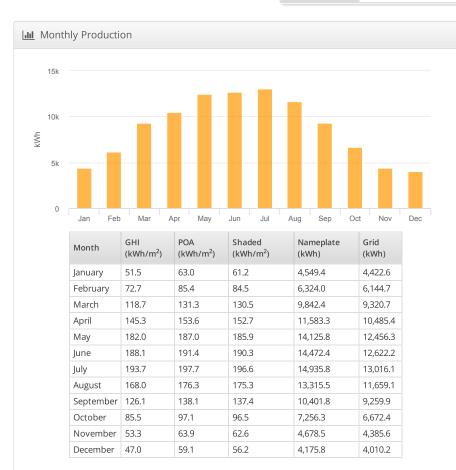
	2	2	2	2	2	2	2	2	2	2	2	2
Irradiation Variance	5%	5%										
Cell Temperature Spread	4° C	t° C										
Module Binning Range	-2.5%	6 to 2	.5%									
AC System Derate	0.50	%										
Trackers	Max	imum	n Angle				В	ackti	racking	g		
Trackers	60°	60°						nable	bled			
Module	Module Uploa By					aded	ded Characterization					
Characterizations	JAM72S30-540/MR (1000V) (JA Solar) Helio					oScoj	Scope Spec Sheet Characteriza			ition, F	PAN	
	Dev	ice					Uploaded By			Characterization		
Component	Fronius Symo 10.0-3 (480V) (Fronius USA)					He	HelioScope		CEC 2014-08-16		3-16	
Characterizations	Fronius Symo 12.5-3 (480V) (Fronius USA)					He	HelioScope		CEC 2014-08-16		3-16	
	Symo Advanced 15.0-3 / 480_OND (Fronius USA)					He	HelioScope Default Characterizatio			ation		

🖨 Components							
Component	Name	Count					
Inverters	Symo Advanced 15.0-3 / 480_OND (Fronius USA)	6 (90.0 kW)					
Strings	10 AWG (Copper)	15 (1,179.5 ft)					
Module	JA Solar, JAM72S30-540/MR (1000V) (540W)	207 (111.8 kW)					

👪 Wiring Zones			
Description	Combiner Poles	String Size	Stringing Strategy
Rooftop	-	5-17	Along Racking
Carport	-	-	Along Racking
Green roof	-	-	Along Racking
Middle bldg roof	-	-	Along Racking

Field Segn	nents								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
West - lower roof	Fixed Tilt	Landscape (Horizontal)	10°	181.9°	1.6 ft	1x1	119	119	64.3 kW
West - upper roof	Fixed Tilt	Landscape (Horizontal)	10°	182°	1.6 ft	1x1	18	18	9.72 kW
West roof - south	Fixed Tilt	Landscape (Horizontal)	10°	182°	1.6 ft	1×1	70	70	37.8 kW


```
Oetailed Layout
```



Design 1 City of Ann Arbor - Fire Station 1, 111 North 5th Avenue, Ann Arbor, Michigan, 48104

🗲 Report	
Project Name	City of Ann Arbor - Fire Station 1
Project Address	111 North 5th Avenue, Ann Arbor, Michigan, 48104
Prepared By	Sachit Verma sachit.verma@novaconsultants.com

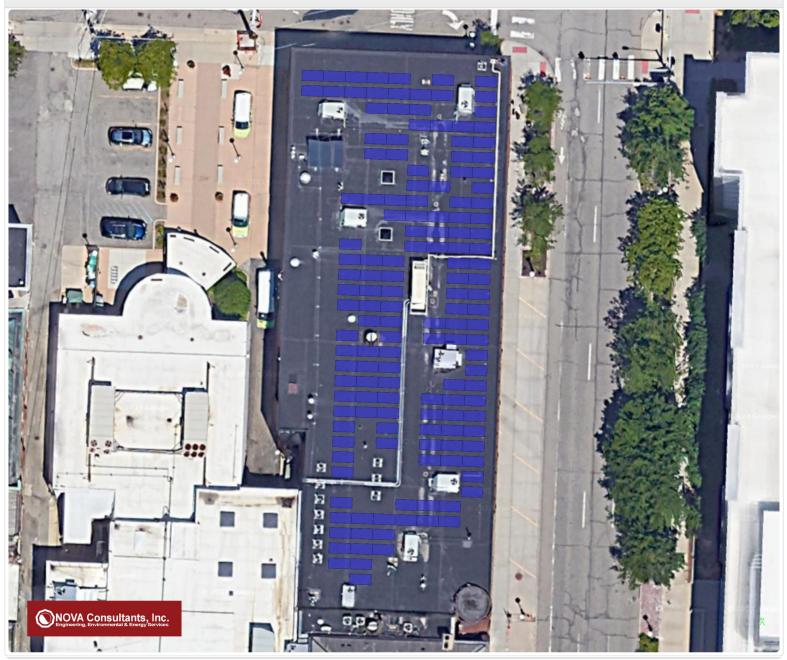
III System Metrics							
Design	Design 1						
Module DC Nameplate	79.9 kW						
Inverter AC Nameplate	60.0 kW Load Ratio: 1.33						
Annual Production	104.5 MWh						
Performance Ratio	84.7%						
kWh/kWp	1,307.0						
Weather Dataset	TMY, 10km grid (42.25,-83.75), NREL (prospector)						
Simulator Version	06c4414b94-fb80585900-1d3828b8b5- c6b0074249						

AC System: 0.5% / Shading: 0.9%	
Inverters: 3.4% Reflection: 3.5%	
Clipping: 1.0%	
Wiring: 0.4% Soiling: 2.0%	
Mismatch: 3.3%	
Temperature: 0.7%	

• Sources of System Loss

🖣 Annual F	Production		
	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,432.0	
	POA Irradiance	1,543.8	7.8%
Irradiance	Shaded Irradiance	1,529.7	-0.9%
(kWh/m ²)	Irradiance after Reflection	1,476.6	-3.5%
	Irradiance after Soiling	1,447.0	-2.0%
	Total Collector Irradiance	1,447.0	0.0%
Energy	Nameplate	115,661.1	
(kWh)	Output at Irradiance Levels	114,702.7	-0.8%
	Output at Cell Temperature Derate	113,919.9	-0.7%
	Output After Mismatch	110,217.4	-3.3%
	Optimal DC Output	109,822.2	-0.4%

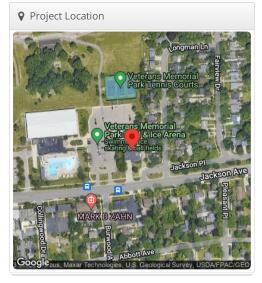
Condition Set														
Description	Con	Condition Set 1												
Weather Dataset	тмү	TMY, 10km grid (42.25,-83.75), NREL (prospector)												
Solar Angle Location	Met	Meteo Lat/Lng												
Transposition Model	Pere	Perez Model												
Temperature Model	Sand	Sandia Model												
	Rac	k Type	!		а		b			Te	mpera	ature l	Delta	
Tomporature Medal	Fixe	d Tilt			-3.	.56	-0.0)75		3°	С			
Temperature Model Parameters	Flus	h Mo	unt		-2.	.81	-0.0	455		0°C				
	East	-West	:		-3	.56	-0.0	-0.075		3°C				
	Car	oort			-3.	.56	-0.075			3°C				
Soiling (%)	J	F	М	Α	4	М	J	J		A	S	0	N	D

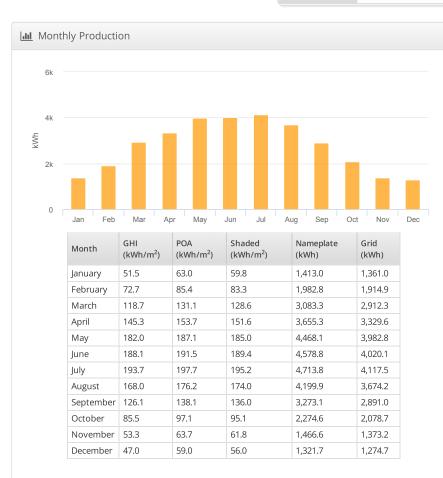

	Constrained DC Output	108,719.5	-1.0%
	Inverter Output	104,980.1	-3.5%
	Energy to Grid	104,455.2	-0.5%
Temperature M	etrics		
	Avg. Operating Ambient Temp		11.1 °C
	Avg. Operating Cell Temp		18.4 °C
Simulation Met	rics		
	C	Operating Hours	4641
		Solved Hours	4641

	2	2	2	2	2	2	2	2	2	2	2	2
Irradiation Variance	5%											
Cell Temperature Spread	4° C	4° C										
Module Binning Range	-2.5%	% to 2	.5%									
AC System Derate	0.50	%										
Trackers	Max	imum	n Angle				В	lackt	rackin	g		
Trackers	60°						E	nabl	ed			
Module	Mod	lule				Uplo By	aded		Chara	cteriza	tion	
Characterizations		72S30 Solar))-540/N	/IR (10	100V)	Heli	Helloscone			ec Sheet aracterization,		PAN
Component	Device					Uploa By		ploaded /		Characterization		ation
Characterizations	Symo Advanced 15.0-3 / 480_OND (Fronius USA) HelioScope Default Characterizati							ation				

🖨 Components									
Component	Name	Count							
Inverters	Symo Advanced 15.0-3 / 480_OND (Fronius USA)	4 (60.0 kW)							
Strings	10 AWG (Copper)	12 (835.5 ft)							
Module	JA Solar, JAM72S30-540/MR (1000V) (540W)	148 (79.9 kW)							

🛔 Wiring Z	ones								
Description		Combiner Poles		Str	ing Size	Str	inging Strateរ្	SY.	
Wiring Zone		-		5-1	7	Alo	ng Racking		
Eield Sea	ments								
Field Seg	ments								
Field Seg	ments Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frar Size	Fram	es Modules	Powe


Oetailed Layout



Design 1 City of Ann Arbor - Fire Station 3, 2130 Jackson Ave., Ann Arbor, MI 48103

🖋 Report	
Project Name	City of Ann Arbor - Fire Station 3
Project Address	2130 Jackson Ave., Ann Arbor, MI 48103
Prepared By	Sachit Verma sachit.verma@novaconsultants.com

Jul System Metrics							
Design	Design 1						
Module DC Nameplate	25.4 kW						
Inverter AC Nameplate	20.0 kW Load Ratio: 1.27						
Annual Production	32.93 MWh						
Performance Ratio	84.1%						
kWh/kWp	1,297.5						
Weather Dataset	TMY, 10km grid (42.25,-83.75), NREL (prospector)						
Simulator Version	06c4414b94-fb80585900-1d3828b8b5- c6b0074249						

	AC System: 0.5% Inverters: 4.0% Clipping: 0.5% Wiring: 0.3% Mismatch: 3.2% Temperature: 0.7%
--	---

• Sources of System Loss

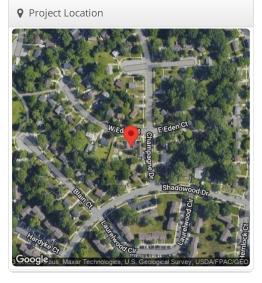
Condition Set													
Description	Con	Condition Set 1											
Weather Dataset	тмү	TMY, 10km grid (42.25,-83.75), NREL (prospector)											
Solar Angle Location	Met	eo Lat	:/Lng										
Transposition Model	Pere	Perez Model											
Temperature Model	Sand	dia Mo	odel										
	Rac	k Туре	2		а		b		Te	emper	ature	Delta	
Tomporature Medal	Fixe	d Tilt			-3	.56	-0.0	75	39	°C			
Temperature Model Parameters	Flus	sh Mo	unt		-2	.81	-0.04	455	0°	0°C			
	East	-Wes	t		-3	.56	-0.0	75	39	3°C			
	Carport					.56	-0.075		3°C				
Soiling (%)	J	F	М	A	4	М	J	J	А	S	0	N	D

🖌 Annual I	Production		
	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,432.0	
	POA Irradiance	1,543.7	7.80
Irradiance	Shaded Irradiance	1,515.8	-1.8
(kWh/m ²)	Irradiance after Reflection	1,464.8	-3.4
	Irradiance after Soiling	1,435.5	-2.0
	Total Collector Irradiance	1,435.3	0.0
Energy	Nameplate	36,430.8	
(kWh)	Output at Irradiance Levels	36,123.9	-0.8
	Output at Cell Temperature Derate	35,875.8	-0.7
	Output After Mismatch	34,729.6	-3.2
	Optimal DC Output	34,614.3	-0.3

Les senten Outeurt		
Inverter Output	33,095.3	-4.0%
Energy to Grid	32,929.8	-0.5%
Avg. Operating Ambient Temp		11.1 °C
Avg. Operating Cell Temp		18.3 °C
Op	erating Hours	4641
	Solved Hours	4641
	Avg. Operating Ambient Temp Avg. Operating Cell Temp	Avg. Operating Ambient Temp Avg. Operating Cell Temp Operating Hours

	2	2	2	2	2	2	2	2	2	2	2	2	
Irradiation Variance	5%												
Cell Temperature Spread	4° C												
Module Binning Range	-2.5%	% to 2	.5%										
AC System Derate	0.50	%											
Trackers	Maximum Angle			Backtracking									
Trackers	60°							Enabled					
Module	Mod	lule				Uplo By	Uploaded By Cha			racterization			
Characterizations		72S30 Solar))-540/N	/IR (10	100V)	Heli	HelioScop			Sheet acterization, PAN		PAN	
Component	Dev	ice					Up By	loade	ed	Chara	cteriza	ation	
Characterizations	-	no Adv nius l		l 10.0-	3 / 208 <u></u>	OND	He	elioSc	ope	Defau Chara	ılt acteriza	ation	

🖨 Compo	onents	
Component	Name	Count
Inverters	Symo Advanced 10.0-3 / 208_OND (Fronius USA)	2 (20.0 kW)
Strings	10 AWG (Copper)	6 (226.3 ft)
Module	JA Solar, JAM72S30-540/MR (1000V) (540W)	47 (25.4 kW)


🛔 Wiring	Zones								
Description		Combiner Poles		9	String Size	Stringing	Strategy		
Wiring Zone		-		5	5-10	Along Rad	cking		
📰 Field S	egments								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
West roof	Fixed Tilt	Landscape (Horizontal)	10°	175°	1.6 ft	1x1	19	19	10.3 kV
East roof	Fixed Tilt	Landscape (Horizontal)	10°	175°	1.6 ft	1x1	28	28	15.1 kV

Design 1 City of Ann Arbor - Bryant Community Center, 3 W Eden Ct, Ann Arbor, MI 48108

🖋 Report	
Project Name	City of Ann Arbor - Bryant Community Center
Project Address	3 W Eden Ct, Ann Arbor, MI 48108
Prepared By	Sachit Verma sachit.verma@novaconsultants.com

Jul System Met	rics
Design	Design 1
Module DC Nameplate	22.7 kW
Inverter AC Nameplate	17.6 kW Load Ratio: 1.29
Annual Production	24.69 MWh
Performance Ratio	79.5%
kWh/kWp	1,088.7
Weather Dataset	TMY, 10km grid (42.25,-83.75), NREL (prospector)
Simulator Version	06c4414b94-fb80585900-1d3828b8b5- c6b0074249

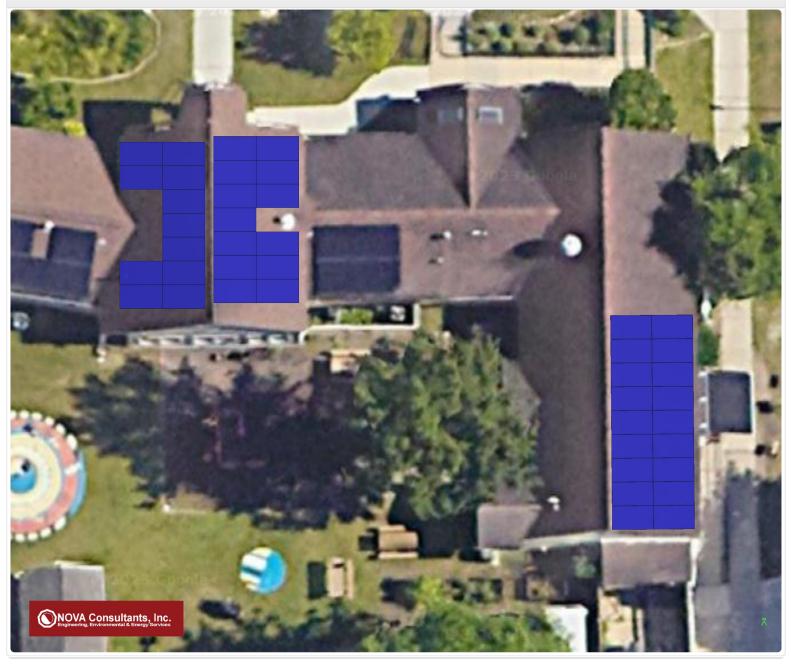
AC System: 0.5% Shading: 0.4% Inverters: 4.2% Clipping: 0.0% Wiring: 0.2% Soiling: 2.0% Irradiance: 1.1%
Mismatch: 5.0%
Temperature: 5.4%

• Sources of System Loss

🖣 Annual Pr	oduction			Londitio	n Set		
	Description	Output	% Delta	Description	C	onditio	n Set 1
	Annual Global Horizontal Irradiance	1,432.0		Weather Datase	et Ti	VIY, 10k	m grid (
	POA Irradiance	1,368.8	-4.4%	Solar Angle Loca	ation M	leteo La	at/Lng
Irradiance	Shaded Irradiance	1,363.0	-0.4%	Transposition M	ladal P	erez Mo	odol
(kWh/m ²)	Irradiance after Reflection	1,312.9	-3.7%	Transposition	louer Pe		Juer
	Irradiance after Soiling	1,286.6	-2.0%	Temperature M	odel Sa	andia M	lodel
	Total Collector Irradiance	1,286.7	0.0%		R	ack Typ	е
Energy	Nameplate	29,188.0				ixed Til	t
(kWh)	Output at Irradiance Levels	28,874.5	-1.1%	Temperature M Parameters	odel F	lush Mo	ount
	Output at Cell Temperature Derate	27,316.8	-5.4%	Tarameters	E	ast-We	st
	Output After Mismatch	25,956.8	-5.0%		C	arport	
	Optimal DC Output	25,904.9	-0.2%	Soiling (%)		I F	М
				8(,**)			

Condition Set													
Description	Con	dition	Set 1										
Weather Dataset	тмү	, 10kr	n grid (42.	25,	-83.75), NRE	L (pro	ospe	tor)			
Solar Angle Location	Met	Meteo Lat/Lng											
Transposition Model	Pere	z Mo	del										
Temperature Model	Sand	lia Mo	odel										
	Rac	< Туре	9		а		b		Т	empei	ature	Delta	
Tanana ana kuwa Mandal	Fixe	d Tilt			-3	.56	-0.0	75	3	°C			
Temperature Model Parameters	Flus	h Mo	unt		-2	.81	-0.0	455	0	°C			
	East	-Wes	t		-3	.56	-0.0	75	3	°C			
	Car	oort			-3	.56	-0.0	75	3	°C			
Soiling (%)	J	F	Μ	A	•	Μ	J	J	А	S	0	N	D

	Constrained DC Output	25,899.0	0.0%
	Inverter Output	24,815.3	-4.2%
	Energy to Grid	24,691.2	-0.5%
Temperature M	etrics		
	Avg. Operating Ambient Temp		11.1 °C
	Avg. Operating Cell Temp		24.7 °C
Simulation Met	ics		
	Op	erating Hours	4641
		Solved Hours	4641

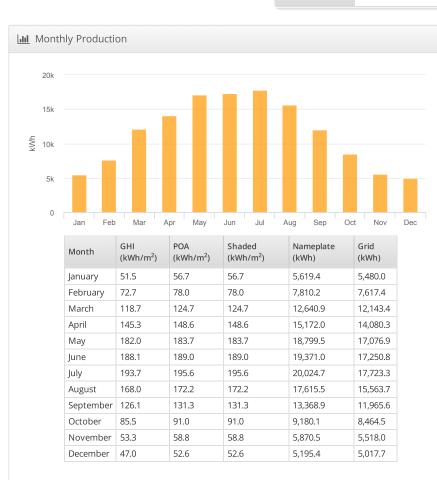

	2	2	2	2	2	2	2	2	2	2	2	2
Irradiation Variance	5%											
Cell Temperature Spread	4° C											
Module Binning Range	-2.5%	6 to 2	.5%									
AC System Derate	0.509	%										
Trackers	Maximum Angle			Backtracki		rackir	ing					
Trackers	60°					Enabled		ed				
Module	Mod	ule				Uplo By	Characterization					
Characterizations		72S3(olar))-540/1	ИR (10	000V)	Hel	Helloscone			c Sheet racterization, PAN		
	Devi	ce					Upl By	oade	d	Chara	cteriza	tion
Component Characterizations		nius P nius I	rimo 7 JSA)	.6-1 (2	240V)		Hel	ioSco	ope	CEC 20)14-08-	16
		no 10 nius I	.0-1 / 2 JSA)	40_01	١D		Hel	ioSco	ope	Defau Chara	-	tion

🖨 Compo	onents	
Component	Name	Count
Inverters	Fronius Primo 7.6-1 (240V) (Fronius USA)	1 (7.60 kW)
Inverters	Primo 10.0-1 / 240_OND (Fronius USA)	1 (10.00 kW)
Strings	10 AWG (Copper)	4 (109.8 ft)
Module	JA Solar, JAM72S30-540/MR (1000V) (540W)	42 (22.7 kW)

🔒 Wiring Zones			
Description	Combiner Poles	String Size	Stringing Strategy
West	-	2-17	Along Racking
East	-	7-17	Along Racking

Field Segr	nents								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Flush Mount	Portrait (Vertical)	26°	270°	0.0 ft	1x1	11	11	5.94 kW
Field Segment 2	Flush Mount	Portrait (Vertical)	26°	90°	0.0 ft	1x1	13	13	7.02 kW
Field Segment 3	Flush Mount	Portrait (Vertical)	30°	89.5°	0.0 ft	1x1	18	18	9.72 kW

Oetailed Layout




Design 1 City of Ann Arnor - Buhr Park, 2751 Packard St, Ann Arbor, MI 48104

🖋 Report	
Project Name	City of Ann Arnor - Buhr Park
Project Address	2751 Packard St, Ann Arbor, MI 48104
Prepared By	Sachit Verma sachit.verma@novaconsultants.com

JIII System Metrics							
Design	Design 1						
Module DC Nameplate	108.0 kW						
Inverter AC Nameplate	90.0 kW Load Ratio: 1.20						
Annual Production	137.9 MWh						
Performance Ratio	86.2%						
kWh/kWp	1,276.9						
Weather Dataset	TMY, 10km grid (42.25,-83.75), NREL (prospector)						
Simulator Version	3f06082235-dbb59b10a7-3d838af5f5- ec3db6ed90						

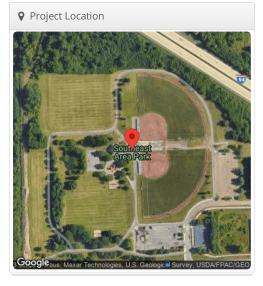
	Description	Output	% Delta
		•	70 Denta
	Annual Global Horizontal Irradiance	1,432.0	
Irradiance (kWh/m ²)	POA Irradiance	1,482.1	3.5%
	Shaded Irradiance	1,482.0	0.0%
	Irradiance after Reflection	1,423.4	-4.0%
	Irradiance after Soiling	1,394.9	-2.0%
	Total Collector Irradiance	1,394.9	0.0%
Energy	Nameplate	150,668.1	
(kWh)	Output at Irradiance Levels	149,313.1	-0.9%
	Output at Cell Temperature Derate	148,387.9	-0.6%
	Output After Mismatch	143,342.0	-3.4%
	Optimal DC Output	143,010.8	-0.2%

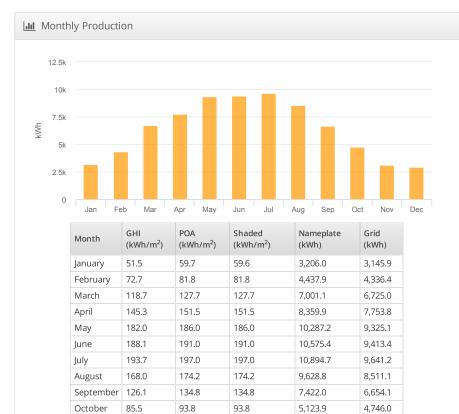
Condition Set												
	Can	dition	Cot 1									
Description		Condition Set 1										
Weather Dataset	IMY	TMY, 10km grid (42.25,-83.75), NREL (prospector)										
Solar Angle Location	Mete	Meteo Lat/Lng										
Transposition Model	Pere	z Moo	del									
Temperature Model	Sandia Model											
	Rack Type				а	b		Т	Temperature Delta			
Temperature Model	Fixed Tilt				-3.56	-0.075		3	3°C			
Parameters	Flush Mount				-2.81	-0.0455		0	0°C			
	East-West				-3.56	-0.075		3	3°C			
	Carport			-3.56	-0.075		3	3°C				
Soiling (%)	J	F	Μ	A	М	J	J	А	S	0	N	D

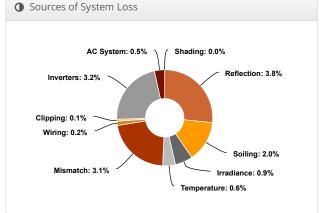
	Constrained DC Output	142,907.7	-0.1%				
	Inverter Output	138,594.5	-3.0%				
	Energy to Grid	137,901.5	-0.5%				
Temperature M	etrics						
	Avg. Operating Ambient Temp		11.1 °C				
	Avg. Operating Cell Temp						
Simulation Met	rics						
	Operating Hours						
		Solved Hours	4641				

	2	2	2	2	2	2	2	2	2	2	2	2	
Irradiation Variance	5%												
Cell Temperature Spread	4° C	4° C											
Module Binning Range	-2.5% to 2.5%												
AC System Derate	0.50%												
Trackers	Maximum Angle							Backtracking					
Indekers	60°							Enabled					
Module	Module						Uploaded By Chara			acterization			
Characterizations	JAM72S30-540/MR (1000V) (JA Solar)						Helloscone .			Sheet acterization, PAN		PAN	
Component	Device						Uploaded By		ed	Characterization		ation	
Characterizations	Symo Advanced 15.0-3 / 440_ (Fronius USA)					_OND	OND HelioScope		ope	Default Characterization		ation	

🖨 Components							
Component	Name	Count					
Inverters	Symo Advanced 15.0-3 / 440_OND (Fronius USA)	6 (90.0 kW)					
Strings	10 AWG (Copper)	12 (1,135.1 ft)					
Module	JA Solar, JAM72S30-540/MR (1000V) (540W)	200 (108.0 kW)					


📥 Wiring	Zones								
Description		Combiner Po	es		String Size	String	ging Strate	egy	
Short canopy	/	-			5-17	Along	Racking		
	ogmonte								
Field S	egments								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
		Portrait (Vertical)	-	230.5°	0.0 ft	1x1	200	200	108.0 kV




Design 1 City of Ann Arbor - Southeast Area Park, 2901 E Ellsworth Rd, Ann Arbor, MI 48108

🖋 Report	
Project Name	City of Ann Arbor - Southeast Area Park
Project Address	2901 E Ellsworth Rd, Ann Arbor, MI 48108
Prepared By	Sachit Verma sachit.verma@novaconsultants.com

Jul System Met	rics
Design	Design 1
Module DC Nameplate	58.3 kW
Inverter AC Nameplate	48.0 kW Load Ratio: 1.22
Annual Production	76.26 MWh
Performance Ratio	86.4%
kWh/kWp	1,307.7
Weather Dataset	TMY, 10km grid (42.25,-83.75), NREL (prospector)
Simulator Version	06c4414b94-fb80585900-1d3828b8b5- c6b0074249

Condition Set													
Description	Con	dition	Set 1										
Weather Dataset	тмү	, 10kr	n grid	(42	.25	,-83.75), NRE	L (pro	spec	tor)			
Solar Angle Location	Met	eo La	t/Lng										
Transposition Model	Pere	z Mo	del										
Temperature Model	Sand	dia Mo	odel										
	Rac	к Туре	9		а		b		Te	empera	ature l	Delta	
Tomporaturo Model	Fixe	d Tilt			-3	8.56	-0.0	75	3	°C			
Temperature Model Parameters	Flus	h Mo	unt		-2	2.81	-0.04	455	0	°C			
	East	-Wes	t		-3	8.56	-0.0	75	39	°C			
	Carp	oort			-3	8.56	-0.0	75	39	°C			
Soiling (%)	J	F	М	1	4	М	J	J	А	S	0	Ν	D

	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,432.0	
	POA Irradiance	1,513.7	5.79
Irradiance	Shaded Irradiance	1,513.7	0.0
(kWh/m ²)	Irradiance after Reflection	1,455.4	-3.8%
	Irradiance after Soiling	1,426.3	-2.0
	Total Collector Irradiance	1,426.3	0.0
Energy	Nameplate	83,204.4	
(kWh)	Output at Irradiance Levels	82,492.1	-0.9
	Output at Cell Temperature Derate	81,981.9	-0.6
	Output After Mismatch	79,408.2	-3.1
	Optimal DC Output	79,241.4	-0.2

60.8

55.6

60.8

55.6

3,286.5

2,980.9

3,111.5

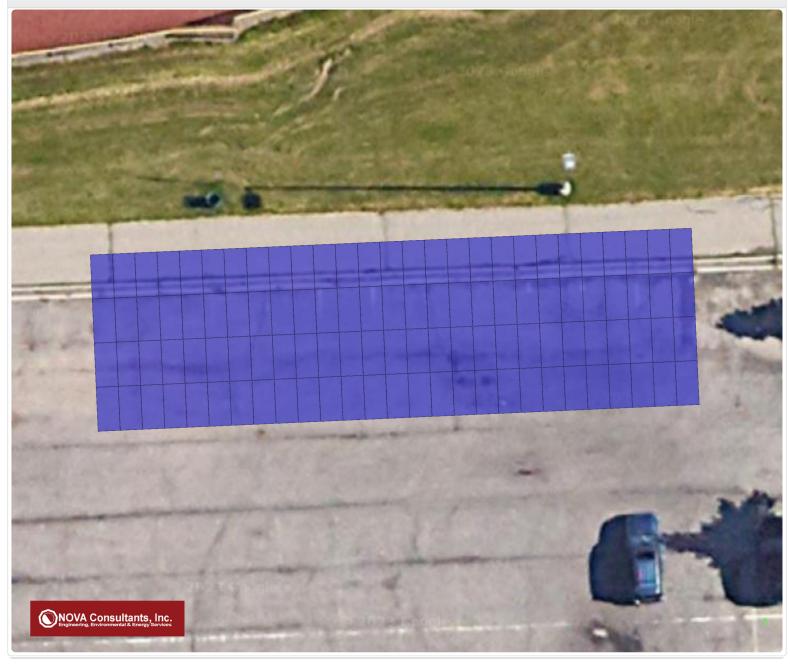
2,900.2

November

December

53.3

47.0

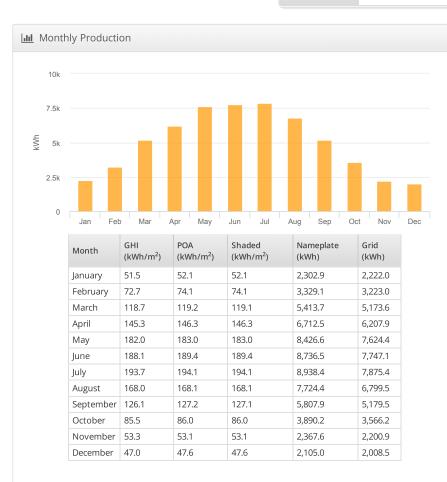

	Constrained DC Output	79,166.2	-0.1%
	Inverter Output	76,647.1	-3.2%
	Energy to Grid	76,263.8	-0.5%
Temperature Me	etrics		
	Avg. Operating Ambient Temp		11.1 °C
	Avg. Operating Cell Temp		18.3 °C
Simulation Metr	ics		
	Op	erating Hours	4641
		Solved Hours	4641

	2	2	2	2	2	2	2	2	2	2	2	2	
Irradiation Variance	5%												
Cell Temperature Spread	4° C												
Module Binning Range	-2.5%	ó to 2	.5%										
AC System Derate	0.50%	6											
Trackers	Max	imum	n Angle				E	Backt	rackin	g			
Trackers	60°							Enabled					
Module	Module					Uple By	Uploaded Char By			racterization			
Characterizations		72S30 olar))-540/N	/IR (10	000V)	Hel	oSco	pe		Sheet acteriza	ation, l	PAN	
Component	Devi	ce					Up By	oload '	ed	Chara	cteriz	ation	
Characterizations			ymo 1 onius		208-240)	He	elioS	cope	CEC 2	014-08	3-16	

🖨 Compo	onents	
Component	Name	Count
Inverters	Fronius Symo 12.0-3 208-240 (240V) (Fronius USA)	4 (48.0 kW)
Strings	10 AWG (Copper)	12 (677.0 ft)
Module	JA Solar, JAM72S30-540/MR (1000V) (540W)	108 (58.3 kW)

🛔 Wiring Zo	nes								
Description		Combiner Poles		:	String Size	Stringing	Strategy		
Wiring Zone		-			8-10	Along Rad	cking		
III Field Segn	nents								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Carport	Portrait (Vertical)	7°	177.45035°	0.0 ft	1x1	108	108	58.3 kV

Oetailed Layout



Design 1 City of Ann Arbor - West Park, 215 Chapin St, Ann Arbor, MI 48103

🖋 Report	
Project Name	City of Ann Arbor - West Park
Project Address	215 Chapin St, Ann Arbor, MI 48103
Prepared By	Sachit Verma sachit.verma@novaconsultants.com

Lill System Met	rics
Design	Design 1
Module DC Nameplate	48.6 kW
Inverter AC Nameplate	40.0 kW Load Ratio: 1.22
Annual Production	59.83 MWh
Performance Ratio	85.5%
kWh/kWp	1,231.0
Weather Dataset	TMY, 10km grid (42.25,-83.75), NREL (prospector)
Simulator Version	3f06082235-dbb59b10a7-3d838af5f5- ec3db6ed90

Project Location West Park Tennis Courts ١. Google

AC System: 0.5% Shading: 0.0% Inverters: 4.1% Clipping: 0.1% Wiring: 0.2% Mismatch: 3.0% Femperature: 0.5%

Sources of System Loss

🕈 Annual I	Production			
	Description	Output	% Delta	
	Annual Global Horizontal Irradiance	1,432.0		
	POA Irradiance	1,440.0	0.6%	
Irradiance	Shaded Irradiance	1,439.9	0.0%	
(kWh/m²)	Irradiance after Reflection	1,380.5	-4.1%	
	Irradiance after Soiling	1,352.9	-2.0%	
	Total Collector Irradiance	1,352.9	0.0%	
Energy	Nameplate	65,754.7		
(kWh)	Output at Irradiance Levels	65,124.8	-1.0%	
	Output at Cell Temperature Derate	64,812.8	-0.5%	
	Output After Mismatch	62,894.6	-3.0%	
	Optimal DC Output	62,761.9	-0.2%	

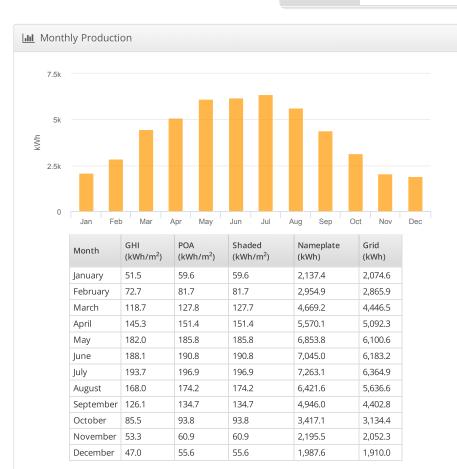
Condition Set														
Description	Con	ditior	set 1											
Weather Dataset	тмү	, 10kr	n grid ((42	.25,	-83.75), NRE	L (pro	ospe	ecto	or)			
Solar Angle Location	Met	Meteo Lat/Lng												
Transposition Model	Pere	Perez Model												
Temperature Model	Sandia Model													
	Rack Type			а		b	Temperature De			Delta				
Tomporature Medal	Fixed Tilt			-3	.56	-0.0	-0.075			3°C				
Temperature Model Parameters	Flus	h Mo	unt		-2	.81	-0.0	455	(0°C				
	East	-Wes	t		-3	.56	-0.0	75	1	3°C				
	Carp	oort			-3	.56	-0.0	75		3°C				
Soiling (%)	J	F	Μ	A	4	М	J	J	A		S	0	Ν	D

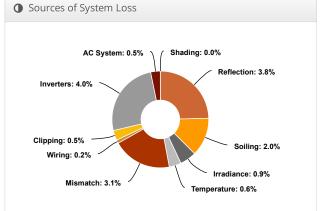
	Constrained DC Output	-0.1%								
	Inverter Output	60,128.7	-4.2%							
	Energy to Grid	59,828.1	-0.5%							
Temperature M	Temperature Metrics									
Avg. Operating Ambient Temp										
Avg. Operating Cell Temp										
Simulation Metr	ics									
Operating Hours										
Solved Hours										

	2	2	2	2	2	2	2	2	2	2	2	2	2
Irradiation Variance	5%												
Cell Temperature Spread	4° C												
Module Binning Range	-2.5%	6 to 2	.5%										
AC System Derate	0.50%	%											
Trackers	Maximum Angle Backtracking												
Trackers	60°						E	Enabled					
Module	Module Up By						oaded Characterization						
Characterizations		72S30 olar))-540/1	VIR (10)00V)	He	lioSco	pe		ec Sheet aracterization, PAN			PAN
Component	Device						Uploaded By Characteri			erizati	on		
Characterizations		no 10. nius l	0-1 / 2 JSA)	40_01	ND		HelioScope Default Characterizatio			on			

🔒 Components										
Component	Name	Count								
Inverters	Primo 10.0-1 / 240_OND (Fronius USA)	4 (40.0 kW)								
Strings	10 AWG (Copper)	8 (339.9 ft)								
Module	JA Solar, JAM72S30-540/MR (1000V) (540W)	90 (48.6 kW)								

Description		Combiner Pole	Combiner Poles			Stringin	g Strategy	/	
North		-			2-17	Along Ra	acking		
South		-		2-17	Along Ra	acking			
III Field S	egments								
	0								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
	Racking Carport	Orientation Portrait (Vertical)	Tilt 7°	Azimuth 103.48306°	Intrarow Spacing	Frame Size	Frames	Modules	Power




Design 1 City of Ann Arbor - Veterans Park, 2150 Jackson Ave, Ann Arbor, MI 48103

🖋 Report	
Project Name	City of Ann Arbor - Veterans Park
Project Address	2150 Jackson Ave, Ann Arbor, MI 48103
Prepared By	Sachit Verma sachit.verma@novaconsultants.com

Lill System Metrics										
Design	Design 1									
Module DC Nameplate	38.9 kW									
Inverter AC Nameplate	30.0 kW Load Ratio: 1.30									
Annual Production	50.26 MWh									
Performance Ratio	85.4%									
kWh/kWp	1,292.8									
Weather Dataset	TMY, 10km grid (42.25,-83.75), NREL (prospector)									
Simulator Version	3f06082235-dbb59b10a7-3d838af5f5- ec3db6ed90									

	Description	Output	% Delta
			70 Delta
	Annual Global Horizontal Irradiance	1,432.0	
	POA Irradiance	1,513.2	5.7
Irradiance (kWh/m ²)	Shaded Irradiance	1,513.2	0.0
	Irradiance after Reflection	1,455.4	-3.8
	Irradiance after Soiling	1,426.3	-2.0
	Total Collector Irradiance	1,426.3	0.0
Energy	Nameplate	55,461.4	
(kWh)	Output at Irradiance Levels	54,986.5	-0.9
	Output at Cell Temperature Derate	54,643.3	-0.6
	Output After Mismatch	52,961.6	-3.1
	Optimal DC Output	52,869.9	-0.2

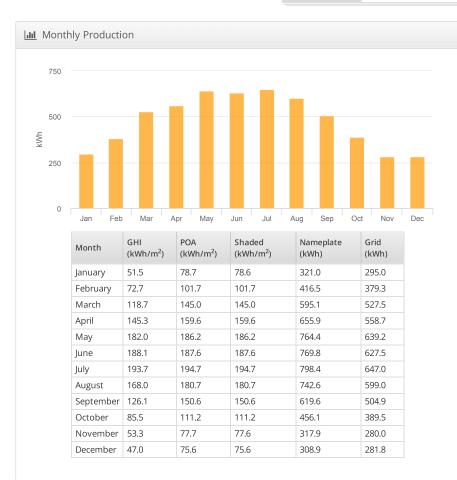
Condition Set														
Description	Con	ditior	set 1											
Weather Dataset	тмү	, 10kr	m grid ((42.	.25,	-83.75), NRE	L (pro	osp	ect	or)			
Solar Angle Location	Met	Meteo Lat/Lng												
Transposition Model	Pere	Perez Model												
Temperature Model	Sandia Model													
	Rack Type				а		b	b Temperature			ature l	Delta		
Tomporature Model	Fixed Tilt			-3	.56	-0.0	-0.075			3°C				
Temperature Model Parameters	Flus	h Mo	unt		-2	.81	-0.04	455		0°C				
	East	-Wes	t		-3	.56	-0.0	75		3°C				
	Carp	oort			-3	.56	-0.0	75		3°C	2			
Soiling (%)	J	F	Μ	A	4	М	J	JJ		4	S	0	Ν	D

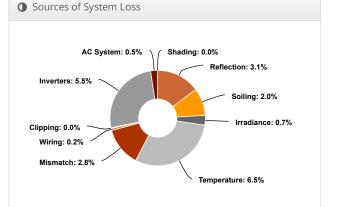
	-0.5%								
Inverter Output	50,516.8	-4.0%							
Energy to Grid	50,264.2	-0.5%							
Temperature Metrics									
Avg. Operating Ambient Temp									
Avg. Operating Cell Temp									
cs									
Operating Hours									
Solved Hours									
	Energy to Grid trics Avg. Operating Ambient Temp Avg. Operating Cell Temp	Energy to Grid 50,264.2 trics Avg. Operating Ambient Temp Avg. Operating Cell Temp cs							

	2	2	2	2	2	2	2	2	2	2	2	2	2
Irradiation Variance	5%												
Cell Temperature Spread	4° C												
Module Binning Range	-2.5%	ó to 2	.5%										
AC System Derate	0.50%	6											
Trackers	Maximum Angle Backtracking												
Trackers	60°						E	Enabled					
Module	Module Uploaded Character					teriza	tion						
Characterizations		72S30 olar))-540/N	/IR (10	000V)	He	lioSco	pe		pec Sheet naracterization, PAN			PAN
Component	Device						Uplo By	Uploaded By Characterization			on		
Characterizations	Primo 10.0-1 / 240_OND (Fronius USA)							HelioScope Default Characterizatio			on		

🕀 Components										
Component	Name	Count								
Inverters	Primo 10.0-1 / 240_OND (Fronius USA)	3 (30.0 kW)								
Strings	10 AWG (Copper)	6 (180.3 ft)								
Module	JA Solar, JAM72S30-540/MR (1000V) (540W)	72 (38.9 kW)								

🚠 Wiring Zones											
Description Combiner P		Combiner Poles			String Size	Stringing	Stringing Strategy				
Wiring Zone -		-			2-17	Along Rad	cking				
III Field Segr	nents										
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power		
Field Segment 1	Carport	Portrait (Vertical)	7°	185.36694°	0.0 ft	1x1	72	72	38.9 kV		



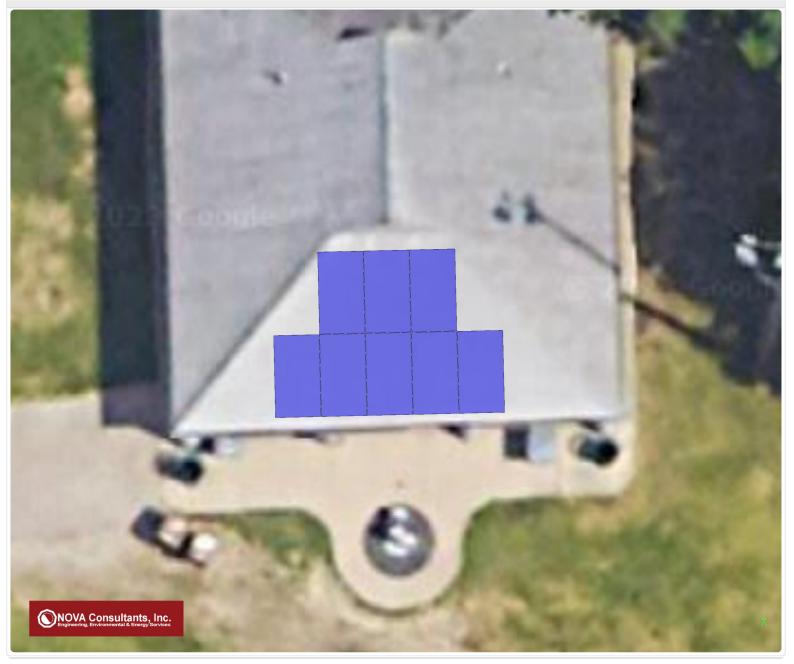

Design 1 City of Ann Arbor - Allmendinger Park, 655 Pauline Blvd, Ann Arbor, MI 48103

🖋 Report	
Project Name	City of Ann Arbor - Allmendinger Park
Project Address	655 Pauline Blvd, Ann Arbor, MI 48103
Prepared By	Sachit Verma sachit.verma@novaconsultants.com

III System Metrics							
Design	Design 1						
Module DC Nameplate	4.32 kW						
Inverter AC Nameplate	3.80 kW Load Ratio: 1.14						
Annual Production	5.729 MWh						
Performance Ratio	80.4%						
kWh/kWp	1,326.2						
Weather Dataset	TMY, 10km grid (42.25,-83.75), NREL (prospector)						
Simulator Version	06c4414b94-fb80585900-1d3828b8b5- c6b0074249						

Project Location

Condition Set												
Description	Condition Set 1											
Weather Dataset	тмү	TMY, 10km grid (42.25,-83.75), NREL (prospector)										
Solar Angle Location	Meteo Lat/Lng											
Transposition Model	Perez Model											
Temperature Model	Sandia Model											
	Racl	к Туре			a	b		Те	mpera	ature [Delta	
Temperature Model	Fixed Tilt				-3.56	-0.075		3°	3°C			
Parameters	Flush Mount				-2.81	-0.0455		0°	0°C			
	East	-West	:		-3.56	-0.0	75	3°	3°C			
	Carport				-3.56	-0.075		3°	С			
Soiling (%)	J	F	Μ	A	M	J	J	A	S	0	Ν	D

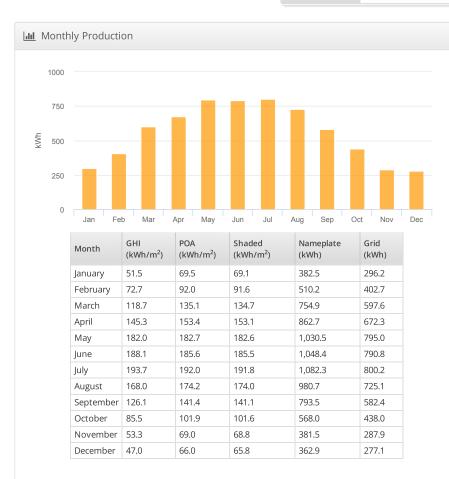

	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,432.0	
	POA Irradiance	1,649.3	15.29
Irradiance	Shaded Irradiance	1,649.1	0.0
(kWh/m ²)	Irradiance after Reflection	1,597.4	-3.1
	Irradiance after Soiling	1,565.4	-2.04
	Total Collector Irradiance	1,565.4	0.09
Energy	Nameplate	6,766.0	
(kWh)	Output at Irradiance Levels	6,718.6	-0.7
	Output at Cell Temperature Derate	6,284.9	-6.5
	Output After Mismatch	6,107.5	-2.8
	Optimal DC Output	6,098.3	-0.2

	Constrained DC Output	6,095.4	0.0%				
	Inverter Output	5,758.2	-5.6%				
	Energy to Grid						
Temperature M	Temperature Metrics						
	Avg. Operating Ambient Temp						
	Avg. Operating Cell Temp						
Simulation Metr	Simulation Metrics						
Operating Hours 4							
	Solved Hours 4						

	2	2	2	2	2	2	2	2	2	2	2	2
Irradiation Variance	5%	5%										
Cell Temperature Spread	4° C	4° C										
Module Binning Range	-2.5%	ó to 2	.5%									
AC System Derate	0.50%	6										
Trackers	Max	imum	n Angle	•			Backtracking					
Trackers	60°					Enabled						
Module	Module						Uploaded By Ch			Characterization		
Characterizations	JAM72S30-540/MR (1000V) (JA Solar)						HelioScope			Spec Sheet Characterization, PAN		
Component	Device						Uploaded By			Characterization		
Characterizations	Primo 3.8-1 / 240 (Fronius USA)						HelioScope			Default Characterization		

🖴 Components								
Component	Name	Count						
Inverters	Primo 3.8-1 / 240 (Fronius USA)	1 (3.80 kW)						
Strings	10 AWG (Copper)	1 (0.0 ft)						
Module	JA Solar, JAM72S30-540/MR (1000V) (540W)	8 (4.32 kW)						

🛔 Wiring Zo	ones									
Description Combiner Poles			Stri	ing Size	Stringing	Stringing Strategy				
Wiring Zone -			2-17			Along Rac	Along Racking			
Field Seg	ments									
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Powe	
Field Segment 1	Flush Mount	Portrait (Vertical)	26°	178.66397°	0.0 ft	1×1	8	8	4.32 kW	


Design 1 City of Ann Arbor - Argo Canoe Livery, 1055 Longshore Dr, Ann Arbor, MI 48105

🖋 Report	
Project Name	City of Ann Arbor - Argo Canoe Livery
Project Address	1055 Longshore Dr, Ann Arbor, MI 48105
Prepared By	Sachit Verma sachit.verma@novaconsultants.com

Jul System Metrics							
Design	Design 1						
Module DC Nameplate	5.94 kW						
Inverter AC Nameplate	5.00 kW Load Ratio: 1.19						
Annual Production	6.665 MWh						
Performance Ratio	71.8%						
kWh/kWp	1,122.1						
Weather Dataset	TMY, 10km grid (42.25,-83.75), NREL (prospector)						
Simulator Version	06c4414b94-fb80585900-1d3828b8b5- c6b0074249						

Lu and	UJ (
	Longshore Park
B2B Tri	Huron River

Project Location

AC System: 0.5%) / Shading: 0.2%
Inverters: 4.4% Clipping: 0.0% Wiring: 0.1% Fradiance: 0.8%
Temperature: 6.1%

7 Annual Production									
	Description		Output	% Delta					
		Annual Global Horizontal Irradiance	1,432.0						
Irradiance (kWh/m ²)		POA Irradiance	1,562.8	9.1%					
		Shaded Irradiance	1,559.7	-0.2%					
		Irradiance after Reflection	1,508.2	-3.3%					
		Irradiance after Soiling	1,478.1	-2.0%					
		Total Collector Irradiance	1,474.5	-0.2%					
Energy		Nameplate	8,758.1						
(kWh)		Output at Irradiance Levels	8,688.1	-0.8%					
		Output at Cell Temperature Derate	8,159.1	-6.1%					
		Output After Mismatch	7,016.2	-14.0%					
		Optimal DC Output	7,005.8	-0.1%					

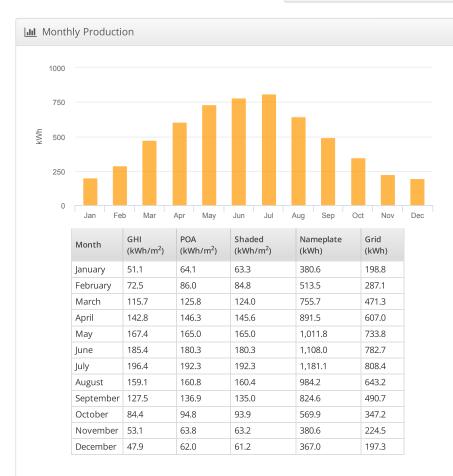
Condition Set														
Description	Con	Condition Set 1												
Weather Dataset	TMY	TMY, 10km grid (42.25,-83.75), NREL (prospector)												
Solar Angle Location	Met	Meteo Lat/Lng												
Transposition Model	Pere	Perez Model												
Temperature Model	Sand	Sandia Model												
	Rack Type			а		b			Temperature Delta					
	Fixe	ed Tilt			-3	.56	-0.0	-0.075		3°C				
Temperature Model Parameters	Flus	sh Mo	unt		-2	.81	-0.0	455		0°C				
	East	t-Wes	t		-3	.56	-0.0	75		3°C				
	Car	oort			-3	.56	-0.0	75		3°C				
Soiling (%)	J	F	М	A	ł	М	J	J	A		S	0	Ν	D

	Constrained DC Output	7,005.7	0.0%						
	Inverter Output	6,698.8	-4.4%						
	Energy to Grid	Energy to Grid 6,665.3							
Temperature Metrics									
	Avg. Operating Ambient Temp		11.1 °C						
	Avg. Operating Cell Temp		26.6 °C						
Simulation Metr	ics								
	Operating Hours								
	5	Solved Hours	4641						

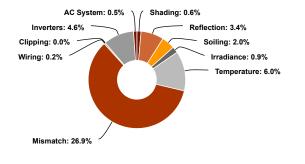
	2	2	2	2	2	2	2	2	2	2	2	2	
Irradiation Variance	5%	5%											
Cell Temperature Spread	4° C	P° C											
Module Binning Range	-2.5%	2.5% to 2.5%											
AC System Derate	0.50%	.50%											
Trackers	Max	Maximum Angle					1	Backtracking					
Hackers	60°						E	Enabled					
Module	Mod	ule				Upl By	oadeo	Ŀ	Chara	racterization			
Characterizations		72S30 olar))-540/N	/IR (10	000V)	Hel	ioScc	Scope Spec Sheet Characterization, PA				PAN	
Component	Devi	ce					Uj By	oload /	ed	Characterization			
Characterizations	Fronius Primo 5.0-1 (240V) (Fronius USA) HelioScope CEC						CEC 2	014-08	3-16				

🔒 Compo	🖨 Components									
Component	Name	Count								
Inverters	Fronius Primo 5.0-1 (240V) (Fronius USA)	1 (5.00 kW)								
Strings	10 AWG (Copper)	1 (7.1 ft)								
Module	JA Solar, JAM72S30-540/MR (1000V) (540W)	11 (5.94 kW)								

Description Combiner Po				String Size Stringing Strategy						
Wiring Zone -				6-1	7	Along Ra	Along Racking			
III Field Seg	ments									
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Powe	
Field Segment 1	Flush Mount	Portrait (Vertical)	30°	196.3777°	0.0 ft	1x1	6	6	3.24 kW	
Field Segment 2	Flush Mount	Portrait (Vertical)	18.4°	105°	0.0 ft	1x1	5	5	2.70 kW	



Design 1 City of Ann Arbor - Gallup Park Maas Shelter, Gallup Park Pathway, Ann Arbor, MI 48105


🖋 Report	
Project Name	City of Ann Arbor - Gallup Park Maas Shelter
Project Address	Gallup Park Pathway, Ann Arbor, MI 48105
Prepared By	Sachit Verma sachit.verma@novaconsultants.com

LIII System Metrics									
Design	Design 1								
Module DC Nameplate	6.48 kW								
Inverter AC Nameplate	5.00 kW Load Ratio: 1.30								
Annual Production	5.792 MWh								
Performance Ratio	60.5%								
kWh/kWp	893.8								
Weather Dataset	TMY, 10km grid (42.25,-83.65), NREL (prospector)								
Simulator Version	91b698d9a1-cf5e19739c-2a70cc6e51- 8338d5f2d3								

Sources of System Loss

	Condition Set													
elta	Description	Con	dition	Set 1										
	Weather Dataset	TMY, 10km grid (42.25,-83.65), NREL (prospector)												
5.3%	Solar Angle Location	Meteo Lat/Lng												
-0.6%	Transposition Model	Perez Model												
-3.4% -2.0%	Temperature Model	Sandia Model												
-0.4%		Rack Type				а		b		Te	Temperature Delta			
		Fixed Tilt				-3	.56	-0.075		3°	3°C			
-0.9%	Temperature Model Parameters	Flus	h Mo	unt		-2	.81	-0.0455		0°	0°C			
-6.0%	Turumeters	East	-Wes	t		-3	.56	-0.0	75	3°	3°C			
-26.9%		Car	oort			-3	.56	-0.0	75	3°	3°C			
-0.2%	Soiling (%)	J	F	М	A		Μ	J	J	A	S	0	N	D

Annual Production

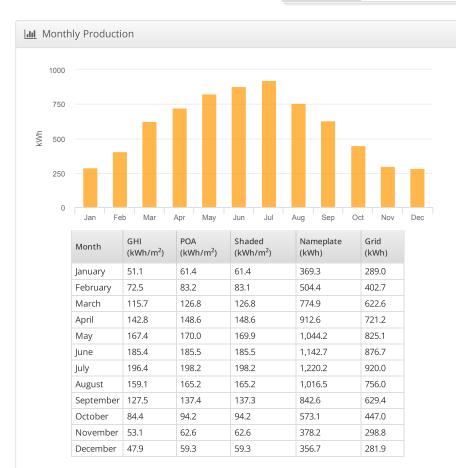
	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,403.3	
Irradiance (kWh/m ²)	POA Irradiance	1,478.1	5.3%
	Shaded Irradiance	1,468.8	-0.6%
	Irradiance after Reflection	1,418.6	-3.4%
	Irradiance after Soiling	1,390.2	-2.0%
	Total Collector Irradiance	1,384.3	-0.4%
Energy	Nameplate	8,968.5	
(kWh)	Output at Irradiance Levels	8,886.4	-0.9%
	Output at Cell Temperature Derate	8,356.5	-6.0%
	Output After Mismatch	6,112.5	-26.9%
	Optimal DC Output	6,100.4	-0.2%

	Constrained DC Output	0.0%								
	Inverter Output	5,821.0	-4.6%							
	Energy to Grid	5,791.9	-0.5%							
Temperature M	Temperature Metrics									
Avg. Operating Ambient Temp										
	Avg. Operating Cell Temp		26.3 °C							
Simulation Metr	ics									
Operating Hours										
Solved Hours										

	2	2	2	2	2	2	2	2	2	2	2	2	
Irradiation Variance	5%	5%											
Cell Temperature Spread	4° C	4° C											
Module Binning Range	-2.5%	2.5% to 2.5%											
AC System Derate	0.50%	0.50%											
Trackers	Max	Maximum Angle Backtracking											
Hackers	60°						E	Enab	led				
Module	Mod	ule				Uploaded By Cha			Chara	racterization			
Characterizations		72S30 olar)	000V)	Hel	Helloscone ·			c Sheet racterization, PAN					
Component	Devi	Device		vice Uploaded By		ed	Chara	cteriz	ation				
Characterizations	Fronius				ronius Primo 5.0-1 (240V) Fronius USA)				HelioScope CEC 2014-			3-16	

🖨 Components											
Component	Name	Count									
Inverters	Fronius Primo 5.0-1 (240V) (Fronius USA)	1 (5.00 kW)									
Strings	10 AWG (Copper)	1 (7.4 ft)									
Module	JA Solar, JAM72S30-540/MR (1000V) (540W)	12 (6.48 kW)									

Description	C	ombiner Poles		Str	ing Size	Stringing	g Strategy		
Wiring Zone	-			6-1	7	Along Ra			
Field Seg	ments								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Powe
Field Segment 1	Flush Mount	Portrait (Vertical)	26°	169.64095°	0.0 ft	1x1	6	6	3.24 kW
Field Segment 2	Flush Mount	Portrait (Vertical)	26°	260.50314°	0.0 ft	1x1	3	3	1.62 kW
Field Segment 3	Flush Mount	Portrait (Vertical)	26°	79°	0.0 ft	1x1	3	3	1.62 kW



Design 1 City of Ann Arbor - Gallup Park Fast Shelter, Gallup Park Pathway, Ann Arbor, MI

🖋 Report	
Project Name	City of Ann Arbor - Gallup Park Fast Shelter
Project Address	Gallup Park Pathway, Ann Arbor, MI
Prepared By	Sachit Verma sachit.verma@novaconsultants.com

Lill System Metrics										
Design	Design 1									
Module DC Nameplate	6.48 kW									
Inverter AC Nameplate	5.00 kW Load Ratio: 1.30									
Annual Production	7.071 MWh									
Performance Ratio	73.1%									
kWh/kWp	1,091.1									
Weather Dataset	TMY, 10km grid (42.25,-83.65), NREL (prospector)									
Simulator Version	06c4414b94-fb80585900-1d3828b8b5- c6b0074249									

AC System: 0.5%) Shading: 0.0%
Inverters: 4.2% Reflection: 3.7%
Clipping: 0.1% Soiling: 2.0%
Wiring: 0.1%
Temperature: 6.0%
Mismatch: 12.6%

,	Production		
	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,403.3	
	POA Irradiance	1,492.4	6.3
Irradiance	Shaded Irradiance	1,492.2	0.0
(kWh/m ²)	Irradiance after Reflection	1,437.4	-3.7
	Irradiance after Soiling	1,408.6	-2.0
	Total Collector Irradiance	1,409.1	0.0
Energy	Nameplate	9,135.5	
(kWh)	Output at Irradiance Levels	9,055.2	-0.9
	Output at Cell Temperature Derate	8,511.6	-6.0
	Output After Mismatch	7,435.7	-12.6
	Optimal DC Output	7,424.7	-0.1

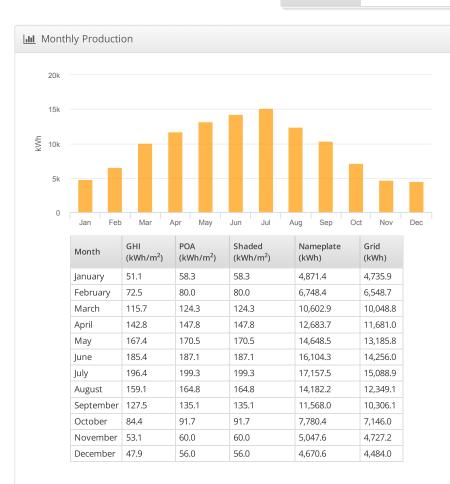
Condition Set														
Description	Con	Condition Set 1												
Weather Dataset	тмү	TMY, 10km grid (42.25,-83.65), NREL (prospector)												
Solar Angle Location	Met	Meteo Lat/Lng												
Transposition Model	Pere	Perez Model												
Temperature Model	Sand	Sandia Model												
	Rac	к Тур	9		а		b	b		Temperature Delta				
	Fixe	d Tilt			-3.	.56	-0.0	-0.075		3°C				
Temperature Model Parameters	Flus	h Mo	unt		-2.	.81	-0.0	455	(0°C				
	East	-Wes	t		-3.	.56	-0.0	75	1	3°C				
	Carp	oort			-3.	.56	-0.075		1	3°C				
Soiling (%)	J	J F M A		4	М	J	J	A		S	0	N	D	

	Constrained DC Output	7,420.4	-0.1%							
	Inverter Output	7,106.2	-4.3%							
	Energy to Grid	7,070.6	-0.5%							
Temperature M	Temperature Metrics									
	Avg. Operating Ambient Temp									
	Avg. Operating Cell Temp		26.5 °C							
Simulation Metr	ics									
Operating Hours										
Solved Hours										

	2	2	2	2	2	2	2	2	2	2	2	2		
Irradiation Variance	5%	5%												
Cell Temperature Spread	4° C	4° C												
Module Binning Range	-2.5%	2.5% to 2.5%												
AC System Derate	0.509	0.50%												
Trackers	Max	Maximum Angle Backtracking												
Trackers	60°						E	Inabl	ed					
Module	Mod	lule				Upl By	oadeo	k	Characterization					
Characterizations		72S30 iolar))-540/1	VIR (10)00V)	HelioScope			Spec Sheet Characterization, PAN			PAN		
Component	Device						Uploaded By			Characterization				
Characterizations		Primo 5.0-1 / 240 (Fronius USA)					HelioScope			Default Characterization				

🖴 Components											
Component	Name	Count									
Inverters	Primo 5.0-1 / 240 (Fronius USA)	1 (5.00 kW)									
Module	JA Solar, JAM72S30-540/MR (1000V) (540W)	12 (6.48 kW)									

Description	C	ombiner Poles		Str	ing Size	Stringir	ng Strategy		
Wiring Zone -				2-1	7	Along R			
Field Seg	ments								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Powe
Field Segment 1	Flush Mount	Portrait (Vertical)	15°	241.01118°	0.0 ft	1x1	6	6	3.24 kW
Field Segment 2	Flush Mount	Portrait (Vertical)	15°	182°	0.0 ft	1x1	3	3	1.62 kW
Field Segment 3	Flush Mount	Portrait (Vertical)	15°	121.77872°	0.0 ft	1x1	3	3	1.62 kW



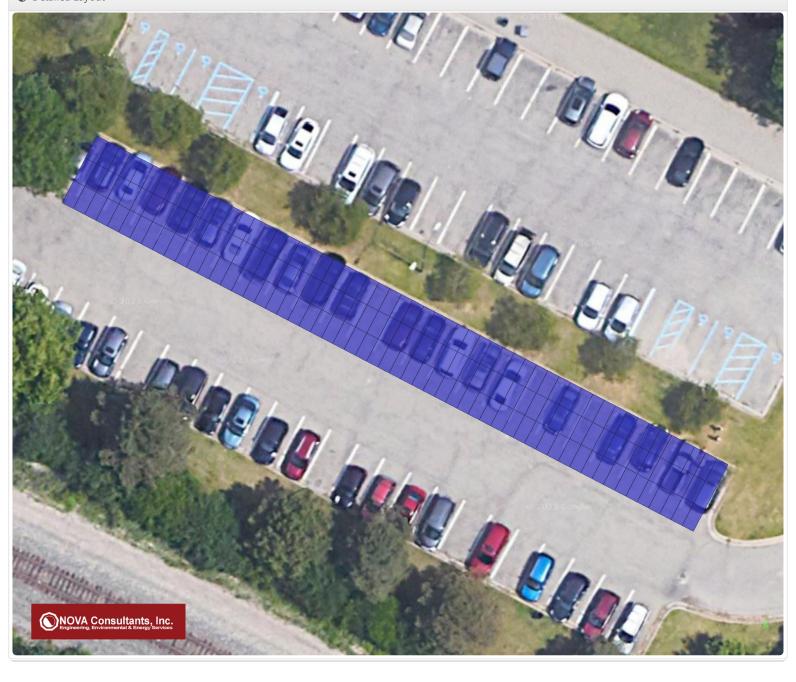
Design 1 City of Ann Arbor - Gallup Park Parking, 3000 Fuller Rd, Ann Arbor, MI 48105

🖋 Report	
Project Name	City of Ann Arbor - Gallup Park Parking
Project Address	3000 Fuller Rd, Ann Arbor, MI 48105
Prepared By	Sachit Verma sachit.verma@novaconsultants.com

Lin System Metrics							
Design	Design 1						
Module DC Nameplate	90.7 kW						
Inverter AC Nameplate	75.0 kW Load Ratio: 1.21						
Annual Production	114.6 MWh						
Performance Ratio	85.6%						
kWh/kWp	1,262.8						
Weather Dataset	TMY, 10km grid (42.25,-83.65), NREL (prospector)						
Simulator Version	3f06082235-dbb59b10a7-3d838af5f5- ec3db6ed90						

AC System: 0.5%	Shading: 0.0%
Clipping: 0.1%	
Wiring: 0.2%	
	Soiling: 2.0%
Mismatch: 3.9%	Irradiance: 0.9%
	Temperature: 0.8%

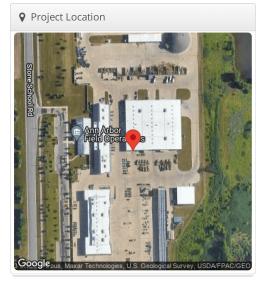
	Condition Set												
	Description	Cond	dition	Set 1									
	Weather Dataset	TMY	, 10kn	n grid (4	42.2	5,-83.65)), NRE	L (pro	spect	or)			
	Solar Angle Location	Mete	eo Lat	/Lng									
ò	Transposition Model	Perez Model											
ò	Temperature Model	Sandia Model											
5		Rack Type				a	b		Temperature Delta				
	Tauran and the Adada	Fixed Tilt				-3.56	-0.075		3°	3°C			
ò	Temperature Model Parameters	Flus	h Moi	unt		-2.81	-0.0455		0°	0°C			
ò	i di dificici s		-West	:		-3.56	-0.0	75	3°	3°C			
ò			oort			-3.56	-0.075		3°	3°C			
ò	Soiling (%)	J	F	М	A	Μ	J	J	А	S	0	N	D


	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,403.3	
	POA Irradiance	1,474.9	5.1
Irradiance	Shaded Irradiance	1,474.8	0.0
(kWh/m²)	Irradiance after Reflection	1,417.7	-3.9
	Irradiance after Soiling	1,389.4	-2.0
	Total Collector Irradiance	1,389.4	0.0
Energy	Nameplate	126,065.6	
(kWh)	Output at Irradiance Levels	124,927.3	-0.9
	Output at Cell Temperature Derate	123,963.9	-0.8
	Output After Mismatch	119,124.0	-3.9
	Optimal DC Output	118,861.7	-0.2

	Constrained DC Output	118,782.6	-0.1%
	Inverter Output	115,133.1	-3.1%
	Energy to Grid	114,557.4	-0.5%
Temperature M	etrics		
	Avg. Operating Ambient Temp		11.6 °C
	Avg. Operating Cell Temp		18.6 °C
Simulation Met	rics		
	C	Operating Hours	4629
		Solved Hours	4629

	2	2	2	2	2	2	2	2	2	2	2	2			
Irradiation Variance	5%														
Cell Temperature Spread	4° C														
Module Binning Range	-2.5%	6 to 2	.5%												
AC System Derate	0.50%	0.50%													
Trackers	Maximum Angle						Backtracking								
Trackers	60°					Enabled									
Module	Module Up By							loaded Cha			aracterization				
Characterizations	JAM72S30-540/MR (1000V) (JA Solar)				Hel	Helloscone			ec Sheet aracterization, PAN		PAN				
Component	Device						Uploaded By			Characterization		ion			
Characterizations		no 15. nius l	.0-1 / 2 JSA)	40_01	ND	HelioScope			Default Characterization						

🖨 Components								
Component	Name	Count						
Inverters	Primo 15.0-1 / 240_OND (Fronius USA)	5 (75.0 kW)						
Strings	10 AWG (Copper)	10 (827.5 ft)						
Module	JA Solar, JAM72S30-540/MR (1000V) (540W)	168 (90.7 kW)						


🛔 Wiring Zo	nes								
Description		Combiner Poles			String Size	Stringing	g Strategy	,	
Wiring Zone		-			2-17	Along Ra	cking		
III Field Segn	nents								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Carport	Portrait (Vertical)	7°	207 5°	0.0 ft	1x1	168	168	90.7 kV



Design 1 City of Ann Arbor - Wheeler Service Center, 4251 Stone School Rd, Ann Arbor, Mi 48108

📌 Report	
Project Name	City of Ann Arbor - Wheeler Service Center
Project Address	4251 Stone School Rd, Ann Arbor, Mi 48108
Prepared By	Sachit Verma sachit.verma@novaconsultants.com

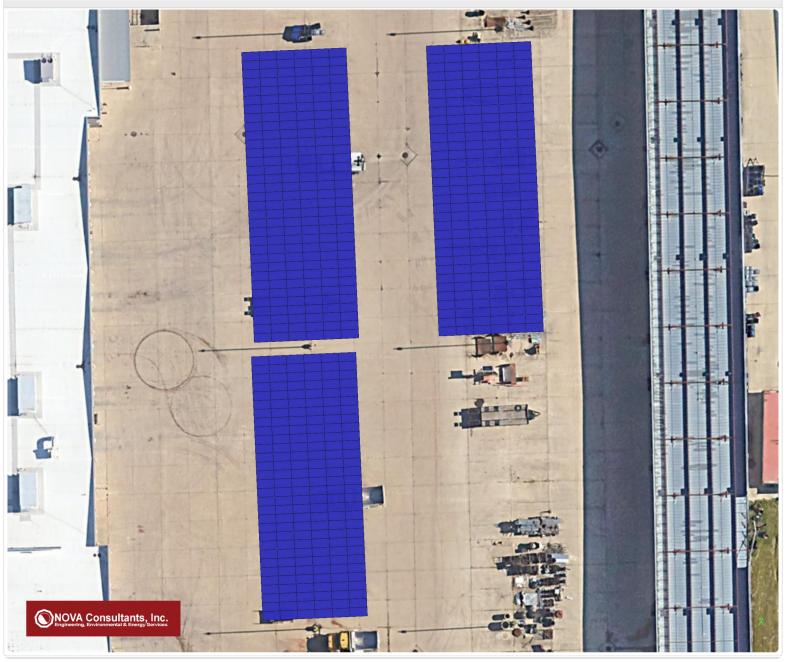
III System Metrics							
Design	Design 1						
Module DC Nameplate	311.0 kW						
Inverter AC Nameplate	254.9 kW Load Ratio: 1.22						
Annual Production	382.0 MWh						
Performance Ratio	85.8%						
kWh/kWp	1,228.0						
Weather Dataset	TMY, 10km grid (42.25,-83.75), NREL (prospector)						
Simulator Version	06c4414b94-fb80585900-1d3828b8b5- c6b0074249						

AC System: 0.5%	
Inverters: 3.1% Clipping: 0.0%	
Wiring: 0.2%	
Mismatch: 3.5% Fradiance: 1.0% Temperature: 0.6%	

	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,432.0	
	POA Irradiance	1,432.0	0.0%
Irradiance	Shaded Irradiance	1,430.8	-0.1%
(kWh/m²)	Irradiance after Reflection	1,370.9	-4.2%
	Irradiance after Soiling	1,343.5	-2.0%
	Total Collector Irradiance	1,343.5	0.0%
Energy	Nameplate	417,935.2	
(kWh)	Output at Irradiance Levels	413,868.3	-1.0%
	Output at Cell Temperature Derate	411,535.2	-0.6%
	Output After Mismatch	397,177.9	-3.5%
	Optimal DC Output	396,400.1	-0.2%

Condition Set												
Description	Con	Condition Set 1										
Weather Dataset	TMY	TMY, 10km grid (42.25,-83.75), NREL (prospector)										
Solar Angle Location	Met	Meteo Lat/Lng										
Transposition Model	Pere	Perez Model										
Temperature Model	Sand	Sandia Model										
	Rac	Rack Type			а	b		Te	Temperature Delta			
Tomporaturo Medal	Fixe	d Tilt			-3.56	-0.075		3°	3°C			
Temperature Model Parameters	Flus	h Mo	unt		-2.81	-0.04	455	0°	0°C			
	East	-Wes	t		-3.56	-0.0	75	3°	С			
	Car	oort			-3.56	-3.56 -0.075		3°C				
Soiling (%)	J	F	М	A	М	J	J	А	S	0	N	D

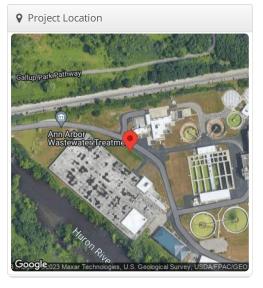
	Constrained DC Output	396,213.3	0.0%					
	Inverter Output	383,876.3	-3.1%					
	Energy to Grid	381,956.9	-0.5%					
Temperature M	etrics							
	Avg. Operating Ambient Temp	Avg. Operating Ambient Temp						
	Avg. Operating Cell Temp		17.9 °C					
Simulation Met	rics							
	C	Operating Hours	4641					
		Solved Hours	4641					

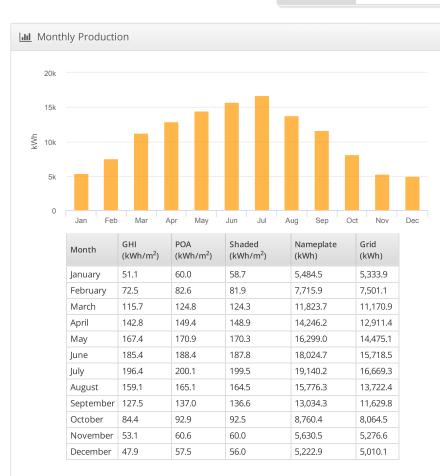

	2	2	2	2	2	2	2	2	2	2	2	2	
Irradiation Variance	5%												
Cell Temperature Spread	4° C												
Module Binning Range	-2.5%	2.5% to 2.5%											
AC System Derate	0.50%	0.50%											
Trackers	Max	imum	n Angle	•			E	Backt	trackin	g			
Trackers	60°						Enabled						
Module	Module Uploa By						oadeo	ded Characterization					
Characterizations		72S30 olar))-540/1	MR (10)00V)	Hel	ioSco	pe		c Sheet racterization, PAN			
Component	Device							Uploaded By		Characterizatio		ation	
Characterizations	Fronius Symo 15.0-3 (480V) (Fronius USA)							lelioScope CEC 2014-08-16				3-16	

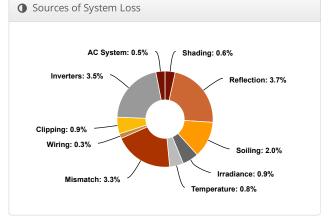
🖨 Compo	onents	
Component	Name	Count
Inverters	Fronius Symo 15.0-3 (480V) (Fronius USA)	17 (254.9 kW)
Strings	10 AWG (Copper)	38 (2,881.1 ft)
Module	JA Solar, JAM72S30-540/MR (1000V) (540W)	576 (311.0 kW)

🛔 Wiring Zones			
Description	Combiner Poles	String Size	Stringing Strategy
E canopy	-	9-17	Along Racking
W canopy	-	9-17	Along Racking

Field S	egments								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
N canopy	Carport	Portrait (Vertical)	7°	267.48767°	0.0 ft	1x1	198	198	106.9 kW
S canopy	Carport	Portrait (Vertical)	7°	267.48767°	0.0 ft	1x1	180	180	97.2 kW
E canopy	Carport	Portrait (Vertical)	7°	267.48767°	0.0 ft	1x1	198	198	106.9 kW


```
Oetailed Layout
```




$100\;kW$ City of Ann Arbor - Water Recovery Plant, 49 S Dixboro Rd, Ann Arbor, MI 48105

📌 Report	
Project Name	City of Ann Arbor - Water Recovery Plant
Project Address	49 S Dixboro Rd, Ann Arbor, MI 48105
Prepared By	Sachit Verma sachit.verma@novaconsultants.com

Lill System Me	trics
Design	100 kW
Module DC Nameplate	101.0 kW
Inverter AC Nameplate	75.0 kW Load Ratio: 1.35
Annual Production	127.5 MWh
Performance Ratio	84.8%
kWh/kWp	1,262.5
Weather Dataset	TMY, 10km grid (42.25,-83.65), NREL (prospector)
Simulator Version	0d27a6099b-50519a2d82-0789180870- 6b85b19541

	Description	Quitaut	% Delta
	Description	Output	% Deita
	Annual Global Horizontal Irradiance	1,403.3	
	POA Irradiance	1,489.3	6.1%
Irradiance	Shaded Irradiance	1,480.9	-0.6%
(kWh/m ²)	Irradiance after Reflection	1,426.2	-3.7%
	Irradiance after Soiling	1,397.7	-2.0%
	Total Collector Irradiance	1,397.7	0.0%
Energy	Nameplate	141,158.5	
(kWh)	Output at Irradiance Levels	139,902.7	-0.9%
	Output at Cell Temperature Derate	138,837.4	-0.8%
	Output After Mismatch	134,315.9	-3.3%
	Optimal DC Output	133,955.8	-0.3%

Condition Set																					
Description	Con	Condition Set 1																			
Weather Dataset	тмү	TMY, 10km grid (42.25,-83.65), NREL (prospector)																			
Solar Angle Location	Met	Meteo Lat/Lng																			
Transposition Model	Pere	Perez Model																			
Temperature Model	Sand	Sandia Model																			
	Rac	Rack Type			а	b	b		Temperature Delta												
	Fixe	Fixed Tilt			-3.56	-0.0	-0.075		3°C												
Temperature Model Parameters	Flus	h Mo	unt		-2.81	-0.0	455		0°C												
	East	-West	:		-3.56	-0.0	75		3°(2											
	Car	oort			-3.56	-0.0	-0.075		-0.075		-0.075		-0.075		-0.075		3°C				
Soiling (%)	J	F	М	A	M	J	J	A		S	0	Ν	D								

	Constrained DC Output	132,727.4	-0.9%			
	Inverter Output	128,124.4	-3.5%			
	Energy to Grid	127,483.7	-0.5%			
Temperature M	etrics					
	Avg. Operating Ambient Temp					
	Avg. Operating Cell Temp					
Simulation Met	Simulation Metrics					
Operating Hours			4629			
Solved Hours			4629			

	2	2	2	2	2	2	2	2	2	2	2	2
Irradiation Variance	5%	5%										
Cell Temperature Spread	4° C	4° C										
Module Binning Range	-2.5%	% to 2	.5%									
AC System Derate	0.50	0.50%										
Trackers	Maximum Angle					Backtracking						
Trackers	60°						Enabled					
Module	Module			Uplo By	oaded Characterizatio		tion					
Characterizations	JAM72S30-540/MR (1000V) (JA Solar)			Helio	scone i i			Sheet acterization, PAN		PAN		
Component	Device			Uploaded By		ed	Chara	cteriza	ation			
Characterizations	Symo Advanced 15.0-3 / 480_OND (Fronius USA)			HelioScope		Default Characterization		ation				

🖴 Components					
Component	Name	Count			
Inverters	Symo Advanced 15.0-3 / 480_OND (Fronius USA)	5 (75.0 kW)			
Strings	10 AWG (Copper)	15 (690.9 ft)			
Module	JA Solar, JAM72S30-540/MR (1000V) (540W)	187 (101.0 kW)			

🛔 Wiring Z	.01165								
Description		Combiner Pol	es		String Size	Stringi	ng Strategy	/	
East middle blo	dg	-			5-17	Along F	Racking		
Canopy		-			5-17	Along F	Racking		
Field Seg	gments								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Powe
Canopy	Carport	Portrait (Vertical)	7°	130.18846°	0.0 ft	1x1	75	75	40.5 kW
East middle bldg	Fixed Tilt	Landscape (Horizontal)	10°	170.55421°	1.6 ft	1x1	112	112	60.5 kW

Attachment 3 – Equipment Datasheets

Harvest the Sunshine

DEEP BLUE 3.0

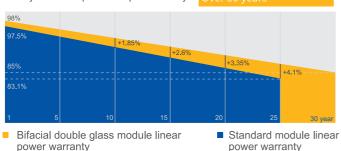
550W MBB Bifacial Mono PERC Half-cell Double Glass Module JAM72D30 525-550/MB Series

Introduction

Assembled with 11BB bifacial PERCIUM cells and half-cell configuration, these double glass modules have the capability of converting the incident light from the rear side together with the front side into electricity, providing higher output power, lower temperature coefficient, less shading loss, as well as enhanced tolerance for mechanical loading.

Higher output power

More reliable, more stable power generation


Less shading effect

Lower temperature coefficient

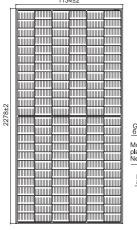
Superior Warranty

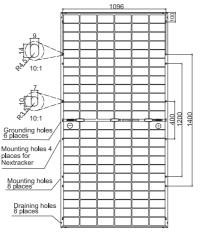
- 12-year product warranty
- 30-year linear power output warranty

Comprehensive Certificates

- IEC 61215, IEC 61730,UL 61215, UL 61730
- ISO 9001: 2015 Quality management systems
- ISO 14001: 2015 Environmental management systems
- ISO 45001: 2018 Occupational health and safety management systems
- IEC TS 62941: 2016 Terrestrial photovoltaic (PV) modules Guidelines for increased confidence in PV module design qualification and type approval

www.jasolar.com Specifications subject to technical changes and tests. JA Solar reserves the right of final interpretation.





JAM72D30 525-550/MB Series

SPECIFICATIONS

MECHANICAL DIAGRAMS

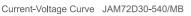
35±1 Units: mm 10:1 Units: mm 10:1 Short frame

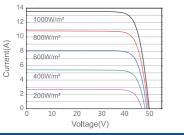
Cell	Mono
Weight	31.8kg±3%
Dimensions	2278±2mm×1134±2mm×35±1mm
Cable Cross Section Size	4mm ² (IEC), 12 AWG(UL)
No. of cells	144(6×24)
Junction Box	IP68, 3 diodes
Connector	MC4-EVO2
Cable Length (Including Connector)	Portrait:300mm(+)/400mm(-); Landscape:1300mm(+)/1300mm(-)
Front Glass/Back Glass	2.0mm/2.0mm
Packaging Configuration	31pcs/Pallet 589pcs/40HQ Container

Remark: customized frame color and cable length available upon request

ELECTRICAL PARAMETERS AT STC JAM72D30 JAM72D30 JAM72D30 JAM72D30 JAM72D30 JAM72D30 TYPE -525/MB -530/MB -535/MB -540/MB -545/MB -550/MB 525 530 535 540 545 550 Rated Maximum Power(Pmax) [W] 49.30 49.60 49.90 49.15 49.45 49.75 Open Circuit Voltage(Voc) [V] 41.15 41.31 41.47 41.64 41.80 41.96 Maximum Power Voltage(Vmp) [V] 14 00 13.72 13.86 Short Circuit Current(Isc) [A] 13.65 13.79 13.93 12.97 12.76 12.83 12.90 13.04 13.11 Maximum Power Current(Imp) [A] 20.3 20.5 20.7 20.9 21.1 21.3 Module Efficiency [%] Power Tolerance 0~+5W +0.045%/°C Temperature Coefficient of $Isc(\alpha_Isc)$ Temperature Coefficient of $Voc(\beta_Voc)$ -0.275%/°C Temperature Coefficient of Pmax(y_Pmp) -0.350%/°C

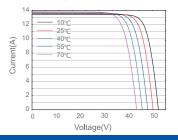
STC


Irradiance 1000W/m², cell temperature 25°C, AM1.5G


Remark: Electrical data in this catalog do not refer to a single module and they are not part of the offer. They only serve for comparison among different module types.


ELECTRICAL CHAR	ACTERIS	TICS WIT	H 10% SC		ADIATION	RATIO	OPERATING CONDI	TIONS
TYPE	JAM72D30 -525/MB	JAM72D30 -530/MB	JAM72D30 -535/MB	JAM72D30 -540/MB	JAM72D30 -545/MB	JAM72D30 -550/MB	Maximum System Voltage	1500V DC
Rated Max Power(Pmax) [W]	562	567	572	578	583	589	Operating Temperature	-40°C~+85°C
Open Circuit Voltage(Voc) [V]	49.54	49.67	49.80	49.93	50.03	50.21	Maximum Series Fuse Rating	30A
Max Power Voltage(Vmp) [V]	41.14	41.31	41.47	41.65	41.78	41.95	Maximum Static Load,Front* Maximum Static Load,Back*	5400Pa(112 lb/ft²) 2400Pa(50 lb/ft²)
Short Circuit Current(Isc) [A]	14.61	14.68	14.76	14.83	14.91	14.98	NOCT	45±2°C
Max Power Current(Imp) [A]	13.65	13.73	13.80	13.88	13.95	14.03	Bifaciality**	70%±10%
Irradiation Ratio(rear/front)			10%				Fire Performance	UL Type 29

*For NexTracker installations, Maximum Static Load, Front is 2400Pa while Maximum Static Load, Back is 2400Pa. **Bifaciality=Pmax,rear/Rated Pmax,front


CHARACTERISTICS

Current-Voltage Curve JAM72D30-540/MB

Premium Cells, Premium Modules

FRONIUS SYMO ADVANCED

Powering three-phase projects that last - now with integrated SunSpec PLC

Featuring ten models ranging from 10 kW to 24 kW, the Fronius Symo Advanced is the ideal inverter for commercial applications.

The new Advanced versions combine the benefits of the Fronius Symo with additional value for states with Module Level Shutdown requirements including integrated PLC transmitter for SunSpec Rapid Shutdown communication standard, compliance with NEC pre-2014, 2014 and 2017, zero tilt mounting, light weight and field serviceability.

TECHNICAL DATA FRONIUS SYMO ADVANCED (208-240 V VERSIONS)

INPUT DATA	SYMO 10.0-	-3 208-240	SYMO 12.0-3 208-240		
	208 V	240 V	208 V	240 V	
Max. PV generator output (P _{dc max})	15 kW	V _{peak}	18 k	Wpeak	
Max. input current (I _{dc max1} / I _{dc max2})		25 A /	16.5 A		
Max. array short circuit current (MPP1 / MPP2)		37.5 A /	24.8 A		
Nominal input voltage	350 V	370 V	350 V	370 V	
DC input voltage range (U _{dc min} + U _{dc max})		200 -	600 V		
Feed-in start voltage (U _{dc start})		200) V		
Usable MPP voltage range (U _{mpp min} + U _{mpp max})		300 -	500 V		
Max. input voltage	600 V				
Admissable conductor size DC	AWG 14-AWG 6 copper direct, AWG 6 aluminum direct, AWG 4-AWG 2 copper or aluminum with input combiner				
Number of MPP trackers	2				

OUTPUT DATA	SYMO 10.0	-3 208-240	SYMO 12.0-3 208-240			
	208 V	240 V	208 V	240 V		
AC nominal output (P ac,r)	9,99	95 W	11,995 W			
Max. output power	9,99	95 VA	11,995 VA			
Output configuration	208 / 240 V					
Frequency range (fmin - fmax)		45 - 60 Hz				
Admissable conductor size AC		AWG 14	- AWG 6			
Total harmonic distortion	< 1	.5 %	< 1.75 %			
Power factor (cos $\phi_{ac,r}$)	0-1 ind. / cap.					
Max. continuous output current	27.7 A	24 A	33.3 A	28.9 A		
OCPD/AC breaker size	35 A	30 A	45 A	40 A		

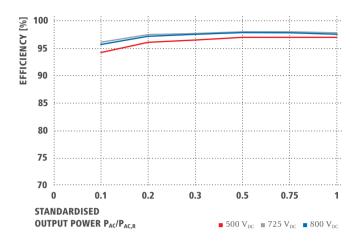
EFFICIENCY	SYMO 10.0	-3 208-240	SYMO 12.0-3 208-240		
	208 V	240 V	208 V	240 V	
Max. Efficiency	97.0 %				
CEC Efficiency	96.	5 %	96.5 %		

TECHNICAL DATA FRONIUS SYMO (208-240 V VERSIONS)

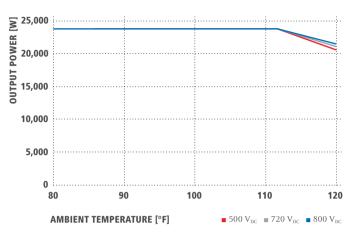
GENERAL DATA	SYMO 10.0-3 208-240	SYMO 12.0-3 208-240			
Dimensions (height x width x depth)	510 x 725 x 225 mm (20.1 x 28.5 x 8.9 inches)				
Weight	41.7 kg ((91.9 lbs)			
Protection Class	NEM	IA 4X			
Night time consumption	< 1	1 W			
Inverter topology	Transformerless				
Cooling	Regulated air cooling				
Installation	Indoor and outdoor installation, tilt from 0 - 90 degrees ¹				
DIN rail (length x width x depth)	max. 106 x 90 x 66 mm (max. 4.2 x 3.5 x 2.6 inches)				
Ambient operating temperature range	-40 - +60 °C (-40 - +140 °F)			
Permitted humidity	0 - 100 % (no	n-condensing)			
Elevation	max. input voltage of 600 V up to 3,400 m (11.155 ft)				
DC connection technology	6x DC+ and 6x DC- screw terminals for copper (solid / s	stranded / fine stranded) or aluminum (solid / stranded)			
AC connection technology	Screw terminals 14-6 AWG				
Certificates and compliance with standards	functions: AFCI, RCMU and isolation monitoring), IEEE 1547-2003, IEE	r California Rule 21 and Hawaiian Electric Code Rule 14H), UL1998 (for E 1547a-2014, IEEE 1547.1-2003, ANSI/IEEE C62.41, FCC Part 15 A & B, 699B Issue 2 -2013, CSA TIL M-07 Issue 1 -2013			

¹ Fronius Shade Cover required for installation angles less than 15 degree

PROTECTIVE DEVICES	SYMO 10.0-3 208-240	SYMO 12.0-3 208-240		
DC reverse polarity protection	Yes			
Anti islanding	Yes			
Over temperature protection	Output power dera	ting /Active cooling		
AFCI	Yes			
Rapid shutdown compliant	Ye	Yes		
Ground Fault Protection with Isolation Monitor Interrupter	Ye	Yes		
DC disconnector	Ye	25		


INTERFACES	SYMO 10.0-3 208-240	SYMO 12.0-3 208-240		
USB (A socket)	Datalogging and inverter update possible via USB			
2x RS422 (RJ45 socket)	Fronius Solar Net, interface protocol			
Power Line Communication (PLC)	Yes - SunSpec Rapid Shutdown communication standard			
Wi-Fi/Ethernet/Serial/ Datalogger and webserver ²	webserver ² Wireless standard 802.11 b/g/n / Fronius Solar.web, SunSpec Modbus TCP, JSON / SunSpec Modb			
6 inputs and 4 digital I/Os ²	Load management; signaling, multipurpose I/O			

 $^{\scriptscriptstyle 2}$ Available with the Fronius Datamanager 2.0 Card (only one card required for up to 100 inverters)


TECHNICAL DATA FRONIUS SYMO (480 V VERSIONS)

INPUT DATA	SYMO 15.0-3 480	SYMO 20.0-3 480	SYMO 22.7-3 480	SYMO 24.0-3 480
Max. PV generator output (P _{dc max})	22.5 kW _{peak}	30 kW _{peak}	34 kW _{peak}	36 kW _{peak}
Max. input current (I _{dc max1} / I _{dc max2})	33 A / 25 A			
Max. array short circuit current (MPP1 / MPP2)	49.5 A / 37.5 A			
Nominal input voltage	685 V	710 V	720 V	
DC input voltage range (U _{dc min} + U _{dc max})	200 - 1,000 V			
DC startup voltage	200 V			
Usable MPP voltage range (U _{mpp min} + U _{mpp max})	350 - 800 V	450 - 800 V	500 - 800 V	
Max. input voltage	1,000 V			
Admissable conductor size DC	AWG 14 - AWG 6 copper direct, AWG 6 aluminum direct, AWG 4 - AWG 2 copper or aluminum with input combiner			
Number of MPP trackers	2			

FRONIUS SYMO 24.0-3 480 CEC **EFFICIENCY CURVE**

FRONIUS SYMO 24.0-3 480 TEMPERATURE DERATING CURVE

TECHNICAL DATA FRONIUS SYMO (480 V VERSIONS)

OUTPUT DATA	SYMO 15.0-3 480	SYMO 20.0-3 480	SYMO 22.7-3 480	SYMO 24.0-3 480
AC nominal Ouput (Pac,r)	14,995 W	19,995 W	22,727 W	23,995 W
Max. ouput power	14,995 VA	19,995 VA	22,727 VA	23,995 VA
Grid connection		480 / 277 V WYE ³		
Frequency (frequency range f _{min} - f _{max})		60 Hz (45 - 65 Hz)		
Admissable conductor size (AC)		AWG 14-A	AWG 6	
Total harmonic distortion	< 1.5 %	< 1.5 % < 1 % < 1.25 %		
Power factor (Cos ac,r)		0-1 ind. /	cap.	
Max. continuous output current	18 A	18 A 24 A 27.3 A		
OCPD/AC breaker size	25 A	30 A	35 A	40 A

EFFICIENCY	SYMO 15.0-3 480	SYMO 20.0-3 480	SYMO 22.7-3 480	SYMO 24.0-3 480
Max. Efficiency	98 %			
CEC Efficiency	97 %	97.5 %		

GENERAL DATA	SYMO 15.0-3 480	SYMO 20.0-3 480	SYMO 22.7-3 480	SYMO 24.0-3 480		
Dimensions (height x width x depth)		510 x 725 x 225 mm (20.1 x 28.5 x 8.9 inches)				
Weight		43.4 kg (95.7 lbs)				
Protection Class	NEMA 4X					
Night time consumption		< 1 W				
Inverter topology		Transformerless				
Cooling		Regulated air cooling				
Installation		Indoor and outdoor installation, tilt from 0 - 90 degree 4				
DIN rail (length x width x depth)		max. 106 x 90 x 66 mm (max. 4.2 x 3.5 x 2.6 inches)				
Ambient operating temperature range		-40 - +60 °C (-4	40°F - + 140 °F)			
Permitted humidity		0 - 100 % (no	on-condensing)			
Elevation	2000 m (6562 fi) with a max. input voltage of 1000 V	/ 3400 m (11155 ft) with a max. input	voltage of 850 V		
DC connection technology	6x DC+ and 6x I	OC- screw terminals for copper (solid /	stranded / fine stranded) or aluminum	(solid / stranded)		
AC connection technology		Screw termin	als 14-6 AWG			
Certificates and compliance with standards	UL 1741-2010 Second Edition (incl. UL1741 Supplement SA 2016-09 for California Rule 21 and Hawaiian Electric Code Rule 14H), UL1998 (for functions: AFCI, RCMU and isolation monitoring), IEEE 1547-2003, IEEE 1547a-2014, IEEE 1547.1-2003, ANSI/IEEE C62.41, FCC Part 15 & B, NEC 2017 Article 690, C22. 2 No. 107.1-16, UL1699B Issue 2 -2013, CSA TIL M-07 Issue 1 -2013					

³ +N for sensing purposes - no current carrying conductor
 ⁴ Fronius Shade Cover required for installation angles less than 15 degree

PROTECTIVE DEVICES	SYMO 15.0-3 480	SYMO 20.0-3 480	SYMO 22.7-3 480	SYMO 24.0-3 480
DC reverse polarity protection	Yes			
Anti islanding		Ye	s	
Over temperature protection	Ouput power derating / Active cooling			
AFCI	Yes			
Rapid shutdown compliant	Yes			
Ground Fault Protection with Isolation Monitor Interrupter	Yes			
DC disconnector		Yes		

INTERFACES	SYMO 15.0-3 480	SYMO 20.0-3 480	SYMO 22.7-3 480	SYMO 24.0-3 480
USB (A socket)	Datalogging and inverter update possible via USB			
2x RS422 (RJ45 socket)	Fronius Solar Net, interface protocol			
Power Line Communication (PLC)	Yes – SunSpec Rapid Shutdown communication standard			
Wi-Fi/Ethernet/Serial/ Datalogger and webserver ²	Wireless standard 802.11 b/g/n / Fronius Solar.web, SunSpec Modbus TCP, JSON / SunSpec Modbus RTU			c Modbus RTU
6 inputs and 4 digital I/Os ²	Load management; signaling, multipurpose I/O			

² Available with the Fronius Datamanager 2.0 Card (only one card required for up to 100 inverters)

/ Perfect Welding / Solar Energy / Perfect Charging

THREE BUSINESS UNITS, ONE GOAL: TO SET THE STANDARD THROUGH TECHNOLOGICAL ADVANCEMENT.

What began in 1945 as a one-man operation now sets technological standards in the fields of welding technology, photovoltaics and battery charging. Today, the company has around 4,760 employees worldwide and 1,253 patents for product development show the innovative spirit within the company. Sustainable development means for us to implement environmentally relevant and social aspects equally with economic factors. Our goal has remained constant throughout: to be the innovation leader.

Further information about all Fronius products and our global sales partners and representatives can be found at www.fronius.com

Fronius USA LLC 6797 Fronius Drive Portage, IN 46368 USA pv-support-usa@fronius.com www.fronius.us/pv Fronius International GmbH Froniusplatz 1 4600 Wels Austria pv-sales@fronius.com www.fronius.com

FRONIUS PRIMO

/ Solutions for a brighter tomorrow.

/ SnapINverter

mounting system

/Wi-Fi®*

interface

/ Design

Rapid Shutdown Box as a reliable rapid shutdown solution outside the PV Array boundary.

Flexibility

/ With power categories ranging from 3.8 kW to 15.0 kW, the transformerless Fronius Primo is the ideal compact single-phase inverter for residential applications. The sleek design is equipped with the SnapINverter hinge mounting system which allows for lightweight, secure and convenient installation. The Fronius Primo has several integrated features that set it apart from competitors including dual powerpoint trackers, high system voltage, a wide input voltage range, Wi-Fi* and SunSpec Modbus interface, and Fronius' online and mobile monitoring platform Fronius Solar.web. The Fronius Primo also works seamlessly with the Fronius

/ Smart Grid

Ready

/ Arc Fault Circuit

Interruption

TECHNICAL DATA FRONIUS PRIMO

/ PC board

replacement process

GENERAL DATA	FRONIUS PRIMO 3.8 - 8.2	FRONIUS PRIMO 10.0-15.0	
Dimensions (width x height x depth)	16.9 x 24.7 x 8.1 in.	20.1 x 28.5 x 8.9 in.	
Weight	47.29 lb.	82.5 lbs.	
Protection Class		IA 4X	
Night time consumption	<]	W	
Inverter topology		rmerless	
Cooling	Variable speed fan		
Installation	Indoor and outdoor installation		
Ambient operating temperature range	-40 - 131°F (-40 - 55°C)	-40 - 140°F (-40 - 60°C)	
Permitted humidity		00 %	
Elevation		13123 ft)	
DC connection terminals	fine stranded) or aluminum (solid / stranded)	4x DC+1, 2x DC+2 and 6x DC- screw terminals for copper (solid / stranded / fine stranded) or aluminum (solid / stranded)	
AC connection terminals		als 12 - 6 AWG	
Revenue Grade Metering	* *	C12.1 accuracy)	
Certificates and compliance with standards	UL 1741-2010 Second Edition (incl. UL1741 Supplement SA 2016-09 for California Rule 21 and Hawaiian Electric Code Rule 14H), UL1998 (for functions: AFCI, RCMU and isolation monitoring), IEEE 1547-2003, IEEE 1547.1-2003, ANSI/IEEE C62.41, FCC Part 15 A & B, NEC 2017 Article 690, C22. 2 No. 107.1-16, UL1699B Issue 2 -2013, CSA TIL M-07 Issue 1 – 2013	UL 1741-2010 Second Edition (incl. UL1741 Supplement SA 2016-09 for California Rule 21 and Hawaiian Electric Code Rule 14H), UL1998 (for functions: AFCL, RCMU and isolation monitoring), IEEE 1547-2003, IEEE 1547.1-2003, ANSI/IEEE C62.41, FCC Part 15 A & B, NEC 2017 Article 690, C22. 2 No. 107.1-16, UL1699B Issue 2 -2013, CSA TIL M-07 Issue 1 -2013	
PROTECTIVE DEVICES	STANDARD WITH A	ALL PRIMO MODELS	
DC reverse polarity protection	Y	/es	
Anti Islanding	Internal; in accordance with UL 1741-2	2016-09, IEEE 1547-2003 and NEC 2017	
Over temperature protection	Output power dera	ting/ Active cooling	
AFCI	Y	/es	
Rapid shutdown compliant	Per Sect. 690.12 of 2014 (of	NEC 2017 prior to Jan 2019)	
Ground Fault Protection with Isolation Monitor Interrupter	Ŷ	/es	
DC disconnect	Ŷ	7es	
INTERFACES	STANDARD WITH A	ALL PRIMO MODELS	
USB (A socket)	Datalogging and inverte	r update possible via USB	
2x RS422 (RJ45 socket)	Fronius Solar Net	, interface protocol	
Wi-fi*/Ethernet LAN		s Solar.web, SunSpec Modbus TCP, JSON	
Datalogger and Webserver	Incl	uded	
Serial RS485	SunSpec Modbus RT	U or meter connection	
6 inputs or 4 digital inputs/outputs	Load management; sign	naling, multipurpose I/O	
	0,0		

*The term Wi-Fi® is a registered trademark of the Wi-Fi Alliance.

INPUT DATA		PRIMO 3.8-1	PRIMO 5.0-1	PRIMO 6.0-1	PRIMO 7.6-1	PRIMO 8.2-1
Recommended PV power (kWp)		3.0 - 6.0 kW	4.0 - 7.8 kW	4.8 - 9.3 kW	6.1 - 11.7 kW	6.6 - 12.7 kW
Max. usable input current (MPPT 1/MPPT 2)				18 A / 18 A		
Max. usable input current (MPPT 1+MPPT 2)				36 A		
Max. array short circuit current (1.5* lmax) (MPP	T1/MPPT2)			27 A / 27 A		
Nominal input voltage		410 V	420 V	420 V	420V	420 V
Operating voltage range				80 V - 600 V		
DC startup voltage				80 V		
MPP Voltage Range		200-480 V	200-400 V	240-480 V	250-480 V	270-480 V
Max. input voltage				600 V (1000 V optio	nal1)	
Admissible conductor size DC		AWG 14 - AWG 6 copper (solid / stranded / fine stranded)(AWG 10 copper or AWG 8 aluminium for overcurrent p up to 60A, from 61 to 100A minimum AWG 8 for copper or AWG 6 aluminium has to be used) , AWG 6 - AWG 2 stranded) MultiContactWiringable with AWG 12				
Number of MPPT			strandedj	2	ne with AVVG 12	
OUTPUT DATA		PRIMO 3.8-1	PRIMO 5.0-1	PRIMO 6.0-1	PRIMO 7.6-1	PRIMO 8.2-1
Max. output power	208 V/240 V	3800 VA/3800 VA	5000 VA/5000 VA	6000 VA/6000 V	A 7600 VA/7600 VA	7900 VA/8200 V
Output configuration		,	,	208/240 V	,	,
Frequency range (adjustable)				45.0 - 55.0 Hz / 50 - 6	i6 Hz	
Operating frequency range default for CAL setup	s			–/ 58.5 - 60.5 Hz		
Departing frequency range default for HI setups				-/ 57.0 - 63.0 Hz		
Nominal operating frequency				60 Hz		
Admissable conductor size AC				AWG 14 - AWG	6	
Fotal harmonic distortion				< 5.0 %	-	
Power factor range				0.85-1 ind./cap		
Max. continuous output current	208 V	18.3 A	24.0 A	28.8 A	36.5 A	38.0 A
wax. continuous output current	240 V	15.8 A	20.8 A	25.0 A	31.7 A	34.2 A
CDD/ACharles to	240 V 208V		30 A	40 A	50 A	
OCPD/AC breaker size		25 A				50 A
7 200 1	240 V	20 A	30 A	35 A	40 A	45 A
Max. Efficiency		96.7 %	96.9 %	96.9 %	96.9 %	97.0 %
CEC Efficiency		95.0 %	95.5 %	96.0 %	96.0 %	96.5 %
NPUT DATA		PRIMO 10.0-1	PRIM	0 11.4-1	PRIMO 12.5-1	PRIMO 15.0-1
Recommended PV power (kWp)		8.0 - 12.0 kW	9.1 -	13.7 kW	10.0 - 15.0 kW	12.0 - 18.0 kW
Max. usable input current (MPPT 1/MPPT 2)				33.0 / 18.0 A		
Max. usable input current (MPPT 1+MPPT 2)				51 A		
Max. array short circuit current (1.5 * Imax)				49.5 A/ 27.0		
Nominal input voltage		655 V	6	60 V	665 V	680 V
Operating voltage range				80 V - 1,000 V		
				80 V		
		220-800 V	240	0-800 V	260-800 V	320-800 V
MPP Voltage Range				1000 17		
DC startup voltage MPP Voltage Range Max. input voltage Admissible conductor size DC	А	* *	0A minimum AWG 8 fo	or copper or AWG 6 alu um with optional inpu	er or AWG 8 aluminium for ov iminium has to be used), AWG it combiner	*
MPP Voltage Range Max. input voltage Admissible conductor size DC Number of MPPT	А	* *	0A minimum AWG 8 fo min	a direct (AWG 10 copper or copper or AWG 6 alu um with optional input 2	uminium has to be used), AWG tt combiner	*
MPP Voltage Range Max. input voltage Admissible conductor size DC	А	* *	0A minimum AWG 8 fo min	direct (AWG 10 copper or copper or AWG 6 all um with optional inpu	uminium has to be used), AWG tt combiner	A
MPP Voltage Range Max. input voltage Admissible conductor size DC Number of MPPT ntegrated DC string fuse holders	A	* *	0A minimum AWG 8 fc min 4- and 4+ fo	direct (AWG 10 copp or copper or AWG 6 ah um with optional inpu 2 r MPPT 1 / no fusing r	uminium has to be used), AWG tt combiner	G 4 - AWG 2 copper or
MPP Voltage Range Max. input voltage Admissible conductor size DC Number of MPPT Integrated DC string fuse holders DUTPUT DATA		up to 60A, from 61 to 10 PRIMO 10.0-1	0A minimum AWG 8 fc min 4- and 4+ fo PRIM	direct (AWG 10 coppe or copper or AWG 6 alt um with optional inpu 2 r MPPT 1 / no fusing r 0 11.4-1	uminium has to be used), AWG tt combiner equired on MPPT 2 PRIMO 12.5-1	G 4 - AWG 2 copper or PRIMO 15.0-1
MPP Voltage Range Max. input voltage Admissible conductor size DC Number of MPPT ntegrated DC string fuse holders DUTPUT DATA Max. output power	208 V/240 V	up to 60A, from 61 to 10	0A minimum AWG 8 fc min 4- and 4+ fo PRIM	direct (AWG 10 copper or copper or AWG 6 alt um with optional inpu 2 r MPPT 1 / no fusing r 0 11.4-1 A/11400 VA	uminium has to be used), AWG tt combiner equired on MPPT 2 PRIMO 12.5-1 12500 VA/12500 VA	G 4 - AWG 2 copper or PRIMO 15.0-1
MPP Voltage Range Max. input voltage Admissible conductor size DC Number of MPPT Integrated DC string fuse holders DUTPUT DATA Max. output power Dutput configuration		up to 60A, from 61 to 10 PRIMO 10.0-1	0A minimum AWG 8 fc min 4- and 4+ fo PRIM	direct (AWG 10 copport or copper or AWG 6 alu um with optional inpu- 2 r MPPT 1 / no fusing r 0 11.4-1 A/11400 VA 1-NPE 208/240 V	uminium has to be used), AWG tt combiner equired on MPPT 2 PRIMO 12.5-1 12500 VA/12500 VA	G 4 - AWG 2 copper or PRIMO 15.0-1
MPP Voltage Range Max. input voltage Admissible conductor size DC Number of MPPT ntegrated DC string fuse holders DUTPUT DATA Max. output power Dutput configuration Frequency range (adjustable)	208 V/240 V	up to 60A, from 61 to 10 PRIMO 10.0-1	0A minimum AWG 8 fc min 4- and 4+ fo PRIM	direct (AWG 10 copport or copper or AWG 6 alu um with optional inpu- 2 r MPPT 1 / no fusing r 0 11.4-1 A/11400 VA 1-NPE 208/240 45-55 Hz / 50-66 l	aminium has to be used), AWG tt combiner equired on MPPT 2 PRIMO 12.5-1 12500 VA/12500 VA V Hz	G 4 - AWG 2 copper or PRIMO 15.0-1
MPP Voltage Range Max. input voltage Max. input voltage Mumber of MPPT Integrated DC string fuse holders DUTPUT DATA Max. output power Dutput configuration Frequency range (adjustable) Deperating frequency range default for CAL setupe	208 V/240 V	up to 60A, from 61 to 10 PRIMO 10.0-1	0A minimum AWG 8 fc min 4- and 4+ fo PRIM	direct (AWG 10 copport or copper or AWG 6 alu um with optional inpu- 2 r MPPT 1 / no fusing r 0 11.4-1 A/11400 VA 1-NPE 208/240 45-55 Hz / 50-66 1 -/ 58.5 - 60.5 Hz	aminium has to be used), AWG tt combiner equired on MPPT 2 PRIMO 12.5-1 12500 VA/12500 VA V Hz	G 4 - AWG 2 copper or PRIMO 15.0-1
MPP Voltage Range Max. input voltage Max. input voltage Mumber of MPPT Integrated DC string fuse holders DUTPUT DATA Max. output power Dutput configuration Frequency range (adjustable) Deperating frequency range default for CAL setups	208 V/240 V	up to 60A, from 61 to 10 PRIMO 10.0-1	0A minimum AWG 8 fc min 4- and 4+ fo PRIM	direct (AWG 10 copport or copper or AWG 6 alu um with optional inpu- 2 r MPPT 1 / no fusing r 0 11.4-1 A/11400 VA 1-NPE 208/240 45-55 Hz / 50-66 I -/ 58.5 - 60.5 Hz -/ 57.0 - 63.0 Hz	aminium has to be used), AWG tt combiner equired on MPPT 2 PRIMO 12.5-1 12500 VA/12500 VA V Hz	G 4 - AWG 2 copper or PRIMO 15.0-1
MPP Voltage Range Max. input voltage Max. input voltage Admissible conductor size DC Number of MPPT Integrated DC string fuse holders DUTPUT DATA Max. output power Dutput configuration Frequency range (adjustable) Operating frequency range default for CAL setup: Operating frequency range default for HI setups Nominal operating frequency	208 V/240 V s A	up to 60A, from 61 to 10 PRIMO 10.0-1 9995 VA/9995 VA WG 10- AWG 2 copper (s	0A minimum AWG 8 fc min 4- and 4+ fo PRIM 11400 Va olid/stranded/fine strand	direct (AWG 10 copport or copper or AWG 6 alu um with optional inpu- 2 r MPPT 1 / no fusing r 0 11.4-1 A/11400 VA 1-NPE 208/240 45-55 Hz / 50-66 1 -/ 58.5 - 60.5 Hz -/ 57.0 - 63.0 Hz 60 Hz ded)(AWG 10 copper o um has to be used), AV	aminium has to be used), AWG tt combiner equired on MPPT 2 PRIMO 12.5-1 12500 VA/12500 VA V Hz : : : : : : : : :	G 4 - AWG 2 copper or PRIMO 15.0-1 13750 VA/15000 V urrent protective device
MPP Voltage Range Max. input voltage Max. input voltage Admissible conductor size DC Number of MPPT Integrated DC string fuse holders DUTPUT DATA Max. output power Dutput configuration Trequency range (adjustable) Deparating frequency range default for CAL setups Nominal operating frequency range default for HI setups Nominal operating frequency Mumissible conductor size AC	208 V/240 V s A	up to 60A, from 61 to 10 PRIMO 10.0-1 9995 VA/9995 VA WG 10- AWG 2 copper (s	0A minimum AWG 8 fc min 4- and 4+ fo PRIM 11400 Va olid/stranded/fine strand	direct (AWG 10 coppor or copper or AWG 6 alu um with optional inpu 2 r MPPT 1 / no fusing r 0 11.4-1 A/11400 VA 45-55 Hz / 50-66 1 -/ 58.5 - 60.5 Hz -/ 57.0 - 63.0 Hz 60 Hz ded)(AWG 10 copper o um has to be used), AW able with AWG 1	aminium has to be used), AWG tt combiner equired on MPPT 2 PRIMO 12.5-1 12500 VA/12500 VA V Hz : : : : : : : : :	G 4 - AWG 2 copper or PRIMO 15.0-1 13750 VA/15000 V urrent protective device
MPP Voltage Range Max. input voltage Max. input voltage Admissible conductor size DC Number of MPPT Integrated DC string fuse holders DUTPUT DATA Max. output power Dutput configuration Trequency range (adjustable) Deprating frequency range default for CAL setups Nominal operating frequency range default for HI setups Nominal operating frequency Admissible conductor size AC Fotal harmonic distortion	208 V/240 V s A	up to 60A, from 61 to 10 PRIMO 10.0-1 9995 VA/9995 VA WG 10- AWG 2 copper (s	0A minimum AWG 8 fc min 4- and 4+ fo PRIM 11400 Va olid/stranded/fine strand	direct (AWG 10 copport or copper or AWG 6 alu um with optional inpu- 2 r MPPT 1 / no fusing r 0 11.4-1 A/11400 VA 1-NPE 208/240 45-55 Hz / 50-66 I -/ 58.5 - 60.5 Hz -/ 57.0 - 63.0 Hz 60 Hz ded)(AWG 10 copper o um has to be used), AW able with AWG 1 < 2.5 %	aminium has to be used), AWG tt combiner equired on MPPT 2 PRIMO 12.5-1 12500 VA/12500 VA V Hz : : : : : : : : :	G 4 - AWG 2 copper or PRIMO 15.0-1 13750 VA/15000 V urrent protective device
MPP Voltage Range Max. input voltage Max. input voltage Maximissible conductor size DC Number of MPPT Integrated DC string fuse holders DUTPUT DATA Max. output power Dutput configuration Frequency range (adjustable) Duprating frequency range default for CAL setupe Operating frequency range default for CAL setupe Nominal operating frequency Nominal operating frequency Mamissible conductor size AC Fotal harmonic distortion Power factor range	208 V/240 V s A	up to 60A, from 61 to 10 PRIMO 10.0-1 9995 VA/9995 VA WG 10- AWG 2 copper (s 60 A, from 61 to 100A m	0A minimum AWG 8 fc min 4- and 4+ fo PRIM 11400 V/ olid/stranded/fine stranc inimum AWG 6 alumin	direct (AWG 10 coppor or copper or AWG 6 alu um with optional inpu 2 r MPPT 1 / no fusing r 0 11.4-1 A/11400 VA 45-55 Hz / 50-66 1 -/ 58.5 - 60.5 Hz -/ 57.0 - 63.0 Hz 60 Hz ded)(AWG 10 copper o um has to be used), AW able with AWG 1	aminium has to be used), AWG tt combiner equired on MPPT 2 PRIMO 12.5-1 12500 VA/12500 VA V Hz tr tr AWG 8 aluminum for overcu VG 6-AWG 2 copper (solid/stra 2	G 4 - AWG 2 copper or PRIMO 15.0-1 13750 VA/15000 V urrent protective devic anded) Multi Contact V
MPP Voltage Range Max. input voltage Admissible conductor size DC Number of MPPT	208 V/240 V s 208 V/240 V 4 5 208 V	up to 60A, from 61 to 10 PRIMO 10.0-1 9995 VA/9995 VA WG 10- AWG 2 copper (s 60 A, from 61 to 100A m 48.1 A	0A minimum AWG 8 fe min 4- and 4+ fo PRIM 11400 V/ olid/stranded/fine stranc inimum AWG 6 alumin	direct (AWG 10 coppor or copper or AWG 6 alu um with optional inpu 2 r MPPT 1 / no fusing r 0 11.4-1 A/11400 VA 1-NPE 208/240 45-55 Hz / 50-66 1 -/ 58.5 - 60.5 Hz -/ 57.0 - 63.0 Hz 60 Hz ded)(AWG 10 copper o um has to be used), AV able with AWG 1 < 2.5 % 0-1 ind,/cap. E& A	aminium has to be used), AWG tt combiner equired on MPPT 2 PRIMO 12.5-1 12500 VA/12500 VA V Hz : : r AWG 8 aluminum for overcu VG 6-AWG 2 copper (solid/stra 2 60.1 A	G 4 - AWG 2 copper or PRIMO 15.0-1 13750 VA/15000 V urrent protective devic anded) Multi Contact V 66.1 A
MPP Voltage Range Max. input voltage Max. input voltage Admissible conductor size DC Number of MPPT Integrated DC string fuse holders DUTPUT DATA Max. output power Dutput configuration Frequency range (adjustable) Operating frequency range default for CAL setups Operating frequency range default for HI setups Nominal operating frequency Admissible conductor size AC Fotal harmonic distortion Power factor range Max. continuous output current	208 V/240 V s 208 V/240 V 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	up to 60A, from 61 to 10 PRIMO 10.0-1 9995 VA/9995 VA WG 10- AWG 2 copper (s 60 A, from 61 to 100A m 48.1 A 41.6 A	0A minimum AWG 8 fc min 4- and 4+ fo PRIM 11400 V/ olid/stranded/fine stranc inimum AWG 6 alumin 5/ 5/ 4/5	direct (AWG 10 coppor or copper or AWG 6 ah um with optional inpu 2 r MPPT 1 / no fusing r 0 11.4-1 A/11400 VA 1-NPE 208/240 45-55 Hz / 50-66 1 -/ 58.5 - 60.5 Hz -/ 57.0 - 63.0 Hz 60 Hz ded)(AWG 10 copper o um has to be used), AV able with AWG 1 < 2.5 % 0-1 ind,/cap. 4.8 A 7.5 A	aminium has to be used), AWG tt combiner equired on MPPT 2 PRIMO 12.5-1 12500 VA/12500 VA V Hz : : : r AWG 8 aluminum for overcu VG 6-AWG 2 copper (solid/stra 2 60.1 A 52.1 A	9 4 - AWG 2 copper or PRIMO 15.0-1 13750 VA/15000 V urrent protective devic anded) Multi Contact V 66.1 A 62.5 A
APP Voltage Range Max, input voltage Max, input voltage Max, input voltage Mumber of MPPT Integrated DC string fuse holders DUTPUT DATA Max, output power Dutput configuration Frequency range default for CAL setup: Operating frequency range default for CAL setup: Operating frequency range default for HI setups Nominal operating frequency Minissible conductor size AC Total harmonic distortion Power factor range Max, continuous output current	208 V/240 V s A 208 V/240 V 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	up to 60A, from 61 to 10 PRIMO 10.0-1 9995 VA/9995 VA WG 10- AWG 2 copper (s 60 A, from 61 to 100A m 48.1 A 41.6 A 70 A	0A minimum AWG 8 fc min 4- and 4+ fo PRIM 11400 V/ olid/stranded/fine stranc inimum AWG 6 alumin 5/ 5/ 4/ 7	direct (AWG 10 coppor or copper or AWG 6 alu um with optional inpu 2 r MPPT 1 / no fusing r 0 11.4-1 A/11400 VA 1-NPE 208/240 45-55 Hz / 50-66 1 -/ 58.5 - 60.5 Hz -/ 57.0 - 63.0 Hz 60 Hz ded)(AWG 10 copper o um has to be used), AV able with AWG 1 < 2.5 % 0-1 ind,/cap. 4.8 A 7.5 A 7.0 A	aminium has to be used), AWG tt combiner equired on MPPT 2 PRIMO 12.5-1 12500 VA/12500 VA V Hz : : r AWG 8 aluminum for overcu VG 6-AWG 2 copper (solid/stra 2 60.1 A 52.1 A 80 A	9 4 - AWG 2 copper of PRIMO 15.0-1 13750 VA/15000 V urrent protective devia anded) Multi Contact 4 66.1 A 62.5 A 90 A
MPP Voltage Range Max. input voltage Max. input voltage Maximissible conductor size DC Number of MPPT Integrated DC string fuse holders DUTPUT DATA Max. output power Dutput configuration Frequency range (adjustable) Duprating frequency range default for CAL setupe Operating frequency range default for CAL setupe Nominal operating frequency Nominal operating frequency Mamissible conductor size AC Fotal harmonic distortion Power factor range	208 V/240 V s 208 V/240 V 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	up to 60A, from 61 to 10 PRIMO 10.0-1 9995 VA/9995 VA WG 10- AWG 2 copper (s 60 A, from 61 to 100A m 48.1 A 41.6 A	0A minimum AWG 8 fc min 4- and 4+ fo PRIM 11400 V/ olid/stranded/fine stranc inimum AWG 6 alumin 5/ 5/ 4/ 7	direct (AWG 10 coppor or copper or AWG 6 ah um with optional inpu 2 r MPPT 1 / no fusing r 0 11.4-1 A/11400 VA 1-NPE 208/240 45-55 Hz / 50-66 1 -/ 58.5 - 60.5 Hz -/ 57.0 - 63.0 Hz 60 Hz ded)(AWG 10 copper o um has to be used), AV able with AWG 1 < 2.5 % 0-1 ind,/cap. 4.8 A 7.5 A	aminium has to be used), AWG tt combiner equired on MPPT 2 PRIMO 12.5-1 12500 VA/12500 VA V Hz : : : r AWG 8 aluminum for overcu VG 6-AWG 2 copper (solid/stra 2 60.1 A 52.1 A	9 4 - AWG 2 copper or PRIMO 15.0-1 13750 VA/15000 V urrent protective devic anded) Multi Contact V 66.1 A 62.5 A

¹ inverter rated for up to 1000 V open-circuit. Nominal, Operating, and MPP voltages based on 600 V system design. Actual DC system voltage is dependent on PV string-sizing, not inverter input capacity.

/ Perfect Welding / Solar Energy / Perfect Charging

THREE BUSINESS UNITS, ONE GOAL: TO SET THE STANDARD THROUGH TECHNOLOGICAL ADVANCEMENT.

What began in 1945 as a one-man operation now sets technological standards in the fields of welding technology, photovoltaics and battery charging. Today, the company has around 3,800 employees worldwide and 1,242 patents for product development show the innovative spirit within the company. Sustainable development means for us to implement environmentally relevant and social aspects equally with economic factors. Our goal has remained constant throughout: to be the innovation leader.

Further information about all Fronius products and our global sales partners and representatives can be found at www.fronius.com

Fronius USA LLC

v08 Aug 2017 EN

6797 Fronius Drive Portage, IN 46368 USA

pv-support-usa@fronius.com

www.fronius-usa.com

EcoFoot2+

Ballasted Racking System

Installer-Preferred for Low-Slope Roofs

Three Main Components.

The Ultimate in Speed and Simplicity.

Base

UL-Listed ASA based resin is a durable material commonly used for automotive and construction products. Wire Clips are built-in for easy wire management. Class A fire rated and UL2703 Certified.

Universal Clamp

The preassembled Universal Clamp is ready to go right out of the box. Simply drop the Clamp into the Base. Integrated Bond Pin achieves integrated grounding without the use of grounding washers. Fits 30-50mm module frames with a single component.

Wind Deflector

Corrosion-resistant wind deflector on every module helps minimize uplift, reduce ballast requirements and carries UL2703 validated ground path from modules and racking components.

Pure Performance

Unbeatable, Right Out of the Box.

No other racking products install flat roof arrays better than EcoFoot2+ Racking Solution. Installers prefer EcoFoot2+ because it's fast, simple, and durable. The line-up is unbeatable:

- Ready-to-go, preassembled components and simple installation
- No PV panel prep required: bases self-align
- · Low-effort roof layout, just two chalk lines required
- No training required, 5-minute learning curve

Master the Most Challenging Rooftop

Stackable Bases fit up to 50kW of Bases delivered on a standard pallet.

System Benefits

- · Low part count
- Rapid system deployment
- Preassembled Universal Clamp
- Increased design flexibility
- · More ballast capacity
- Simplified logistics
- Ship up to 50kW per pallet

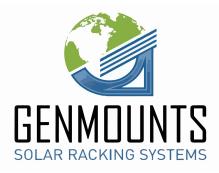
Validation Summary

- Certified to UL2703 Fire Class A for Type I and II modules
- Certified to UL2703
- Grounding and Bonding
- Wind tunnel tested to 150mph
- SEAOC seismic compliant
- CFD and structurally tested
- DNV GL rated at 13.5 panels per installer-hour

Commercial

Residential

Design Flexibility


Wire Management Built-In

740-249-1877 | www.ecolibriumsolar.com 507 Richland Avenue, Athens, OH 45701 ©2019 All Rights and Trademarks Reserved

Technical Specifications

Dimensions: 26.5"L x 18.25"W x 8.3"H Typical System Weight: 3.5–6 lbs. per sq. ft. Module orientation: Landscape/Portrait Tilt angle: Landscape 10°/Portrait 5° Module inter-row spacing: 18.9" Roof pitch: 0° to 7° Clamping range: 30-50mm Ballast requirements: 4" x 8" x 16" Warranty: 25 years Slip sheets: not required by Ecolibrium Solar. If required by roofer, use 20"x29" under Base.

1.2 Megawatt Carport Array Lawrence Township, NJ 08648

MANUFACTURING

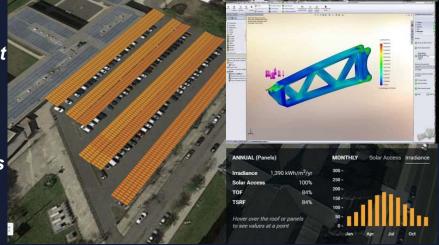
INSTALLATION

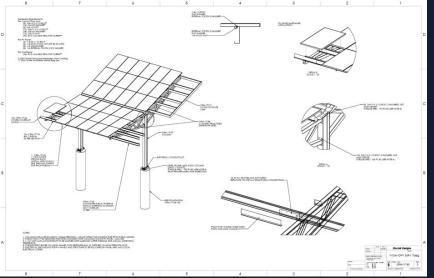
Engineering Services

ENGINEERING

Every carport project is unique, as multiple factors can impact the PV layout and structural design.

- Parking lot orientation and space
- City/County/State Regulations
- ASCE Hazard & Structural Guidelines

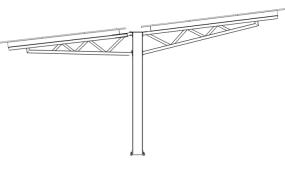

No matter what variables arise, our executive engineering team will design a system that offers you the most cost effective solution for your project.


PV Production vs Aesthetics

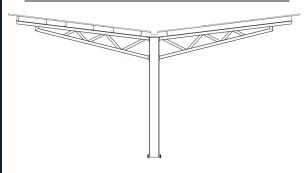
After our NABCEP PV designers finalize the layout that meets your energy production requirements, our structural and civil engineers will provide all of the certified drawings and calculations for permit approval.

SDE Product Standards

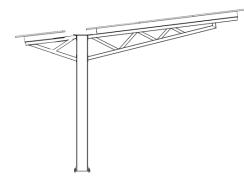
All structural components are in strict compliance with the standards set forth by the American Iron and Steel Institute's Specifications for Formed Steel Structural Members. SDE has invested in an ISO-9001 Quality certification (currently in progress).


MANUFACTURING

INSTALLATION


T-FRAME DESIGN (36x 72 Cell Modules/Section)

ENGINEERING


VAVZ

Y-FRAME DESIGN (36x 72 Cell Modules/Section)

L-FRAME DESIGN (24x 72 Cell Modules/Section)

L-FRAME DESIGN (18x 72 Cell Modules/Section)

	Application	Parking Area & Sidewalks		
	Tilt Angle	7 Degrees	Modules Per Section	36
	Module Orientation	Portrait	Ground Clearance	Site Specific
	Wind Load	125 MPH	Foundation	Reinforced Concrete
2	Snow Load	50 PSF	Purlin Length	236 Inches
	Post Spacing	236 Inches	Manufacturing	Made in Michigan, USA

PRODUCT SPECIFICATIONS

All product specifications have been verified through third party engineering firms. For areas with higher wind/snow requirements, additional options are available. 20 - 34 foot section spans are available.

PRICING OVERVIEW

SDE calculated our average cost/watt prices, using 350 - 370 Watt Modules. Prices outlined below includes foundation cages, all required racking components, hardware, and freight.

36 PANEL Y or T FRAME CANOPIES: 30 - 35 CENTS/WATT

24 PANEL L FRAME CANOPIES: 40 - 45 CENTS/WATT

18 PANEL L FRAME CANOPIES: 45 - 50 CENTS/WATT

ENGINEERING

MANUFACTURING

INSTALLATION

SDE "owns" the manufacturing facility.... Why is this important?

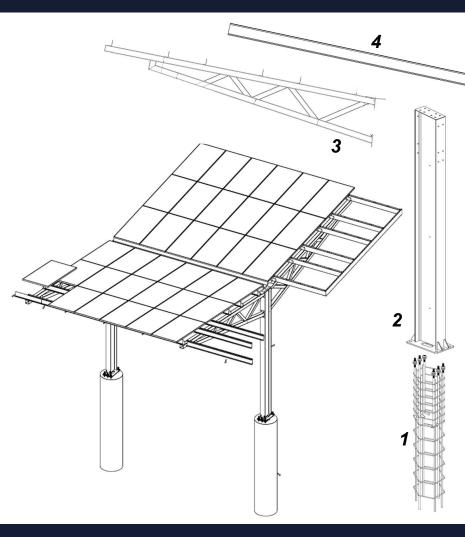
- No third party contracts
- No additional distributor profit margins
- No outsourced fabrication and steel processing
- We control 100% of your project time-line, which results in superior quality, quick response times, and faster product deployment.

All structural components fabricated In-House

ENGINEERING

MANUFACTURING

INSTALLATION


Designed for Rapid Assembly

SLR-TRUSS: All trusses are custom designed for your 60 or 72 cell module choice. Only 2 attachment points from I-Beam to Truss with minimal hardware.

C-PURLIN: *No expensive clamps required* The C-Purlins are processed through a high speed stamping/roll forming line. The slots are precision punched to align with your module frame holes, which results in faster installation times.

EASE OF INSTALLATION - DESIGNED FOR MINIMAL EFFORT

Only 4x Main Components needed

- 1. 1x Pre-Welded Foundation Cage
- 2. 1x Galvanized I-Beam Assembly
- 3. 1x Upper/Lower Truss Assemblies
- 4. 12x C-Purlins with pre-punched slots

Add-Ons Available

- 1. End-Caps
- 2. Close-Outs
- 3. Strong-backs
- 4. Gutters

WE ALSO OFFER THE FOLLOWING:

BALLASTED COMMERCIAL ROOF MOUNTS

12 - 24 PANEL POLE MOUNTS SEASON ADJUST & DUAL AXIS TRACKING

SKY-RACK 2.0 GROUND MOUNTS

4x HIGH PORTRAIT GROUND MOUNTS

CONTACT US

1104 Industrial Avenue Albion Michigan 49224 phone +1 877 517 0311 email: kyle@sinclair-designs.net www.sinclair-designs.com

COMPANY OVERVIEW

SDE is a family-owned business established in 2007. Headquartered in Albion Michigan, we have grown to become an international manufacturer of Solar and SATCOM products. We currently employ between 25-30 personnel to support Engineering, Manufacturing, Installation, and Project Management.

We are committed to customer satisfaction through continuous improvement.

VISION

Our vision is to become a "one-stop-shop" for your solar project requirements. From preliminary designs to full installation support, we will be there for you!

Contact us today to get your project started.

MC-AX Series

48A-11kW Single Phase Wall-mount EV AC Charger

Ideal for commercial EV charging

MID

- LAN-Wi-Fi or LAN-Wi-Fi-4G options for connection for Central Management System
- Supports RFID card & QR code for user authentication and management
- Input: 200Vac~240Vac
- Modern, ergonomic and customizable design
- Optional 5 inch LCD display
- IP protection class for outdoors: NEMA4
- Supports Over the Air Technology
- Charging interface: SAE J1772 (Type 1)
- Supports OCPP 1.6 JSON (Upgradeable to 2.0)
- Supports RS232/485 external communication interface (Optional) •
- Supports ISO 15118 protocol
- Supports dynamic output load distribution, making the field power configuration planning of charging stations more flexible

Applications

- Parking garages, hospitality & retail
- Commercial fleet operators
- EV infrastructure operators and service providers
- EV dealer workshops

Model Name		AXLU111		
	Safety	UL/Cul (North America)		
Product Photo				
Power Spec	cification			
Input Rating		Single-phase: 200~240Vac		
	AC Input Connection	L1/L2/GND or L/N/PE		
AC Input	Input Current	48A		
	Frequency	50Hz/60Hz		
	Output Current	48A		
AC Output	Output Power	11kW		
User Interfa	ace & Control			
Display		LED pilot lamp (standard), 5-inch LCD (Optional)		
User Auther	ntication	RFID (ISO/IEC 14443A/B, ISO/IEC 15693, FeliCa™, Mifare), ISO 15118		
Meter		Meter IC(1% Accuracy)		
Communica	ation			
External		LAN+WiFi (standard) or LAN+4G+WiFi (Optional)		
Internal		OCPP 1.6 JSON (Upgradeable to 2.0) EEBUS (support in 2022)		
Environme	ntal			
Operating T	emperature	-30C to +50 $^\circ C$ (standard) or -20 $^\circ C$ to +50 $^\circ C$ (with payment system)		
Humidity		< 85% (RH) @ 50 ℃		
Altitude		≦ 2000m		
Enclosure P	e Protection (IK/IP Level) NEMA TYPE 4			
Cooling Me	thod	Natural Cooling		
Mechanica	I			
Dimension(WxDxH)	Approx. 295 x 158 x 505mm		
Weight		<7kg (with socket); <10kg (with plug)		
Cable Lengt	th	5m / 7.5m (Option and need to use cable management)		
Protection				
RCD/CCID		CCID 20		
Input Side		UVP, OVP, Surge protection, Ground fault		
Output Side		OCP, Control pilot fault, Residual current protection		
Protocol		OTP, Relay welding detection, CCID self-test, MCU function fault detection		
Regulation	_			
Certificate		UL2594, UL2231-1/-2, CTEP Energy Star		
Wireless Ce	ertificate	FCC/IC		
Charging In	terface	SAEJ1772 Type 1 Plug		

Attachment 4 – Personnel Resumes

Sunil K. Agrawal, Ph.D., P.E., Diplomate - AAEE

Project Manager/Senior Engineer

EXPERIENCE:

Dr. Agrawal is a Project Manager and Senior engineer for NOVA Consultants, Inc. He has more than 25 years of project management, environmental due diligence, environmental auditing, ISO 14000, engineering design and management experience. His specialties include project management, senior review, ISO 14000, brownfields redevelopment, asbestos and based environmental audits, Π investigations, lead paint, Phase remedial investigations/feasibility studies (RI/FS), treatment of contaminated soils and ground water, industrial and municipal wastewater, treatment of hydrocarbon and heavy metals contaminated soils and sludge, treatment of hydrocarbon contaminated vapors, site assessments, NPDES and RCRA permitting.

EDUCATION:

Ph.D. Civil/Environmental Engineering, University of Windsor

M.S. Environmental Engineering, Asian Institute of Technology

B.S. Civil Engineering, University of Jabalpur

CERTIFICATIONS:

Registered Professional Engineer - State of Michigan Diplomate - American Academy of Env. Engineers (Listed in Who's Who in Env. Engineering) Certified Storm Water Manager – Michigan Department of Environmental Quality Certified Underground Storage Tank Professional RBCA Training by ASTM HAZWOPER – 40 Hour Training and Annual Refreshers

MEMBERSHIPS:

American Academy of Environmental Engineers Member - Water Environmental Federation (WEF) Member - Michigan Water Pollution Control Association

WORK EXPERIENCE:

Project Director/Senior Engineer, NOVA Consultants, Inc., Novi, Michigan

Responsibilities include: supervision of a staff of 25 full-time and 5 part-time professionals. Technical review of all the projects, reports and correspondence before they are delivered to the clients. Supervision of several projects related to automotive plants, former MGP, commercial, industrial and institutional sites. These projects include construction management, ISO 14000, environmental audits, Phase I, Phase II and Phase III site

assessments, hydrogeological study, remedial investigations, remedial system design, construction package, review of system operation and maintenance data.

Senior Engineer, Delta Environmental Consultants, Inc., Farmington Hills, Michigan Responsibilities included: Senior review of all the technical documents, development of Standard Operating Job Procedures (SOJP) for several field and office related tasks, client development, negotiations with the regulatory agencies, project management of several LUST and Act 307 sites, preparation of work plans, review of Phase I, Phase II and Phase III site assessment reports.

Senior Project Engineer, NTH Consultants, Inc., Farmington Hills, Michigan

Responsibilities included: Project management and supervision of several projects related to the design and field implementation of remediation activities. Supervision of geological and hydrogeological investigations and remedial design at CERCLA, RCRA and Act 307 sites. Preparation of Work Plans, Quality Assurance Project Plan (QAPP), Remedial Action Plan (RAP), Health and Safety Plans, Field Monitoring Plans.

Project Manager/Engineer, Rama Rao & Alfred, Inc., Detroit, Michigan

Responsibilities included: Project management and project engineering of several projects related to the design of water and wastewater treatment plants, sewer system and pumping station designs. Participated in several Value Engineering workshops as a member of the technical team to evaluate the designs of other consultants. Designed water mains, water treatment plans and booster stations. Installation of underground storage tanks and groundwater collection piping at a hazardous waste site.

Sachit Verma, MS, EIT Program Manager - Solar

EXPERIENCE

Mr. Verma is a Program Manager and Solar engineer with NOVA Consultants, Inc. He has over 16 years of solar, energy, environmental, project management, resident engineering, environmental cost estimation, instrumentation & controls and process design engineering, environmental investigation and remediation experience. His expertise includes modeling, cost estimation, industrial wastewater treatment, design of remediation systems, hydrogeologic investigation, optimization of cooling towers, energy management systems, instrumentation and controls, chemical, and environmental engineering projects. He has extensive experience in subsurface contaminant transport, wastewater treatment, experimental design and installation of environmental systems, and sampling & analysis.

EDUCATION

M.S., Chemical Engineering, Louisiana State University, Baton Rouge, LA B.S., Chemical Engineering, I.I.T.

PROFESSIONAL AFFILIATIONS

Engineer - In - Training (EIT) Member - American Institute of Chemical Engineers (AIChE)

REPRESENTATIVE PROJECT EXPERIENCE

Currently working on about 20 solar projects in various states in United States and Ontario, Canada. Responsible for the project planning to feasibility, array sizing, technical evaluation, technology selection, quality assurance and quality control all solar projects.

Performed troubleshooting procedures for a PCB remediation system for wastewater at a major automotive facility, and implemented changes to the PLC based control system to successfully address the situation.

Performed troubleshooting procedures for the control system for a groundwater remediation system at a major automotive facility, and implemented changes to the sensors, relays, and the ladder logic for the PLC based control system to successfully solve the problem.

Designed and implemented the control system for air-sparging and soil vapor extraction systems to control the valve operating cycles, and ensure system shutoff if explosive vapors were detected.

Provided cost estimation services for numerous large and small projects. These projects included waste disposal, remediation, asbestos survey and abatement, environmental investigation, energy conservation projects etc.

Conducted design modifications and process troubleshooting procedures for a mobile DNAPL treatment system at a major automotive facility in Ohio, and successfully managed the project till contract closeout.

Performed several air sparging and soil vapor extraction pilot tests to determine remediation system design parameters, perform data interpretation and report preparation.

Designed and supervised construction of pump and treat systems, air sparge systems, and combined air sparging and soil vapor extraction systems for the treatment of soils and groundwater.

Assisted in the management of a \$200 million expansion and renovation project for research complex at major automotive facility, until the project was temporarily halted by the client. Designed an extensive distribution system for ultra-pure gases using state-of-the-art safety and control systems, prepared meeting notes, and guided the non-technical managers towards sound technical decisions.

Performed risk assessment and managed the remediation of a PCB impacted site for future use in the beverage industry. The project was completed on time and within budget to the satisfaction of the client.

Managed the UST assessment and upgrade activities for five USTs involving nondestructive testing and cathodic protection systems. Coordinated activities among eight independent sub-contractors, attorneys, and the MDEQ with minimal disruption to ongoing site activities.

Managed the revision of several complex SPCC plans for a major gas and electrical utility company to reflect revised EPA regulations.

Successfully solved a 12-year old environmental problem related wastewater discharge at a school district bus garage using an innovative process strategy for waste management, treatment, and disposal, while maintaining compliance with applicable environmental rules and regulations.

Coordinated site investigation and remediation activities at a major utility company field office to address the issue of unknown source releases, including access agreements from adjacent property owners and liaison with the MDEQ.

NOVA Consultants, Inc.

Jeffrey M. Eckhout, EIT Project Manager

Mr. Eckhout is a Project Manager with NOVA Consultants, Inc. He has over 13 years of experience in civil/environmental engineering. Mr. Eckhout has considerable experience in areas of Remedial Investigations, Due Diligence, Phase I and II Environmental Assessments, Baseline Environmental Assessments, Environmental Auditing, ISO 14000, SPCCs, Compliance, Asbestos and Lead Based Paint Surveys, and Design of Remediation Systems. He has worked extensively on number of General Motors, Delphi, and American Axle and Manufacturing facilities.

EDUCATION

B.S. Environmental Engineering, University of Michigan, Ann Arbor, 1995

PROFESSIONAL AFFILIATIONS

Engineer-In-Training (EIT), 1996 40 Hour HAZWOPER 8 Hour Annual Refresher for HAZWOPER

PROJECT EXPERIENCE

NOVA Consultants, Inc., Novi, Michigan Project Manager

Project management, Project Supervision, Field Supervision, ISO 14000, Remedial Investigations, Design and engineering of remediation projects; numerous Phase II site assessments; Environmental auditing, Compliance, Asbestos and Lead Based Paint Survey and Abatement, Groundwater and soil sample collection; Free product recovery; Hydrogeologic Investigation; Delineation Study; Air Sparge and Soil Vapor Extraction. Supervised the installation of soil borings and monitoring wells. Performed various phases of environmental site assessments.

Mr. Eckhout has prepared many reports associated with environmental audits of manufacturing facilities, ISO 14000 certification, due diligence of manufacturing facilities, hydrologic investigations, feasibility studies, underground storage tank removal, closure reports, and site safety plans.

Jeff has managed and supervised numerous asbestos survey and abatement projects in Michigan and Indiana.

Supervision of Asbestos Survey, Abatement and Air Monitoring Project in Rolls Royce Engine Plant, Indianapolis, Indiana (formerly owned by General Motors Corporation – our contract was with General Motors)

Project Management and Supervision of Asbestos Survey, Abatement and Air Monitoring of Former Fisher Body Plant, Plymouth, Michigan. Ashley Corporation bought the property from General Motors and retained NOVA to complete all asbestos related activities in the main building (about 1.2 million sq. ft.).

Project Management and Supervision of Asbestos and Lead Based Paint Sampling at General Motors Technical Center, Warren, Michigan.

Supervision of asbestos sampling and air monitoring during abatement activities at Buick City Project, Flint, Michigan.

Supervision of numerous asbestos sampling and abatement projects of various buildings.

Assisting in the field activities and design of 800-gpm industrial wastewater treatment system for one of the GM manufacturing plant for the treatment of PCBs impacted water.

Involved in the field activities and design of cooling water optimization for the Willow Run Powertrain Plant, General Motors Corporation, Ypsilanti, Michigan pursuant to ISO 14001 certification efforts.

Implemented site assessment activities in several UST projects, including initial abatement measures such as soil, product, and water removal. Obtained right-of-way permits, and NPDES permits.

Completion of regulatory reporting for LUST sites, hydrologic investigations, delineation studies, closure reports, feasibility study analysis and reporting, and corrective action plan preparation for the excavation of soils.

Completion of several emergency response projects, which included the delineation and excavation of soils, and treatment of groundwater.

Assisted in developing several Environmental Management Systems (EMS) for several clients. The purpose of the subject EMS was different for different clients.

Assisted Ford Motor Company in developing an EMS system to manage Underground Storage Tanks located in Ford's Research and Engineering Center at Dearborn, Michigan.

Assisted on several projects for General Motors projects that involves various components of ISO 14001 certifications.

Assisted in setting-up of EMS for Ashley Corporation. Ashley owns properties all over the United States where numerous manufacturing facilities are located. Insurance companies required Ashley to set-up EMS to reduce the cost of the insurance. NOVA is also responsible for managing their EMS and internal auditing on a long-term basis.

Assisted with the field activities and report preparation for numerous environmental audits for Michigan Consolidated Gas Company facilities as part of ISO 14001.

NOVA Consultants, Inc.

Clayton Cox, P.E.

Mr. Cox is a Principal Electrical Consultant with NOVA Consultants, Inc. He has over three decades of experience in electrical power engineering. The majority of that time was spent in the Substation Design, Engineering and Operating areas of PPL Corp and DTE Energy. His graduate engineering concentration at Drexel University was Power Engineering.

EDUCATION

M.S. Engineering Management, Drexel University, Philadelphia, PA	1998
M.S. Electrical Engineering, Drexel University, Philadelphia, PA	1991
Thesis: Distribution Substation Protection – A Computer Aided Approach	
B.S Electrical Engineering, University of Detroit, Detroit, MI	1981

PROFESSIONAL AFFILIATIONS

Institute of Electrical & Electronic Engineers

SUBSTATION DESIGN EXPERIENCE

DTE Energy, Detroit, MI

Manager Central Design & Supervisor Substation Design 2001-2010

- Managed Substation Design, System Underground Design, Arch-Civil Design & Surveying groups.
- Responsible for upgrades and new substation designs for 4KV, 13.2KV, 24KV, 40KV, 120KV & 230KV voltage levels, and ranging in size from 10MVA 80MVA. About 70% of efforts involved 13.2KV distribution class substations, which included two and three transformer substations with reductant capability, capacitor banks, and multiple distribution feeders. Augusta, Collins, and Drake 120/13.2KV are examples.
- Championed the use of lower cost substation options. The pad-mounted substation is an example a substation with a small footprint that may be placed in areas where a small conventional substation may be unacceptable; providing equipment, property, design, and construction cost savings.

Substation Design Engineer & Lead Design Engineer 1997-2001

• Substation site review, project cost estimating, detailed design, and project design overview of distribution & sub-transmission substation projects done by technicians and outside engineering firms. Headed up effort to develop a modular substation.

System Protection & Substation Project Engineer 1983-1997

• Provided relay system protection (12.47KV -230KV) for distribution, transmission & substations. Created designs for 138/69/12.47KV distribution substations. Developed project cost, scope, and schedule.

OTHER MANAGEMENT & ENGINEERING EXPERIENCE

DTE Energy, Detroit, MI

Engineering, Substation Technology, Audit Services 2010-2020

- Migrated Substation and T&D electrical equipment into Asset Management System Maximo to aid preventive and predictive maintenance.
- Transitioned Substation Operations from a manual paper based to an electronic system, with field employees using mobile devices to perform work giving leadership greater visibility into work status and productivity.
- Managed and performed Operational Audits involving Electric & Gas Operations to encourage continuous improvement.

Gerald A. Young, MBA, BEE, P.E. Senior Electrical Engineer

A Professional Engineer with long-term success in the design of electrical systems for industrial, commercial, and government facilities. Expertise in all phases of PV Solar Array construction from concept through closeout. Expert skills in innovative problem solving and technical documentation. Known as the Subject Matter Expert in PV solar, lighting and wiring, and the go-to person in related construction issues. Reputation as a team player with strong interpersonal communication skills and the ability to handle multiple projects simultaneously.

Mr. Young has an extensive experience in evaluating, designing, troubleshooting PV solar, lighting and electrical issues. Currently he is working on several roof mounted solar power array in various parking structures including one for Blue Cross/Blue Shield building in downtown Detroit. He has also worked on several parking lots for General Motors in resolving electrical and lighting issues.

EDUCATION

MBA, General Business, Wayne State University, Detroit, MI **BEE**, Electrical Engineering, University of Detroit, Detroit, MI

MEMBERSHIPS

Illuminating Engineering Society of North America, Member Engineering Society of Detroit, Member

PROJECT EXPERIENCE

NOVA Consultants, Inc., Novi, MI Senior Electrical Engineer

- Lead electrical engineer on number of roof mounted and ground mounted PV Solar Arrays
- Designed cost-effective and maintainable power, lighting, and control systems for municipal and township projects.
- Engineered grid-tied solar photovoltaic power systems for an electrical utility.
- Developed upgrades to roadway and parking lot lighting systems using LED technology.
- Designed lighting systems for roadways, roundabouts, parking lots, and a marina.

Electrical Engineer, Worldwide Facilities Group

- Designed electrical systems for new and renovated industrial facilities for GM.
- Designed a complete electrical system for a new 500,000 square foot heavy-duty transmission plant with a high degree of occupant satisfaction.
- Designed the complete electrical renovation of a 60-year-old aluminum foundry eliminating unneeded substations and saving energy and maintenance costs.

General Motors, Pontiac, MI

Electrical Engineer, Worldwide Facilities Group

- Directed Architect-Engineering firms in the design and construction phases of many types of industrial facilities for GM. Developed corporate electrical design, construction, and maintenance standards for improved efficiency and cost savings.
- Initiated and led development of a new system of facilities specifications, the GM OneSpec, which is now used as the common specifications system throughout GM.
- Chaired 30-person committee on the rewrite of GM Electrical Installation Standard EI-1.
- Directed the complete electrical design of a 5-story office building integrated into an existing industrial and office site.
- Conceived electrical plan and directed the electrical design of a brownfield conversion of an obsolete metal stamping plant into a state-of-the-art metal hydroforming facility.
- Developed standard electrical details which eliminated unnecessary costs, simplified installation, reduced design time and construction errors, and improved maintainability.
- Represented the organization in harmonization meetings with other corporate divisions, commonizing construction practices and establishing common purchasing databases, thereby reducing costs.
- Developed lighting guidelines for the Lighting Strategies Committee resulting in lower first cost, lower life cycle cost, reduced energy consumption, and improved maintainability.

Field Electrical Engineer, Plant Engineering and Construction

- Relocated to Shreveport, Louisiana to oversee the construction of a two million square foot truck assembly plant.
- Resolved numerous construction problems and contract issues in the field. Developed contract revisions when required.
- Witnessed electrical testing for quality control resulting in the facility meeting cost and quality standards.

Electrical Engineer, Argonaut Division

- Designed electrical systems for new and renovated industrial facilities.
- Designed complete renovation of medium voltage electrical system for a large 50-yearold parts plant, which required innovative solutions for undersized substation rooms.
- Designed the installation of facilities monitoring and control systems for 13 industrial plants.

City of Detroit, Public Lighting Commission, Detroit, MI Electrical Engineer

- Designed both new and renovated street lighting systems for city main and residential streets and alleys. Designed lighting for athletic stadiums and floodlighted a downtown monument.
- Designed an innovative solution to relighting a major downtown roadway using existing series street lighting cables. Performed electrical and photometric testing of components and systems.

S. Paul Baluja, MS, P.E. Senior Civil Engineer

EXPERIENCE

Mr. Baluja has over 35 years experience in site feasibility studies, land-use planning, civil engineering projects planning/ design, preparation of contract documents for procurement and construction, and providing construction assistance. He was involved in several projects from inception to completion including construction assistance and closeout. His broad experience includes commercial, industrial, institutional, municipal, transportation (traffic study, road and bridge assistance), and residential development projects. His expertise includes buildings/facilities layout, and design of roads and bridges, right of way, site utilities (storm, sanitary, water, gas, steam etc.), grading and paving, roadways and parking, truck docks, pavement marking and traffic signs, site water distribution and fire protection water system design, process piping, pumping stations, storm water management, preparation of engineering reports, project management, QA/ QC work, code compliance and obtaining permit approvals, review of shop drawings, overseeing construction work and project closeout.

EDUCATION

- B.S. Civil Engineering, University of Nebraska
- M.S. Structural Engineering, University of Nebraska

Continuing education courses and seminars on Construction Safety, Asbestos Abatement etc.

PROFESSIONAL LICENCES

Registered Professional Engineer - State of Michigan and State of Nebraska

REPRESENTATIVE PROJECT EXPERIENCE

NOVA Consultants, Inc.

Project Manager/ Senior Engineer. Current projects include project site design and construction assistance, site development for various Solar Array Projects. Recently completed jobs include: site civil/ structural design and construction management of a warehouse facility in Plymouth, Michigan; Civil site engineering design and construction assistance for Detroit Institute of Arts, several schools and churches improvements; Storm water management (analysis and design) of a phased development in Cleveland, OH; Part of a team for design of 52 miles of 72-inch water main from Lake Orion Township to Flint, Michigan; and third-party review and certification of Contractors and Suppliers invoices submitted for payment to Wayne County Airport Authority for all Capital Improvement Projects at Detroit Metropolitan Airport.

Project Manager-Construction at GM Tech Center, Warren, MI. The work included RFPS preparation, preliminary and final plans design reviews, construction management of multi-discipline (environmental – asbestos remediation, architectural, civil, structural, fire protection, mechanical, electrical) systems with emphasis on safety, evaluating bids, developing and processing change orders, budget control, reviewing pay applications, resolving discrepancies and recommending approvals, preparing reports and making project status presentations, maintaining project documents and project closeout.

\$30M Lab Consolidation Facility construction and Equipment Relocation projects.

\$25M Site Roads and Landscaping project (a design-build project).

Sigma Associates, Detroit, MI.

Project Manager/ Senior Civil Engineer. Projects designed included MDOT US-12 (Michigan Ave.) Rehabilitation and Sewer Separation in Dearborn with an outfall to Rouge River; US-24 (Telegraph Road) Crossovers design in Dearborn & Dearborn Heights, bridge over Au-Sable river in Roscommon County); Wayne County (Sibley Yard Maintenance Facility, Juvenile Detention Facility design, several road resurfacing/ road rehabilitation projects); City of Detroit Building Authority (Detroit Herman Kiefer Medical Facility Site Improvements, several public schools site improvements); City of River Rouge (Marion Industrial Highway improvements); Water Pumping Station for City of Cleveland, OH; Detroit Water & Sewerage Department (design of replacement sanitary sewers and water mains in residential districts.

SmithGroup, Detroit, MI

Senior Civil Engineer on project planning and site engineering design work (site roads and site utilities) for Chrysler Belvedere Assembly plant additions in Illinois, Bank One Data Processing Center site design in Van Buren Township including Haggerty Road widening, Jefferson Conner railroad design, BASF Headquarters building design in Southfield, Selfridge Air National Guard Base (runway rehabilitation) in Mt. Clemens, MI.

Team Award of Excellence from Chrysler for work on Chrysler Belvedere Assembly Plant, IL

Giffels Associates, Southfield, MI

Specialist/ Senior Civil Engineer for various site feasibility studies, site planning, master plans development, site designs (site roads and utilities) for several Caterpillar projects in Mapleton-IL, Peoria-IL and Morton-IL; IBM's several projects in Fishkill-NY; Ford Motor Company projects in Dearborn-MI, Tulsa-Oklahoma, Hermisillo-Mexico; Toyota Motors in Georgetown-KY; Eastman Kodak in Rochester-NY; Master Reviewer for Detroit Water & Sewerage Department's Segmented Facilities Plan; Parke-Davis piping and pumping system investigations; Navy projects site development work in Washington State; etc.

Madhukar (Mark) Mahajan, M.S, P.E Senior Structural Engineer

Mr. Mark Mahajan is a very competent structural engineer with over 25 years of experience. He is knowledgeable of building codes, wind loads and many state specific requirements. He has designed solar array support systems in several states. He has designed carports in Michigan, Texas, California, New York, New Jersey and Maryland.

EDUCATION

Master of Science, Civil (Structural) Engineering December 1986 Wayne State University, Detroit, Michigan.

Master of Technology, Geotechnical Engineering, February 1985 Indian Institute of Technology, Bombay, India.

Bachelor of Science, Civil Engineering. November 1982 Victoria Jubilee Technical Institute, Bombay, India

REGISTRATIONS

Professional Engineer, Michigan Professional Engineer, Ohio Professional Engineer, Arizona Certified Stormwater Operator, Michigan

PROJECT EXPERIENCE

Project manager

Managing all aspects of the engineering firm from preparing proposals to the final product delivery. Managing land development projects, geotechnical and structural projects. Preparing site plans and construction documents using LDD and Civil 3D for residential and commercial/industrial projects. Design of utilities including sanitary sewer, water main, and storm sewers. Design of stormwater detention/retention facilities. Coordination with subcontractors for surveying, wetland determination and MDEQ permitting. Assisting clients for obtaining flood plain fill permits and LOMAR applications.

Managing structural and geotechnical projects. Design of deep foundations including helical pier systems and wooden piles. Designing helical pier systems for restoration projects, including underpinning and tie backs. Structural design of residential and commercial buildings and renovation project. Structural design of segmental block retaining walls, concrete retaining walls, and sheet pile walls.

Project manager/engineer

Collecting preliminary data for site plan preparation. Preparing site plans for residential and industrial projects. Design of utilities including sanitary sewer, watermain, and storm sewers. Design of stormwater detention/retention facilities. Preparing construction drawings using Land Development Desktop (LDD). Preparation of as-built plans and condominium documents. Design of roads, grading and hydrological modeling using LDD. Earthwork volume computations. Managing design projects including client contacts and agency approvals. Preparing engineering cost estimates for various land development projects. Coordinating construction staking and geotechnical/environmental investigations with subcontractors. Managing small to medium size structural/foundation design projects. Structural analysis of structures for residential and small industrial sites using computer software. Designing deep and shallow foundation systems for residential and commercial projects. Designing helical pier system for various projects including building renovation.

Managing various environmental and civil engineering projects. Preparing construction drawings using CADD system and specifications for civil engineering projects. Preparing remediation system design package, engineering drawings, bid documents, engineering cost estimates for cleanup of contaminated sites. Estimating quantities and cost of remediation system installation. Evaluation of bids received from contractors. Preparing design drawings for surface impoundment closures, including slurry wall system design. Preparing geological profiles along a slurry wall alignment. Preparing design drawings and construction plans for landfill site remediation, cost estimating for landfill design. Utilizing various computer softwares such as word processing, spreadsheet, contouring programs for civil and environmental projects.

Geotechnical Engineer

Preparing design drawings for a major Balefill (landfill) project and for general civil engineering projects. Conducting various geotechnical analyses and design for landfill projects. Analyzing stability of slopes, preparing geologic cross-sections, isopach maps, and contour maps of geologic formations. Designing geosynthetics for landfill liners and covers. Volume computation for landfill project planning. Estimating various quantities for landfill construction and general civil engineering projects. Managing small to medium

size geotechnical investigation projects including reviewing laboratory test results and interpreting the data for recommendations.

Managing subsurface soil and groundwater investigation projects. Field logging of soil borings, preparing geologic cross-sections and formal geotechnical reports. Preparing schedule for field investigations and laboratory testing. Evaluation of field and laboratory data for recommendations. Groundwater monitoring well installation and determining the hydrogeologic conditions of aquifers. Analysis and design of foundations. Managing various construction testing projects including asphalt and concrete roads, waste water treatment plants, airport pavements.

John S. Witte NABCEP Certified PV Installer

EDUCATION

BS Mechanical Engineering – University of Toledo; 1994 BS Construction Technology – Bowling Green State University; 1976

LICENSES / CERTIFICATIONS

NABCEP Certified PV Installation Professional NABCEP Certified Solar Thermal Installer GLREA Certified PV System Integrator ISPQ Certified Instructor for Photovoltaic Courses

TEACHING EXPERIENCE

Owens Community College – NABCEP Certification GLREA Advanced PV Integrator Training Program GEO PV Apprentice Installer Training GLREA Apprentice PV Installer Training Program March 2009 – November 2011 July 2007 – July 2009 June 2002 – November 2010 January 2002 – March 2008

RELEVANT WORK EXPERIENCE

- NABCEP certified PV installation professional since 2006.
- 45 years of commercial construction experience including site engineering and construction supervision.
- 40 years of solar system design and construction including system testing, development of solar construction standards and system design & construction.
- 19 MW of grid connected solar since 2000.
- Experience in commissioning many types of inverters including single phase residential and 3-phase, medium voltage connections directly to the utility grid.

Union Electrical Contractor	2001 - onwards
Solar Design & Construction	1995 – onwards
Witte CM Services – Commercial and Industrial Construction	1984 - 1995
DSET Laboratories – Solar Testing and Quality Control Tech	1979 – 1984
Witte Construction – Residential Labor and Cost Estimating	1970 - 1979

John Gembarski Site Supervisor

PROFESSIONAL SKILLS

- Licensed Electrician
- Experienced Supervisor
- Project management
- Troubleshooting

- Safety trained
- Arial Lift trained
- Electrical ARC/FLASH trained
- Solar installation supervisor

CERTIFICATIONS

- MUST Certified Completed all modules and up to date
- CAM National Safety Council Certified in Basic Life Support & First Aid
- Save A Life Certified in AED, CPR, First Aid
- CAM Certified in Asbestos / Awareness
- Certified Operator on Arial lifts

EXPERIENCE

NOVA Consultants Inc

Supervised, managed and installed the electrical infrastructure on commercial and industrial building. Including on site project management, some of the duties included, attending owner/contactor meetings, receiving and implementing work orders, documenting paper work, preparing "as build" drawings, and scheduling sub contractors and inspections.

As the supervisor, some of the duties included assigning daily work to employees, recording payroll, ordering material, receiving new employee applications, verifying code compliance installations, providing a safe work environment, conducting safe to work and new employee orientations, recording daily safety and progress reports.

In addition as an installing Electrician, responsible for installing electrical systems and equipment that met all codes and standards. Example: Power distribution, emergency power, fire alarm, energy management, lighting systems, trouble shooting and controls. These are some of the responsibilities on a day to day basis.

ACHIEVEMENTS

Successfully supervised the electrical systems for Westland schools and remodel. This project was very demanding, fast pace, and a tremendous amount of coordinating and large work force. The experience and knowledge brought to this project is one of the key elements why it was completed on time, under budget, and injury free. Also involved in many other successful projects varying from Metro Airport, Public Schools, hospitals and other industrial, commercial, residential buildings.

2011 - Present

COMPLETED PROJECTS

- Ann Arbors New Pre-School and remodeled middle school
- DTE Electric Company SolarCurrents Program
- Construction of Manchester's New High School and Remodeled Middle School.
- Upgraded Metro Airports Security for 9-11 Commission
- Remodeled Schoolcraft College Bradner Library
- Construction of Dundee's New High School and Remodeled Middle School.
- Public School Projects in Westland, Plymouth-Canton, Ferndale, Redford, Centerline, Troy, Others
- General Motors 500kW ground mount solar array.
- University of Michigan NCRC 430 kW ground mound solar array.
- Warren Consolidated 195 kW roof mounted solar array.
- DTE Energy 80.6Kw carport canopy solar array.
- Mercy High School 402kW roof mounted solar array.

Rick Marble Schedule Tracking/AutoCAD Specialist

Mr. Marble has experience in PV Array Modeling and shade analysis, Report preparation, Schedule Tracking for Detroit Electric Company's Solar O&M Projects, Construction Documents

EDUCATION

Production Drafting degree

PROFESSIONAL LICENCES

Registered Professional Engineer - State of Michigan and State of Nebraska

PROJECT EXPERIENCE

Consumers Energy Grand Valley State University 3 MW Solar Array Construction Documentation

DTE Domino's Farms 1,089 kW Solar Array

Glare analysis report and mitigation, Performed glare modeling and analysis.

Consumers Energy Vevay township

Solar array design and shade analysis, Engineering Documentation, and Renderings for Township approval.

DTE Solar Fleet Operations and Maintenance

Project coordination, Scheduling, and Reporting.

NOVA Consultants, Inc.

<u>Joe Ruffing, *BS*</u> Budget Tracking

Mr. Ruffing is responsible for tracking accounts payable and receivable, tracking project budget, maintaining project documentation and records, making payments to contractors, payroll processing etc.

EDUCATION

BS, Accounting

PROJECT EXPERIENCE

DTE Energy - GM Warren Transmission 898kW

Project Coordinator

- Tracked project budget and provided weekly and monthly reports to Project Manager
- Prepared purchase orders and processed invoices for subcontractors/materials
- Prepared and submitted invoices to customer
- Ensured project records and documents were maintained according to contract and NOVA policy

DTE Energy – Ford World Headquarters 1,038 kW

- Tracked project budget and provided weekly and monthly reports to Project Manager
- Prepared purchase orders and processed invoices for subcontractors/materials
- Prepared and submitted invoices to customer
- Ensured project records and documents were maintained according to contract and NOVA policy

Consumers Energy - GVSU Solar Garden 3MW

- Tracked project budget and provided weekly and monthly reports to Project Manager
- Prepared purchase orders and processed invoices for subcontractors/materials
- Prepared and submitted invoices to customer
- Ensured project records and documents were maintained according to contract and NOVA policy

Michigan Army National Guard (MIARNG) 330kW

- Tracked project budget and provided weekly and monthly reports to Project Manager
- Prepared purchase orders and processed invoices for subcontractors/materials
- Prepared and submitted invoices to customer
- Ensured project records and documents were maintained according to contract and NOVA policy

NOVA Consultants, Inc.

Gregory Wagner Environmental Geologist/Site Safety Officer

Mr. Wagner is an Environmental Geologist and Site Safety Officer for NOVA Consultants, Inc. He has over 16 years experience in the fields of soil and groundwater sampling, asbestos and lead survey, environmental sampling, health & safety, industrial hygiene, environmental audit, due diligence, geology/hydrogeology, plant decommissioning, construction management/supervision, utility installation, and material testing.

His responsibilities include field supervision, asbestos and lead based paint survey, personal and area air monitoring, sampling of soils and groundwater, installation of borings and monitoring wells, geophysical survey etc. He has completed a number of asbestos and lead based paint survey and abatement projects for General Motors, Delphi Automotive, Ashley Capital and federal government projects.

Mr. Wagner has excellent computer and record-keeping skills. He is proficient in Microsoft Office and AutoCAD programs

EDUCATION

B.A. Earth Sciences, Adrian College, Adrian, Michigan

PROFESSIONAL CERTIFICATION AND TRAINING

Contractor/Supervisor for Asbestos, Michigan Certified Asbestos Building Inspector, Michigan (A20617) Certified Lead Inspector/Risk Assessor, Michigan (P-1615) NITON XRF Trained OSHA 40-Hour HAZWOPER OSHA Confined Space Entry - Entrant/Attendant/Supervisor Troxler Nuclear Moisture/Density Gauge

PROJECT EXPERIENCE

NOVA Consultants, Inc. Novi, Michigan Environmental Geologist/Site Safety Officer

Responsible for sampling of soil, groundwater and air, asbestos and lead based paint survey, supervision of abatement activities, personal and area air sampling for asbestos and other industrial hygiene applications, clearance sampling, tabulation of data, preparation of reports, mercury monitoring and spill response, installation of soil borings and monitoring wells, collection of soils and groundwater samples, screening of soils with OVM/PID, and GPR surveys.

Mr. Wagner has also worked as health and safety officer for number of environmental projects that includes remediation and plant decommissioning. His responsibilities also include construction

1999 - Present

supervision, utility installation supervision, material testing, oversight of contractors, and facility decommissioning and remediation verification sampling.

Environmental Testing and Consulting Inc. Romulus, Michigan Field Technician

Performed asbestos and lead based paint inspections, conducted personal and area wide air monitoring on asbestos and lead abatement projects.

Onsite Environmental Inc., Livonia, Michigan

Field Technician

Construction materials testing on various projects. Field supervision and oversight of contractors and air monitoring during asbestos abatement projects.

Imaging Subsurface, Inc., Detroit, Michigan Staff Geologist

Assisted on many geophysical surveys such as magnetometer, and GPR surveys. Assisted in soil sampling projects using Geoprobe. Also performed laboratory testing of construction material and soils including Proctor and Atterberg Limits for construction projects.

Field Technician, CTI and Associates, Inc.

Performed in-place testing of soils using Troxler gauge on many construction sites. Supervised construction projects. Performed on-site concrete testing to determine if materials meet engineering specifications. Also worked as driller helper for both environmental and geotechnical drilling applications.

James Mann

J. Ranck Electric, Inc. Project Manager

With over 20 years of working in electrical construction, James did not achieve this through traditional channels. He began as a teenager working under a journeyman as an apprentice logging his hours and reporting them to the proper state authority. Once he had the necessary

hours he took the journeyman's test and received his license. During this process, he joined the IBEW as a licensed journeyman, and continued gaining the hours needed to obtain his master electrical license. Working in various roles of apprentice, journeyman, foreman, estimator, and project and quality manager, Mann brings a well-rounded perspective into the management of projects.

Over his career, James has proven his ability to understand, adapt, and excel at all aspects of construction management. His integrity, efficiency, and ability to communicate effectively while multi-tasking are some of his greatest attributes. To gain credibility and trust, James feels that 100 percent transparency with the owner and construction team is crucial to work through the challenging parts of a project.

His extensive experience is utilized in his current role of project manager. He oversees and coordinates all safety, quality and financial activities on his jobs to ensure all project goals are met. His attention to detail and dedication to customer needs are readily apparent when ensuring accurate document management, schedules and key milestones are met, while auditing, tracking and resolving issues and changes that present themselves.

Mann provides great value to all project stakeholders and is a tremendous asset to any project he is assigned. He fully embodies J. Ranck Electric's core values of Safety, Quality, Integrity, and Family.

EDUCATION

- ABC School
- Michigan Journeyman Electrical License (2007)
- Master Electrical License (2010)
- Michigan Electrical Contractors License (2019)

TRAINING & CERTIFICATIONS

- OSHA 10
- CPR and First Aid Training

PROJECT EXPERIENCE

MISOLAR PORTFOLIO SOLAR FARMS - MICHIGAN

JRE was contracted by the Geronimo Energy, a National Grid Company, for the engineering, procurement, and construction of two ground mounted solar arrays in Michigan. In total, The MiSolar Portfolio consists of 40 MW AC (60 MW DC) of solar power being generated at the two farms located in Clinton and Monroe Counties in central and southern Michigan.

Mann and his renewable energy team managed this EPC contact which included the engineering and construction of these two 120 acre arrays in the middle of the COVID-19 pandemic. Kicking off in May of 2020, Mann and his team implemented JRE's COVID-19 Operations Response Plan that included health screening, safety barriers, and disinfection policies while on-boarding and managing a labor force that exceeded 175 on-site crew members at this project's peak.

The scope of work included all AC and DC electrical work including the installation of inverters, transformers/AC combiners, equipment pads and racks, and collection systems. The installation also included the raceways and cabling for the NLS communication system for the array. Each site also included the engineering and construction of a 46 kV substation.

THE BUTTER SOLAR PORTFOLIO - WISCONSIN

Mann managed the electrical installation at three ground-mounted solar arrays in Wisconsin. In total, the Butter Solar Portfolio consists of 23 MW of solar power generated at 10 different solar sites located throughout Wisconsin, lowa, and Minnesota. The multi-state power purchase agreement, and operated by BluEarth Renewables, is generating power which will be used locally by the Upper Midwest Municipal Energy Group and its customers.

This project included the installation of AC and DC electrical work for 10.5 MW at the Arcadia, Cumberland, and Fennimore arrays in Wisconsin. Mann and his team installed inverters, transformers/AC combiners, equipment pads, and racks, underground and above ground collection systems. He managed the installation of the raceways and cabling for the DAS/SCADA/Met Station for the arrays communications. All commissioning, start-up, synchronization, and performance testing on the electrical and communication systems installed was also conducted by Mann and his crews. At the time of completion in the fall of 2019, Arcadia was the largest array in the state of Wisconsin.

OTHER SOLAR ARRAY PROJECTS MANAGED

- Rooftop arrays for 9 Target stores, each site averaged 400 kW Michigan
- 2.75 MW DC array with battery storage/Vectren Energy Evansville, IN
- 30 MW DC over three arrays/Consumers Energy Grand Ledge, MI
- 60 MW DC Lapeer Array/DTE Energy Lapeer, MI
- 1.4 MW DC solar array/Wolverine Power Cadillac, MI
- 3.7 MW DC array at Grand Valley/Consumers Energy Allendale, MI
- 1.2 MW DC array at Western Michigan University/Consumers Energy Kalamazoo, MI

CONSUMERS ENERGY JH CAMPBELL

Mann managed a medium voltage and switchgear upgrade project at Consumers Energy's JH Campbell Power Plant in West Olive, Michigan. The work at Unit 2 consisted of the installation of new 5 kV bus duct from transformer to new switchgear, installation of new 5 kV feeder and cable tray from new switchgear to existing switchgear, and installation of new 5 kV feeder and cable tray from new switchgear to start up boiler feed pump. Mann also oversaw a second project to extend the facility's ground mat to the new dry fly ash system. Work included the installation of new copper ground wire and exothermic welding to join the conductors. Despite, financial and schedule issues that came up, Mann led this project with integrity, keeping this team focused on quality despite problems and pressure to cut corners.

Jason LeCureux

J. Ranck Electric, Inc. Foreman

LeCureux has been employed by J. Ranck Electric, Inc (JRE). since September of 2010. With over 15 years of working in electrical construction in the roles of apprentice, journeyman and foreman, LeCureux has had extensive experience working

on in the electrical field. Starting at JRE as a journeyman, LeCureux has worked his way up to becoming our premier solar foreman, highly trained and educated to handle any type of solar project he may be assigned to.

LeCureux is known for his multitasking abilities and success on high profile, complex, and multi-location projects. His solid work ethic inspires his crew to work at their utmost ability while working safely and efficiently. He has a record of keeping his jobs on schedule, utilizing his strong communication skills to coordinate between JRE's home office, the general contractor, subcontractors, engineering, and the owner, Jason is an integral part of the JRE team.

EDUCATION & REGISTRATION

- Muskegon Community College (1996-1997)
- Michigan State University (1997-1998)
- Michigan Journeyman Electrical License (2003)

TRAINING & QUALIFICATIONS

- CPR and First Aid
- Confined Space Training
- Silica Awareness
- Gold Shovel Certified
- OSHA 30
- Aerial Work Platform
- Crane Hand Signals
- Scissorlift Certification I IV
- Industrial & Construction Forklift Training
- Lockout/Tagout Procedural Training
- DOT Fleet Compliance Training
- Medical Examiners Certificate (Med Card)
- ARC Flash Safety Training
- MISS DIG Procedure Training
- Excavators Damage Prevention Review
- Bucket Truck Training
- Boomlift Training
- Consumers Energy Underground 2016
- Michigan Truck Safety Training

PROJECT EXPERIENCE

FORD RESEARCH & ENGINEERING PARKING SOLAR AND BATTERY STORAGE — DEARBORN, MI

LeCureux was JRE's field leader for the EPC contract for this unique partnership between DTE Energy and The Ford Motor Company. This project consists of a rooftop array owned and operated by southeast Michigan power supplier DTE Energy on the top of a new six-story parking structures at the Ford Research & Engineering Center in Dearborn. LeCureux was critical in the coordination and management of tying in this 750 kilowatt array to Ford's 15kV campus loop that also includes a 125 kilowatt battery storage system that powers electric vehicle charging stations.

- Completed: May 2021
- System Size: 865 kW DC / 750 kW AC
- Panels: 2,159 Canadian Solar 400 W modules
- Inverters: 12 SMA Inverters
- Storage: 125 kW/506 kWh Battery Storage System ConEdison Battery Storage Systems
- · Panel Claw ballasted racking system
- 13.2 kV Interconnect

DTE ENERGY'S SOLAR CURRENTS PROJECTS

LeCureux was instrumental in providing successful project outcomes for many projects associated with the DTE Solar Current Projects constructed by J. Ranck Electric, Inc. (JRE) from 2010 to 2017. LeCureux has been involved with every project constructed by JRE as a part of this program, first as a journeyman and later as a foreman. LeCureux has aided in the completion of 17 of the 26 arrays constructed in the DTE Solar Currents program, assisting DTE in moving towards attainment of it's early goal of 15 MW of energy provided through renewable resources. LeCureux successfully constructed ground mounted, roof mounted and tracking arrays as part of this program. LeCureux was the job site superintendent/foreman for the Domino's Farm 1.1 MW DTE project. When it was completed, this array was the largest array installed as part of DTE's collaborative program with large industrial companies (Solar Currents) but was the largest in the state of Michigan.

NINE TARGET STORE ROOFTOP SOLAR ARRAYS THROUGHOUT THE STATE OF MICHIGAN

Jason was selected as the foreman for nine separate Target store rooftop solar arrays throughout the State of Michigan. Several stores were completed simultaneously on this aggressively scheduled set of projects. Each store has a rooftop array constructed averaging 400 kW spanning across the state of Michigan. Projects are located in Fenton, Auburn Hills, Fort Gratiot, Macomb Township, Okemos, Muskegon, Grand Rapids, Traverse City and Novi, which required interaction with multiple jurisdictional authorities to complete the project in accordance with all governing regulations. LeCureux's ability to plan and execute multiple objective simultaneously was a great asset on this project where logistics were of utmost importance to maintain constant work flow from one project to the next.

OAKLAND SCHOOLS ALTERNATIVE ENERGY

LeCureux managed multiple crews handling both solar and wind turbine construction at four different locations for this project. This work was a small portion of a much larger construction project that required close monitoring and communication between other contractors and the general contractor. LeCureux excelled at providing all electrical work and cooperative scheduling between contractors to ensure that all JRE work was completed in a timely and effective manner while improving the overall project schedule whenever possible. His attention to detail and ability to multi-task was a great attribute and essential to the successful completion of this project.

Attachment 5 – JRanck Experience

QUALITY. SAFETY. INTEGRITY. FAMILY.

Since 1986, J. Ranck Electric has provided design-build and bid/spec construction services. A family business with roots in the Midwest, JRE has become a national presence in electrical and communications contracting. We strive to grant every customer the highest quality, safety, and professional experience with each construction project we perform. JRE keeps a close watch on our everchanging industry while upholding our corporate values and remaining a financially sound, stable company with prudent growth.

Our team takes pride in our ability to self-perform a wide scope of work while supporting the customer's schedule and meeting deadlines. With extensive experience and a host of resources, our crews are prepared to address the unique aspects of each project from concept to completion. JRE specializes in transportation, heavy industrial, power, water, oil, gas, and renewable energy infrastructure. No matter the customer or type of work, the JRE Team adds value on every construction project, repair, and maintenance call.

From apprentices to senior management, we all have a strong understanding of the coordination required for a safe and successful installation. Current customers know that when JRE promises to deliver, we are true to our word. Trust is not something that we take lightly and we value each relationship, whether it is with a customer, subcontractor or vendor. We strive to develop long-term connections with our customers, in order to create relationships built on trust, anticipated needs, and responsive action.

DEFINING SUCCESS

We define success through the everyday interactions of our team, whether it is coordinating with contractors and customers or working through unique schedule and shutdown issues; the high level of quality that we deliver is unwavering. Communication is key to any strong relationship. Our team excels when presented with schedule and scope challenges and we know our customers rely on open communication, a timely response, and the highest level of professionalism every step of the way.

CONCEPT TO COMPLETION

Completing Your Project - On Time Every Time

Nationwide service:

- Turnkey electrical and communications contracting services
- Design/Build and design/assist services
- Network cabling and fiber installations
- Tower construction and maintenance
- Highway and street lighting
 - Traffic signal installation and maintenance
 - Site development
 - Signage and guardrail installation
 - Excavation/trenching/directional boring/hydro vacuum
 - Solar and wind turbine installation
 - Energy efficiency solutions
 - Equipment rental service
 - Storm response
 - Utilities

START WITH A CONCEPT:

Beyond our bid/spec electrical and communications contracting, we also offer design/build and design/assist services. Our multi-state licensed project teams collaborate to improve the upfront design quality, planning, communication, and speed of installation, which will in turn promote cost savings for our customers.

FULL SERVICE CONTRACTOR:

The confidence we have in our crews to meet every deadline while self-performing the majority of the work is proven. Our crews have extensive experience and a host of resources to pull from, specific to each unique aspect of your project. We are prepared to assist in new construction projects, repairs, maintenance, and exploratory excavation.

PROFESSIONAL EXECUTION:

Our teams will manage the installation process utilizing technology and expertise to track job cost, scheduling, completion status, and productivity information for each stage of the project. This approach gives us the ability to assess what is complete and what resources (labor, material, tools, equipment) will be required to finish the project on time and under budget.

Ground Mount Solar

ENBRIDGE ENERGY - SOLAR EPC

SOLAR POWER GENERATING FACILITIES – WISCONSIN AND ILLINOIS

J. Ranck Electric Inc. (JRE) was contracted by Enbridge Energy, for the engineering, procurement, and construction of three ground mounted solar arrays in the mid-west United States. The projects are part of Enbridge's larger "self-power" initiative to build renewable power generating facilities in their pipeline right-of ways to help power their assets with clean electricity. In total, the projects consists of 39MW DC of solar generating capacity on 210 acres at three facilities Flanagan Solar in Pontiac, IL, Portage Solar near Portage, WI, and Adams Solar near Grand Marsh, WI.

JRE's contracts included the installation of AC and DC electrical work including the installation of inverters, transformers, equipment pads and racks, and collection systems. JRE also installed the raceways and cabling for the NLS communication system for the array. Each site also included a substation expansion and interconnection.

Flanagan Solar 81.72 acre site – Pontiac, IL

- Size 13.24 MW DC/ 10.13 MW AC
- Modules installed 31,512
- Racking NEXTracker Tracking System 498 rows
- 225kW Sungrow, Model No. SG250HX-US Inverters
- Posts 4140
- (5) 34.5kV transformers interconnecting to 34.5kV substation
- Tracking Motors and gear boxes 498
- Linear Footage of MV Cable 5950'
- Linear Footage of FO Cable 5950'

Adams Solar 53.56 acre site – Grand Marsh, WI

- Size 10.59 MW DC/ 8.55 MW AC
- Modules installed 25,220
- Racking NEXTracker Tracking System 347 rows
- Inverter 225kW Sungrow, Model No. SG250HX-US
- Posts 3248
- (4) 34.5kV transformers interconnecting to 5kV substation
- Tracking Motors 349
- Gear Boxes 347
- Linear Footage of MV Cable 3330'
- Linear Footage of FO Cable 3330'

Portage Solar 74 acre site - Portage, WI

- Size 15.24 MW DC/ 12.15 MW AC
- Modules 36,218 installed
- Racking NEXTracker Tracking System 559
- Tracking Motors and gear boxes 559
- Inverter 225kW Sungrow, Model No. SG250HX-US
- Posts 4735
- (6) 34.5kV transformers interconnecting to 5kV substation
- Linear Footage of MV Cable 6385'
- Linear Footage of FO Cable 6385'

Ground Mount Solar

DTE ENERGY / FORD MOTOR CO. EPC SOLAR

FORD RESEARCH AND ENGINEERING CENTER - PARKING STRUCTURE ARRAYS WITH BATTERY STORAGE — DEARBORN, MI

J. Ranck Electric, Inc. was selected as the EPC contractor for this unique partnership between DTE Energy and The Ford Motor Company. This system consists of a rooftop array owned and operated by southeast Michigan power supplier DTE Energy on the top of a new six-story parking structures at the Ford Research & Engineering Center in Dearborn. The 750 kilowatt array is connected to Ford's 15kV campus loop and includes a 125 kilowatt battery storage system that powers electric vehicle charging stations.

- Completed: May 2021
- System Size: 865 kW DC / 750 kW AC
- Panels: 2,159 Canadian Solar 400 W modules
- Inverters: 12 SMA Inverters
- Storage: 125 kW/506 kWh Battery Storage System ConEdison Battery Storage Systems
- Panel Claw ballasted racking system
- 13.2 kV Interconnect

GERONIMO ENERGY - EPC

MISOLAR PORTFOLIO SOLAR FARMS - MICHIGAN

J. Ranck Electric (JRE) was contracted by the Geronimo Energy, a National Grid Company, for the engineering, procurement, and construction of two ground mounted solar arrays in Michigan. In total, The MiSolar Portfolio consists of 40 MW AC (60 MW DC) of solar power being generated at the two farms located in Clinton and Monroe Counties in central and southern Michigan. The power purchase agreement, being built by Geronimo Energy, will generate power and be locally used by Consumers Energy.

JRE's contract included the installation of AC and DC electrical work including the installation of inverters, transformers/AC combiners, equipment pads and racks, and collection systems. JRE also installed the raceways and cabling for the NLS communication system for the array. Each site also had a 46 kV substation.

- 320 combiner boxes installed and 21,255 posts installed
- (16) 35 kV transformers installed
- 79 tracking motors installed
- 18,839' of fiber optic cable installed
- 1,922 gear boxes installed
- 16,080 linear feet of medium voltage cable installed (each linear foot has three cables)
- Temperance 123 acre site
- 30 MW DC / 20 MW AC
- 74,790 Trina Bifacial Modules (390,395, and 400W)
- Racking: Array Technology Tracking System
- 962 rows of tracker system capable of turning 32 rows at once to follow the sun
- (160) 125kW Yaskawa Solectria XGI Inverters
- Bingham 121 acre site
- 30 MW DC/ 20 MW AC
- 73,440 Trina Bifacial Modules (400W)
- Racking: Array Technology Tracking System
- 960 rows of tracker system capable of turning 32 rows at once to follow the sun
- (160) 125kW Yaskawa Solectria XGI Inverters

J. RANCK

GROUND MOUNT SOLAR

PINE GATE RENEWABLES

MICHIGAN SOLAR FARM PORTFOLIO – MICHIGAN

JRE was contracted by national solar developer Pine Gate Renewables to construct eight arrays of their initial 14 solar farm development. The projects are part of a larger initiative to bring more than 500MW of renewable energy projects to Michigan through 20-year Power Purchase Agreements. In total, the 14-farm portfolio is expected to produce enough energy to power around 7,600 homes in the first year of operation. JRE constructed arrays in Branch, Genesee, Missaukee, Hillsdale, Montcalm and Saginaw counties.

- September to December 2020
- · Contracts totaled over \$10 million
- 22.7 MW DC / 16MW AC installed
- · Game Change Genius Tracker racking installed 2P
- 128 Sungrow Inverters SG125HV
- 57,105 Canadian Solar Bifacial mixed wattage 390-405 panels
- 108,832 linear feet DC feeder cable installed
- Eight 2000KVA Transformers installed

THE BUTTER SOLAR PROJECT

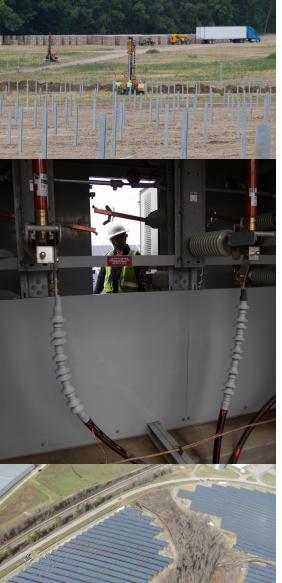
THREE UPPER MIDWEST MUNICIPAL ENERGY SOLAR FARMS - WISCONSIN

J. Ranck Electric (JRE) was contracted by the RECON Corp. for the electric work at three ground mounted solar arrays in Wisconsin. In total, The Butter Solar Project, consists of 32 MW of solar power being generated at 10 different solar farm locations throughout Wisconsin, Iowa and Minnesota. The multi-state power purchase agreement, being built by Developer OneEnergy Renewables and operated by BluEarth Renewables, will generate power and be locally used by Upper Midwest Municipal Energy Group and their customers.

JRE's contract included the installation of AC and DC electrical work for 14.88 MW at the Arcadia, Cumberland and Fennimore arrays in Wisconsin. Work included the installation of inverters, transformers/AC combiners, equipment pads and racks, underground and above ground collection systems. JRE also installed the raceways and cabling for the DAS/SCADA/Met Station for the array communications. JRE conducted all commissioning, start-up, synchronization, and performance testing on the electrical and communication systems installed. At the time of completion in the summer of 2019, Arcadia was the largest array in the state of Wisconsin.

Arcadia – 21.18 acre site

- 7.449 MW DC/5 MW AC
- 19,604 Modules (REC TWINPEAK)
- RBI Fixed Tilt Racking
- 40 Sungrow Inverters


Cumberland - 13.24 acre site

- 3.325 MW DC/2.5 MW AC
- 9,048 Modules (REC375TPS272M)
- RBI Single Axis Tracker (839 Table, 1,678 Posts, 156 Field Equipment Posts)
- 20 Sungrow Inverters

Fennimore -15.7 acre site

- 4.11 MW DC/3 MW AC
- 10,816 Modules (REC TWINPEAK 380WATT)
- RBI Single Axis Tracker (987 Tables, 1,974 Posts. 125 Field Equipment Posts)
- 24 Sungrow Inverters

Ground Mount Solar

VECTREN ENERGY SOLAR - EPC

EPC SOLAR ARRAY WITH BATTERY STORAGE - EVANSVILLE, IN

JRE was contracted for the design, engineering, procurement, and construction of the 2.75 MW DC solar array on 15 acres off US 41 in southern Indiana. This utility-owned array includes a 1 MW Lithium Ion Battery Storage System with 4.65 MWH of capacity.

- 7,784 REC 350W solar modules 1500V
- TMEIC 2.5MW AC Inverter skit at 1500 Volt DC
- 12 SolarBos 1500 Volt combiner boxes
- 139 Racks
- 1,056 Posts
- DAS system interfacing with the utility's existing SCADA
- Johnson Controls 1 MW/4MWH L2000 BU 5000-E Distributed Energy Storage System
- 53' L2000 BU 5000-E containerized system
- 18 racks, consisting of 17 battery modules per rack, of lithium ion energy storage
- Power Conversion System: Ingecon Storage Powermax 1170TL U B 450 Bi-Direction inverter
- 1500 kVA Step up transformer 450/12,470 V

DELTA TOWNSHIP SOLAR

PHASE I, II, AND II CONSUMERS ENERGY SOLAR FARM - GRAND LEDGE, MI

JRE was contracted to install the posts, racking and panels for Consumers Energy's largest solar array. Through a power purchase agreement the generating system will provide enough energy to power 3,300 homes for the Lansing Board of Water and Light. Constructed on 190 acres in Delta Township, near Grand Ledge, MI, the array was the second-largest in the state at the time of commissioning.

- System Size: 30 MW DC / 24 MW AC
- Constructed from September 2017 to May 2018
- NEXTracker racking system increasing generation efficiency by nearly 15 percent
- 35,602 man-hours worked

Posts:

Delta #1 - System Size:	10 MW DC		
Panels:	(29,160) 340W Trina modules		
Racking:	405 racks and motors		
Posts:	4,459		
Delta #2 - System Size:	15 MW DC		
Panels:	(43,200) 340W Trina modules		
Racking:	600 racks and motors		
Posts:	6,532		
Delta #3 - System Size:	5 MW DC		
Panels:	(14,040) 340W Trina modules		
Racking:	195 racks and motors		

2.149

Ground Mount Solar

AMERICAN LEGION ROAD SOLAR - EPC

20 MW SOLAR ARRAY - ROANOKE RAPIDS, NC

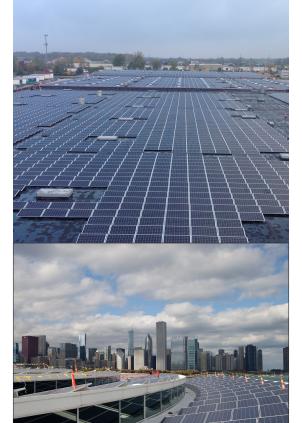
- System Size: 20 MW
- Constructed from May November 2017
- Panels: 59,090 Total Panels (28,424 Hanwha), (30,666 Trina) 92 truck deliveries
- Racking: 1,555 racks (2X19 configuration)
- (9) TMEIC 1.83MW integrated inverter skids (inverter, DC Recombiner, transformer)
- 6,220 posts
- 612,596 ft. stringer wire connecting modules
- 70 acres of solar panels on a 124-acre farm

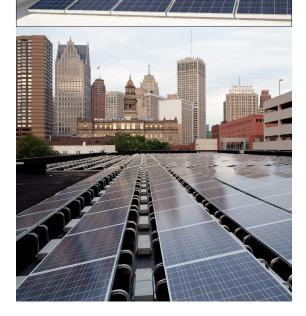
DTE ENERGY SOLAR 60 MW SOLAR FARM – LAPEER AND DETROIT, MI

In 2017, J. Ranck Electric, Inc. completed construction of what was, at the time of construction, the largest solar project in Michigan and largest utility-owned solar array east of the Mississippi River. Located in Lapeer, this system consists of two separate arrays owned and operated by southeast Michigan power supplier DTE Energy on land leased from the city of Lapeer. With crews exceeding 120 workers and a total of 160,000 man-hours worked with zero OSHA recordable incidents, JRE safely met the aggressive project schedule with completion in 2017. The solar farm will generate enough power for 9,000 homes.

- The arrays included over 188,000 solar panels on nearly 420 acres of land
- Constructed from January 2016 to April 2017
- All three arrays used Solar FlexRack racking systems
- 19,016 posts
- 488,000 ft. medium voltage cable
- 1.5 million ft. of stringer wire connecting modules
- 1.6 million ft. of underground conduit
- 46 kV switchgear (25) and transformers (25)
- Array #1 Demille Array, Lapeer, MI

System Size:	34.57 MW DC/28.56 MW AC
Panels:	32,528 Canadian Solar CS6X 315W &
	76,000 Canadian Solar CS6X 320W
Inverters:	42 Schneider XC 680 NA


Array #2 - Turill Array, Lapeer, MI


System Size:22.96 MW DC/19.72 MW ACPanels:34,998 Canadian Solar CS6X 315W &
37,126 Canadian Solar CS6X 320WInverters:(29) Schneider XC 680 NA

• Array #3 - O'Shea Array, Detroit, MI

System Size:	2.44 MW DC / 2.04 MW AC
Panels:	(7,398) Suniva OPT335-72-4-100
Inverters:	(68) SMA 30000TL-US

ROOFTOP SOLAR

TARGET STORES

3.7 MW ROOFTOP ARRAYS - MULTIPLE LOCATIONS, MI

- In 2016, J. Ranck Electric, Inc. began construction on multiple contracts totaling 3.7 MW for the installation of rooftop solar arrays on Target stores at various locations in Michigan. Ranging in size from 323 kW 478 kW, these arrays are constructed in an aggressive overlapping scheduling sequence. JRE is currently constructing three arrays simultaneously and will begin to add additional arrays as final plans are approved. JRE is currently in negotiations for additional stores both in Michigan and several other states. Listing below details sizes and locations of arrays currently under contract:
- 444kW Fenton, Michigan
- 323kW Fort Gratiot, Michigan
- 343kW Okemos, Michigan
- 478kW Grand Rapids, Michigan
- 472kW Novi, Michigan

DUKE REALTY

DISTRIBUTION WAREHOUSES - INDIANAPOLIS, IN

- Constructed in 2014
- Installation of 3 separate rooftop arrays totaling 10.5 MW
- Biggest rooftop solar array in Indiana at the time it was completed.
- Kanzo Ballasted Panel Claw Generation 3 racking system (to date, JRE has installed more of this type of racking than any other contractor in the world)
- Installed 39,500 280 watt Solar World Panels and Schneider 680 kW Inverters

SHEDD AQUARIUM

ROOF MOUNT CHICAGO, IL

- Constructed in 2013
- Installation of 265 kW roof mount solar array using 300 Watt modules provided by owner, Schneider Electric 250kW inverter , & Schletter racking system

METRO LINK

345.6 KW SOLAR ARRAY – MOLINE, IL

- Constructed in 2013
- Installation of 345.6 kW roof mount solar array using Motech 255 Watt modules provided by owner, SGI 300kW inverter & AET racking system

BLUE CROSS BLUE SHIELD

DTE – DETROIT, MI

- Constructed in 2011 as part of DTE's Solar Currents Program Project
- Installation of a 33,000 sft surface area 220 kW Rooftop Array using Schott 235 watt modules, 2 Satcon Inverters rated at 100 kW & AET racking

• 416kW Auburn Hills, Michigan

- 438kW Macomb, Michigan
- 397kW Muskegon, Michigan
- 422kW Traverse City, Michigan
- 402kW Saginaw, Michigan

SPECIALTY SOLAR HOOSIER ENERGY

4MW SYSTEM - MULTIPLE LOCATIONS IN INDIANA

- In 2015, J. Ranck Electric constructed three separate solar arrays for Hoosier Energy in Indiana. Each site was identically designed both in layout and equipment generating 1.34 MW of power. The system totaling 4.02 MW connected directly to the Hoosier Energy utility grid.
- Each array consists of 4320 Canadian Solar 310 watt panels, 2 Schneider SC 540 Inverters and an ATI Single Axis Tracker 30% GCR Racking system
- Array names & locations:
 - < Green County , Crane, Indiana
 - < New Castle, New Castle, Indiana
 - < Harrison Array, Georgetown, Indiana
- JRE did the complete electrical installation as well including the installation of electrical components, wiring of the AC and DC applications, medium voltage interconnection, DC combiner boxes, and module interconnect wiring.

1-800-LAW-FIRM

MULTIPLE APPLICATIONS - SOUTHFIELD, MI

- Constructed in 2014
- Installation of 65.52 kW Roof Mount Array, 80.64 kW Carport, Electric Car Charging Stations and Roof top VAWT Wind Turbines

DOW EVENT CENTER AWNING

35 KW DOW – SAGINAW, MI

- Constructed in 2012
- 35 kW awning mounted solar array uses Suntech 275 watt modules, Solectria 15 kW inverters & a Schletter racking system

GE CAR CHARGING STATIONS

15 KW CANOPY WITH CHARGING STATION - GA

• Constructed in 2012, this 15 kW canopy involves the installation of an 8 parking space solar canopy with charging stations. Composed of GE modules, 1 GE electric car charging unit per 2 stalls and SMA Sunny Boy inverters.

SCIO TOWNSHIP

COMBINATION SOLAR ARRAY - SCIO, MI

- Constructed in 2010, this was the first DTE Solar Currents Program project installed in the State of Michigan
- Total system composed of two arrays, one fixed and one tracking as detailed below:
 - < 47 kW fixed array uses 224 watt Sharp Modules, 2-15 kW & 1-13 kW Solectria inverters
 - $\,<\,$ 13 kW single access tracking array uses 60 panels rated at 224 Watt,

1-13 kW Solectria inverter forming 6 single access tracking arrays consisting of 10 panels, each allowing automatic adjustment with sun movement using a pyranometer

• Both arrays are connected to the central DTE web based monitoring system

CARPORTS / CHARGERS

493 KW ROOFTOPS/CARPORTS, MONTROSE, NY

- Constructed in 2015
- Installation of a total of 493 kW system consisting of a 413.10 kW carport, two small rooftop arrays and an additional small carport for the Veterans Administration in Montrose, NY

1-800-LAW-FIRM

MULTIPLE APPLICATIONS - SOUTHFIELD, MI

- Constructed in 2014
- Installation of 65.52 kW Roof Mount Array, 80.64 kW Carport, Electric Car Charging Stations and Roof top VAWT Wind Turbines

GE CAR CHARGING STATION 15 KW CANOPY WITH CHARGING STATION – GA

- Constructed in 2012,
- Installation of 15 kW canopy involves the installation of an 8 parking space solar canopy with charging stations. Composed of GE modules, 1 GE electric car charging unit per 2 stalls and SMA Sunny Boy inverters.

BOSCH CHARGING STATIONS

MULTIPLE LOCATIONS THROUGHOUT MICHIGAN

- Constructed from 2011 2014
- Installation of residential car charging stations throughout the State of Michigan
- Over 40 charging stations installed directly for the manufacturer

CHEVY VOLT SOLAR CARPORT CHARGING STATIONS 18 US LOCATIONS

Constructed in 2011

- Installation of 11-32 kW solar arrays composed of canopies over 6-12 parking spaces with charging stations
- Average 6 stall canopy uses 96 modules, 12 stall canopy uses 192 modules,
- 1 GE Voltec electric car charging unit installed for every 2 stalls
- SMA Sunny Boy inverters with 3rd party monitoring system integration

TESLA

LOCATIONS THROUGHOUT THE EASTERN U.S.

- Constructed 2013 2015
- Installation of 4-10 parking space single unit supercharging stations for Tesla electric cars & first mobile supercharging unit installed in the US.
- 17 locations completed to date in 12 states
- Each location includes owner manufactured and provided equipment for the installation to include TESLA supercharging car units and all equipment to provide a complete charging system.

SOLAR MAINTENANCE

•

J. Ranck Electric, Inc. (JRE) is currently contracted with several owner controlled solar arrays. JRE provides 24/7 on call service for emergency work, providing scheduling, troubleshooting, and repairs reported for non emergency work. In addition, these contracts cover scheduled yearly maintenance. Services include, but are not limited to the following items:

- Overall site conditions: Grounds, safety signage
 - Signs and labels checked indicate if present and intact
 - Site appearance described
 - Any issues are reported to the owner, i.e. debris issues, etc.
- Solar Modules:
 - Check module condition
 - Report dust, film, etc., if present on modules
- Racking:
 - Check general condition of racking
 - Report any issues that need attention
 - Perform torque tests on racking
- Service Rack:
 - Perform torque test on equipment at the service rack
 - Check all wires for tightness
 - Perform IR Scans
- Inverters:
 - Check general condition of Inverters
 - Report any issues that need attention
 - Check field wires for tightness
 - Verify fuses are good
 - Perform IR scans
 - Replace filters as needed.
 - Complete performance testing
- Disconnects/Master Combiners:
 - Check condition of all disconnects and master combiners
 - Report any issues that need attention
 - Perform torque test on terminations
 - Perform IR scans

DTE ENERGY

0 & M CONTRACT FOR ALL MICHIGAN SOLAR SITES

- 2010 Present
- Maintain 26 sites with additional sites added as more projects are completed
- Annual contract that has been renewed for several years
- Site vegetation maintenance as needed added 2014

BOSCH

0 & M CONTRACT FOR ALL MICHIGAN SOLAR SITES

- 2011 Present
- Maintain 5 arrays at 3 locations with additional sites added as projects are completed
- Yearly contract that has been renewed for several years

[PROJECT EXPERIENCE]

INSTALLED PROJECTS

			Completion	Project DC	
Jab Name	City, State	Type of installation	Year	iter	Vearly Totals
2009 Summary of Projects Installed	Multiple Locations	Multiple Applications	2009	24.8	24.8
200 Services of Projects Installed Multiple Locations		Multiple Applications	ZOLD	211	211
		Multiple Applications	2011	2732	2732
202 Survey of Projects Installed	Makine Landors	Multiple Applications	2012	1477.25	107.26
2013 Summary of Projects Installed	Multiple Locations	Multiple Applications	2013	3474.8	3474.8
2014 Services of Projects Installed	Maltiple Locations	Multiple Applications	2014	1485LI5	1464.85
2015 Summary of Projects Installed	Multiple Locations	Multiple Applications	2015	8852.56	8852.56
2016 Servicely of Projects Installed	Maltiple Locations	Mattine Applications	2015	117789.36	13770-35
2017 Summary of Projects Installed	Multiple Locations	Multiple Applications	2017	35613.2	35613.2
208 Services of Projects Installed	Haltigle Landiers	Matigle Applications			5000.0
Ellis North	Dryden, NY	Ground Mount	2019	13461.9	
DTE Ford PV and BESS (design)	Dearborn, MI	Roof Mount	NA	0	
Cumberland Solar	Cumberland, WI	Ground Mount	2019	3393	
Arcadia Solar	Arcadia, WI	Ground Mount	2019	7449.5	
Fennimore Solar	Fennimore, WI	Ground Mount	2019	4110	
DTE Gas Compressor Solar	Mt. Pleasant, MI	Ground Mount	2019	3.6	
ISI/Engie York Solar	Thomson, IL	Ground Mount	2019	2010.42	
ISI/Engie Madison Solar	Ridgeway, IA	Ground Mount	2019	2010.42	
Marshalltown Solar	Marshalltown, IA	Ground Mount	2019	3421.44	
ABI Virtue Cider Solar	Fennville, MI	Ground Mount	2019	78.3	
ITC Solar	Novi, MI	Ground Mount	2019	526.88	
Truman Solar	Wendell, NC	Ground Mount	2019	6593.3	
URE Shelby Solar	Shelby, OH	Ground Mount	2019	2547.45	
2019 Summary of Projects	Multiple Locations	Multiple Applications	2019	45606.21	43058.76
Ridge Farm Salar	Orinan, L	Ground Mount	2020	2547	0
Temperance Solar	Erie, Mi	Grand Mount	2020	30000	0
Ringham Salar	St. Johns, MI	Grand Mount	2020	30000	0
Detroit Zoo Solar Shetter	Royal Dak, Mi	Reof Mexant	2020	7.29	0
DHE Fund PV and BESS	Dearbarn, Mi	Reaf Mount	2021	750	0
Geides 1	Saginaw, M	Grand Mount	2020	2073	0
Galdes 2	Saginaw, M	Grand Mount	2021	2073	0
Simelart	Saginaw, M	Grand Mount	2020	201	0
Rack francis	Maunt Marris, M	Grand Mount	2020	2073	0
May Standor	Maunt Marris, M	Grand Mount	2020	2073	0
Waterson	Later City, Mi	Grand Mount	2020	2714	0
Crescent Salar	konesville, Mi	Grand Mount	2021	9.6	0
Reflection of the second s	konesville, M	Graund Mount	2021	2073	0
Argela	Coldector, M	Grand Mount	2021	2021	0
2020 Summary of Projects	Multiple Locations	Multiple Applications	2020	86084.89	83263.89
East Lansing Scheels Carpert & Ground	N East Lansing, M	Carport and Ground Mount	•	241	0
Bayne Min. Solar	Boyne Falls, Mi	Grand Mount	•	1763.56	0
•	0	D	•	a	0
•	0	D	•	a	0
•	0	D	•	a	0
2021 Summary of Projects	Multiple Locations	Multiple Applications	2019	0	0
		TOTAL TO DATE			27.8064W

[PROJECT EXPERIENCE]

Wind

1-800-LAW-FIRM MULTIPLE APPLICATIONS – SOUTHFIELD, MI

- Constructed in 2014
- Installation of 65.52 kW Roof Mount Array, 80.64 kW Carport, Electric Car Charging Stations and Roof top VAWT Wind Turbines (see picture on left)

MDOT REST AREA WIND TURBINE

- 3.5KW WIND TURBINE ST. IGNACE MICHIGAN
- Completed in 2015
- Design Build project for engineering, procurement and installation of 3.5 kW Raum Energy Turbine complete with foundation and electrical work at the MDOT Rest Area on southbound I-75 in St. Ignace

SCIT TURBINE FOUNDATION

TURBINE FOUNDATION & ELECTRICAL -- MT. PLEASANT, MI

- Foundation and Electrical work completed in January & February of 2012. Project was then put on hold until July 2013 when the equipment was installed and the final electrical work was completed.
- Start up and integration by others.
- Work completed for Saginaw Chippewa Indian Tribe at the Water Treatment Plant in Mt. Pleasant, Michigan

MACKINAW CITY HARBOR

STATE HARBOR OF REFUGE WIND TURBINES PH III

- Completed in 2009
- Redevelopment of ferry docs for renewable energy usage. Project was the first "green" marina for the Department of Natural Resources,
- Complete installation of electrical and lighting improvements to accommodate the turbines, including the infrastructure for the Skystream turbines

Attachment 6 – Required Bid Forms

2

Interna	I Revenue Service	Go to www.irs.gov/FormW9 for instruction	s and the latest information.			
	1 Name (as shown	e this line blank.				
	NOVA Consult	NOVA Consultants Inc.				
	2 Business name/o	tisregarded entity name, if different from above	· · · · · · · · · · · · · · · · · · ·			
Print or type. Specific Instructions on page 3.	following seven l Individual/sole single-member Limited liabilit Note: Check LLC if the LLC another LLC t is disregarded	e proprietor or C Corporation S Corporation or LLC y company. Enter the tax classification (C=C corporation, S=S corpo the appropriate box in the line above for the tax classification of the s c is classified as a single-member LLC that is disregarded from the o hat is not disregarded from the owner for U.S. federal tax purposes. I from the owner should check the appropriate box for the tax classifi	Partnership ☐ Trust/estate certain entities, not individuals; see instructions on page 3): Partnership ► Exempt payee code (if any) Exemption from FATCA reporting code (if any) code (if any)code (if an			
ě	Other (see ins	r, street, and apt. or suite no.) See instructions.	Requester's name and address (optional)			
See S	21580 Novi Rd					
0	6 City, state, and Z	IP code				
	Novi, MI 48375		}			
	7 List account num	ber(s) here (optional)				
Par	tl Taxpa	ver Identification Number (TIN)				
backu reside entitie <i>TIN</i> , la	up withholding. For ent alien, sole prop es, it is your employ ater.	propriate box. The TIN provided must match the name given individuals, this is generally your social security number (SS rietor, or disregarded entity, see the instructions for Part I, la yer identification number (EIN). If you do not have a number,	N). However, for a er. For other see How to get a			

Note: If the account is in more than one name, see the instructio Number To Give the Requester for guidelines on whose number to enter.

Certification Part II

Under penalties of perjury, I certify that:

- 1. The number shown on this form is my correct taxpayer identification number (or I am waiting for a number to be issued to me); and
- 2. I am not subject to backup withholding because: (a) I am exempt from backup withholding, or (b) I have not been notified by the Internal Revenue Service (IRS) that I am subject to backup withholding as a result of a failure to report all interest or dividends, or (c) the IRS has notified me that I am no longer subject to backup withholding; and
- 3. I am a U.S. citizen or other U.S. person (defined below); and
- 4. The FATCA code(s) entered on this form (if any) indicating that I am exempt from FATCA reporting is correct.

Certification instructions. You must cross out item 2 above if you have been notified by the IRS that you are currently subject to backup withholding because you have failed to report all interest and dividends on your tax return. For real estate transactions, item 2 does not apply. For mortgage interest paid, acquisition or abandonment of secured property, cancellation of debt, contributions to an individual retirement arrangement (IRA), and generally, payments other than interest and dividends, you are not required to sign the certification, but you must provide your correct TIN. See the instructions for Part II, later.

Sign Here	Signature of U.S. person ►	Alan	Date ► 4/12/23
-		TTT -	- Form 1000 DIV (dividende installing these from startic symptotic)

General Instructions

Section references are to the Internal Revenue Code unless otherwise noted.

Future developments. For the latest information about developments related to Form W-9 and its instructions, such as legislation enacted after they were published, go to www.irs.gov/FormW9.

Purpose of Form

An individual or entity (Form W-9 requester) who is required to file an information return with the IRS must obtain your correct taxpayer identification number (TIN) which may be your social security number (SSN), individual taxpayer identification number (ITIN), adoption taxpayer identification number (ATIN), or employer identification number (EIN), to report on an information return the amount paid to you, or other amount reportable on an information return. Examples of information returns include, but are not limited to, the following.

· Form 1099-INT (interest earned or paid)

 Form 1099-DIV (dividends, including those from stocks or mutual funds)

8

3 0 7 3 7

3

- · Form 1099-MISC (various types of income, prizes, awards, or gross proceeds)
- Form 1099-B (stock or mutual fund sales and certain other transactions by brokers)
- Form 1099-S (proceeds from real estate transactions)
- Form 1099-K (merchant card and third party network transactions)
- Form 1098 (home mortgage interest), 1098-E (student loan interest), 1098-T (tuition)
- · Form 1099-C (canceled debt)
- Form 1099-A (acquisition or abandonment of secured property)
- Use Form W-9 only if you are a U.S. person (including a resident alien), to provide your correct TIN.

If you do not return Form W-9 to the requester with a TIN, you might be subject to backup withholding. See What is backup withholding, later.

ATTACHMENT C LEGAL STATUS OF PROPOSER

(The Respondent shall fill out the provision and strike out the remaining ones.)

The Respondent is:

 A corporation organized and doing business under the laws of the state of <u>Michigan</u>, for whom <u>Sunil Agrawal</u> bearing the office title of <u>President</u>, whose signature is affixed to this proposal, is authorized to execute contracts on behalf of respondent.*

*If not incorporated in Michigan, please attach the corporation's Certificate of Authority

- A partnership organized under the laws of the State of ______ and filed with the County of ______, whose members are (attach list including street and mailing address for each.)
- An individual, whose signature with address, is affixed to this REP.

Respondent has examined the basic requirements of this RFP and its scope of services, including all Addendum (if applicable) and hereby agrees to offer the services as specified in the RFP.

A A	
Aller	Date: <u>4/14/3</u>
Signature V	

(Print) Name Sunil Agrawal Title President

Firm: NOVA Consultants Inc.

Address: 21580 Novi Rd. Suite 300, Novi, MI 48375

Contact Phone 248-347-3512

Fax 248-347-4152

Email sunil.agrawal@novaconsultants.com

ATTACHMENT D CITY OF ANN ARBOR DECLARATION OF COMPLIANCE

Non-Discrimination Ordinance

The "non discrimination by city contractors" provision of the City of Ann Arbor Non-Discrimination Ordinance (Ann Arbor City Code Chapter 112, Section 9:158) requires all contractors proposing to do business with the City to treat employees in a manner which provides equal employment opportunity and does not discriminate against any of their employees, any City employee working with them, or any applicant for employment on the basis of actual or perceived age, arrest record, color, disability, educational association, familial status, family responsibilities, gender expression, gender identity, genetic information, height, HIV status, marital status, national origin, political beliefs, race, religion, sex, sexual orientation, source of income, veteran status, victim of domestic violence or stalking, or weight. It also requires that the contractors include a similar provision in all subcontracts that they execute for City work or programs.

In addition the City Non-Discrimination Ordinance requires that all contractors proposing to do business with the City of Ann Arbor must satisfy the contract compliance administrative policy adopted by the City Administrator. A copy of that policy may be obtained from the Purchasing Manager

The Contractor agrees:

- (a) To comply with the terms of the City of Ann Arbor's Non-Discrimination Ordinance and contract compliance administrative policy.
- (b) To post the City of Ann Arbor's Non-Discrimination Ordinance Notice in every work place or other location in which employees or other persons are contracted to provide services under a contract with the City.
- (c) To provide documentation within the specified time frame in connection with any workforce verification, compliance review or complaint investigation.
- (d) To permit access to employees and work sites to City representatives for the purposes of monitoring compliance, or investigating complaints of non-compliance.

The undersigned states that he/she has the requisite authority to act on behalf of his/her employer in these matters and has offered to provide the services in accordance with the terms of the Ann Arbor Non-Discrimination Ordinance. The undersigned certifies that he/she has read and is familiar with the terms of the Non-Discrimination Ordinance, obligates the Contractor to those terms and acknowledges that if his/her employer is found to be in violation of Ordinance it may be subject to civil penalties and termination of the awarded contract.

NOVA Consultants Inc.

Company Name
FASA 41/12/23
Signature of Authorized Representative Date
Sunil Agrawal, President
Print Name and Title
21580 Novi Rd. Suite 300, Novi, MI 48375
Address, City, State, Zip
248-347-3512 Sunil.agrawal@novaconsultants.com

Phone/Email address

Questions about the Notice or the City Administrative Policy, Please contact: Procurement Office of the City of Ann Arbor

(734) 794-6500

Revised 3/31/15 Rev. 0

NDO-2

ATTACHMENT E CITY OF ANN ARBOR LIVING WAGE ORDINANCE DECLARATION OF COMPLIANCE

The Ann Arbor Living Wage Ordinance (Section 1:811-1:821 of Chapter 23 of Title I of the Code) requires that an employer who is (a) a contractor providing services to or for the City for a value greater than \$10,000 for any twelvemonth contract term, or (b) a recipient of federal, state, or local grant funding administered by the City for a value greater than \$10,000, or (c) a recipient of financial assistance awarded by the City for a value greater than \$10,000, or (c) a recipient of financial assistance awarded by the City for a value greater than \$10,000, or (c) a recipient of financial assistance awarded by the City for a value greater than \$10,000, or (c) a recipient of financial assistance awarded by the City for a value greater than \$10,000, shall pay its employees a prescribed minimum level of compensation (i.e., Living Wage) for the time those employees perform work on the contract or in connection with the grant or financial assistance. The Living Wage must be paid to these employees for the length of the contract/program.

The Contractor or Grantee agrees:

(a) To pay each of its employees whose wage level is not required to comply with federal, state or local prevailing wage law, for work covered or funded by a contract with or grant from the City, no less than the Living Wage. The current Living Wage is defined as \$14.82/hour for those employers that provide employee health care (as defined in the Ordinance at Section 1:815 Sec. 1 (a)), or no less than \$16.52/hour for those employers that do not provide health care. The Contractor or Grantor understands that the Living Wage is adjusted and established annually on April 30 in accordance with the Ordinance with Section 1:815(3).

Check the applicable box below which applies to your workforce

- Employees who are assigned to any covered City contract/grant will be paid at or above the applicable living wage without health benefits
- [___] Employees who are assigned to any covered City contract/grant will be paid at or above the applicable living wage with health benefits
- (b) To post a notice approved by the City regarding the applicability of the Living Wage Ordinance in every work place or other location in which employees or other persons contracting for employment are working.
- (c) To provide to the City payroll records or other documentation within ten (10) business days from the receipt of a request by the City.
- (d) To permit access to work sites to City representatives for the purposes of monitoring compliance, and investigating complaints or non-compliance.
- (e) To take no action that would reduce the compensation, wages, fringe benefits, or leave available to any employee covered by the Living Wage Ordinance or any person contracted for employment and covered by the Living Wage Ordinance in order to pay the living wage required by the Living Wage Ordinance.

The undersigned states that he/she has the requisite authority to act on behalf of his/her employer in these matters and has offered to provide the services or agrees to accept financial assistance in accordance with the terms of the Living Wage Ordinance. The undersigned certifies that he/she has read and is familiar with the terms of the Living Wage Ordinance, obligates the Employer/Grantee to those terms and acknowledges that if his/her employer is found to be in violation of Ordinance it may be subject to civil penalties and termination of the awarded contract or grant of financial assistance.

NOVA Consultants Inc.		21580 Novi Rd. Suite 300		
Company Name		Street Address		
AFIN		Novi, MI 48375		
Signature of Authorized Representative	Date	City, State, Zip		
Sunil Agrawal, President		248-347-3512 sunil.agrawal@novaconsultants.com		
Print Name and Title		Phone/Email address		

City of Ann Arbor Procurement Office, 734/794-6500, procurement@a2gov.org

Rev. 3/10/22

VENDOR CONFLICT OF INTEREST DISCLOSURE FORM

All vendors interested in conducting business with the City of Ann Arbor must complete and return the Vendor Conflict of Interest Disclosure Form in order to be eligible to be awarded a contract. Please note that all vendors are subject to comply with the City of Ann Arbor's conflict of interest policies as stated within the certification section below.

If a vendor has a relationship with a City of Ann Arbor official or employee, an immediate family member of a City of Ann Arbor official or employee, the vendor shall disclose the information required below.

- 1. No City official or employee or City employee's immediate family member has an ownership interest in vendor's company or is deriving personal financial gain from this contract.
- 2. No retired or separated City official or employee who has been retired or separated from the City for less than one (1) year has an ownership interest in vendor's Company.
- 3. No City employee is contemporaneously employed or prospectively to be employed with the vendor.
- 4. Vendor hereby declares it has not and will not provide gifts or hospitality of any dollar value or any other gratuities to any City employee or elected official to obtain or maintain a contract.
- 5. Please note any exceptions below:

Conflict of Inte	erest Disclosure*	
Name of City of Ann Arbor employees, elected	() Relationship to employee	
officials or immediate family members with whom there may be a potential conflict of interest.	 () Interest in vendor's company () Other (please describe in box below) 	
isclosing a potential conflict of interest does not disqualif nflicts of interest and they are detected by the City, vendo	y vendors. In the event vendors do not disclose potentia or will be exempt from doing business with the City.	
I certify that this Conflict of Interest Disclos	ure has been examined by me and that its	
contents are true and correct to my knowled certify on behalf of the Vendor by my signatu		
	040.047.0540	

NOVA Consultants Inc.	248-347-3512		
Vendor Name		Vendor Phone Number	
And		Sunil Agrawal, President	
Signature of Vendor Authorized Representative	Date	Printed Name of Vendor Authorized Representative	

Questions about this form? Contact Procurement Office City of Ann Arbor Phone: 734/794-6500, procurement@a2gov.org