

UTILITY LOCATIONS ARE DERIVED FROM ACTUAL MEASUREMENTS OF AVAILABLE RECORDS. THEY SHOULD NOT BE INTERPRETED TO B EXACT LOCATIONS NOR SHOULD IT BE ASSUMED THAT THEY ARE THE ONLY UTILITIES IN THIS AREA.

EXISTING UTILITIES AND SERVICE LINES IDENTIFIED AS "(PLAN)" WERE OBTAINED FROM AVAILABLE AS-BUILT RECORD DRAWINGS. THE CONTRACTOR SHALL VERIFY THE LOCATION, DEPTH AND STATUS OF ALL JTILITIES AND SERVICE LINES PRIOR TO NEW CONNECTIONS.

SOUTHTOWN BY 4M CITY OF ANN ARBOR, WASHTENAW COUNTY, MICHIGAN SITE PLAN

SITE SUMMARY NOTES

A. PETITION FOR SITE PLAN

REZONING IS REQUESTED FROM R4C TO C1A/R TO INCREASE THE DENSITY AND USE OF THE SITE. THE SOUTH AREA PLAN AS PART OF ANN ARBOR'S COMPREHENSIVE PLAN RECOMMENDS THE PARCELS ON STIMSON BE USED FOR RESIDENTIAL AND COMMERCIAL PURPOSES. BOTH R4C AND C1A/R INTEND TO BE CLOSE TO CAMPUS AND COMMERCIAL DISTRICTS. THE C1A AND C1A/R DISTRICTS HAVE THE LEAST DIMENSIONAL STANDARDS FOR MIXED USE ZONING IN THE UNIFIED DEVELOPMENT CODE. TO RESPOND TO THE CONTEXT OF THE SITE. ADDITIONAL CONDITIONS ARE PROPOSED INCLUDING A HEIGHT LIMIT OF 90', PARKING MAXIMUMS, AND REQUIRED ACTIVE OPEN SPACE.

B. DEVELOPMENT PROGRAM

I. DESCRIPTION:

THE PROPOSED DEVELOPMENT WILL HAVE 216 RESIDENTIAL UNITS, REPLACING 38 EXISTING UNITS. THE UNITS WILL BE A MIX OF STUDIO, ONE, AND TWO BEDROOM. THE SITE HAS BEEN PLANNED TO UTILIZE THE ROOF OF THE GROUND FLOOR AS AN EXTENSION OF LANDSCAPING AND ACTIVE OUTDOOR SPACE WITH EXTERIOR ACCESS THROUGH THE SOUTH, EAST, AND NORTH SIDEWALK CONNECTIONS OF THE SITE. TWO CURB CUTS ON WHITE STREET WILL PROVIDE LOADING, UNLOADING, AND DROP-OFF/PICK-UP AREAS FOR DELIVERIES, VISITORS, AND RESIDENTS AND AN ENTRY TO THE GROUND FLOOR PARKING. ONE CURB CUT ON HENRY WILL PROVIDE AN AREA FOR SOLID WASTE PICKUP. ALL PARKING IS COVERED AND WITHIN THE INTERIOR OF THE GROUND FLOOR.

II. PROPOSED PHASING & PROBABLY CONSTRUCTION COSTS:

THE SITE IS TO BE DEVELOPED IN ONE PHASE, SCHEDULED TO BEGIN ONCE APPROVALS ARE SECURED. CONSTRUCTION COSTS ARE CURRENTLY ESTIMATED TO BE BETWEEN \$60-70 MILLION.

C. COMMUNITY ANALYSIS

I. IMPACT OF PROPOSED DEVELOPMENT ON AREA SCHOOLS: THE PROPOSED SOUTHTOWN DEVELOPMENT WILL NOT IMPACT PUBLIC ELEMENTARY OR HIGH SCHOOLS.

II. RELATIONSHIP OF INTENDED USE TO NEIGHBORING USES

THE PROPERTY TO THE NORTH OF THE SITE IS PUD FOR AFFORDABLE MULTI-FAMILY HOUSING. THE PROPERTY TO THE EAST OF THE SITE IS R4C AND R3 FOR MARKET RATE AND AFFORDABLE MULTI-FAMILY HOUSING. THE PROPERTY TO THE SOUTH OF THE SITE IS C3 SINGLE STORY COMMERCIAL RETAIL. THE PROPERTY TO THE WEST OF THE SITE IS PL PUBLIC LAND FOR THE UNIVERSITY OF MICHIGAN GOLF COURSE. THE MAJORITY OF THE SURROUNDING PROPERTY IS RESIDENTIAL NEIGHBORHOOD AND LOW DENSITY COMMERCIAL INCLUDING O OFFICE ZONING TO THE NORTH AND C3 COMMERCIAL FOR MUCH OF THE SOUTH AREA.

THE PROJECT WILL BE MARKETED PRIMARILY TO STUDENTS AND YOUNG PROFESSIONALS INTERESTED IN A CONVENIENT LOCATION TO DOWNTOWN ANN ARBOR AND THE UNIVERSITY OF MICHIGAN CAMPUS WITH MULTI-MODAL TRANSPORTATION OPTIONS. THE PROPOSED DEVELOPMENT WILL NOT IMPACT PUBLIC SCHOOLS, AIR. OR WATER QUALITY; AND THERE ARE NO NATURAL FEATURES ON THE SITE. THERE ARE NO HISTORIC DISTRICTS, SITES, OR STRUCTURES NEAR OR ON THE SITE.

THE EXISTING BUILDINGS ARE PROPOSED TO BE REMOVED. THE PROPOSED DEVELOPMENT OF RESIDENTIAL AND COMMERCIAL WITH RETAIL AND OFFICE IS CONSISTENT WITH THE CURRENT USES IN THE NEIGHBORHOOD AND SURROUNDING AREA.

- III. IMPACT OF ADJACENT USES ON THE PROPOSED DEVELOPMENT IMPACTS ARE LIMITED AS PROPOSED USES (OFFICE, RETAIL, DAYCARE AND RESIDENTIAL) ARE LIKE USES FOUND IN THE EXISTING NEIGHBORHOOD.
- IV. IMPACT OF PROPOSED DEVELOPMENT ON AIR AND WATER QUALITY, AND ON THE EXISTING NATURAL FEATURES OF HE SITE AND NEIGHBORING SITES
- a. THERE WILL BE NO NEGATIVE IMPACT TO AIR QUALITY. b. THE AREA THAT MAKES UP THIS PROJECT IS CURRENTLY DEVELOPED AND HAVE NO STORM WATER DETENTION FACILITIES. THE PROPOSED STORM WATER DETENTION SYSTEM IS DESIGNED TO PRE-TREAT, DETAIN, AND RELEASE THE RUNOFF AT A CONTROLLED RATE. WATER QUALITY CONTROLS WILL BE IMPLEMENTED TO ENSURE THAT RUNOFF DURING CONSTRUCTION IS CONTROLLED AND MANAGED. c. THE PROPOSED DEVELOPMENT REQUIRES THE REMOVAL OF LANDMARK TREES. ALTERNATIVE ANALYSIS WAS
- PERFORMED AND IS PROVIDED ON SHEET C-202. d. THERE ARE NO ENDANGERED SPECIES HABITATS, FLOODPLAINS, WATER COURSES, WETLANDS, STEEP SLOPES, OR WOODLANDS WITHIN THE PROJECT AREA. NO MITIGATION IS REQUIRED.

V. IMPACT OF THE PROPOSED USE ON HISTORIC SITES/STRUCTURES: NO HISTORIC STRUCTURES EXIST ON-SITE. THE SITE ITSELF IS NOT HISTORIC.

VI. TRAFFIC STATEMENT:

- THE PROPOSED SOUTHTOWN DEVELOPMENT (MULTI-FAMILY HOUSING [MID-RISE] PER ITE CODE 221) WILL INCLUDE 216 RESIDENTIAL UNITS.
- THE ESTIMATED TRIP GENERATION (PER ITE MANUAL) IS 1,137 TRIPS (WEEKDAY AVERAGE DAILY TRIPS) • THE TOTAL AM PEAK HOUR = 98 (VPH)
- THE TOTAL PM PEAK HOUR = 97 (VPH)
- VII. PUBLIC SIDEWALK MAINTENANCE STATEMENT
- THE PROPOSED PUBLIC SIDEWALK ALONG S. STATE STREET, HENRY STREET, WHITE STREET AND STIMSON STREET SHALL BE KEPT & MAINTAINED IN GOOD REPAIR BY THE OWNER OF THE LAND ADJACENT TO & ABUTTING THE SAME SIDEWALK.
- VIII. NATURAL FEATURES GENERAL DESCRIPTION AND IMPACTS
- IN ACCORDANCE WITH THE CITY OF ANN ARBOR LAND DEVELOPMENT REGULATIONS REGARDING SITE PLAN REQUIREMENTS, THE NATURAL FEATURES IMPACTS ARE AS FOLLOWS:
- LIMITS OF SOIL DISTURBANCE: SEE GRADING PLAN (SHEET C-300).
- BOUNDARY AND DESCRIPTION OF ENDANGERED SPECIES HABITAT: NOT APPLICABLE. BOUNDARY AND ELEVATION OF ANY 100-YEAR FLOODPLAIN: NOT APPLICABLE.
- LANDMARK TREES: SEE EXISTING CONDITIONS PLAN. THERE ARE PROPOSED IMPACTS TO LANDMARK TREES. SEE ALTERNATIVE ANALYSIS AND LANDSCAPE PLAN FOR MITIGATION (SHEET C-200 & C-204). STEEP SLOPES: NOT APPLICABLE.
- WATERCOURSES: THERE ARE NO EXISTING OR PROPOSED WATERCOURSES ON THIS SITE. WETLANDS: THERE ARE NO EXISTING WETLANDS ON THIS SITE.
- WOODLAND BASAL AREA: THERE ARE NO EXISTING WOODLAND AREAS ON THIS SITE.

SITE PERSPECTIVE

Gross Lot Are Min Lot Width Min Open Spa Min Active Ope Building Area (FAR (% of Lot / FAR (units / ac

Premiums (sq. Front Setbacl

State Street

Stimson Street

White Street

Henry Street

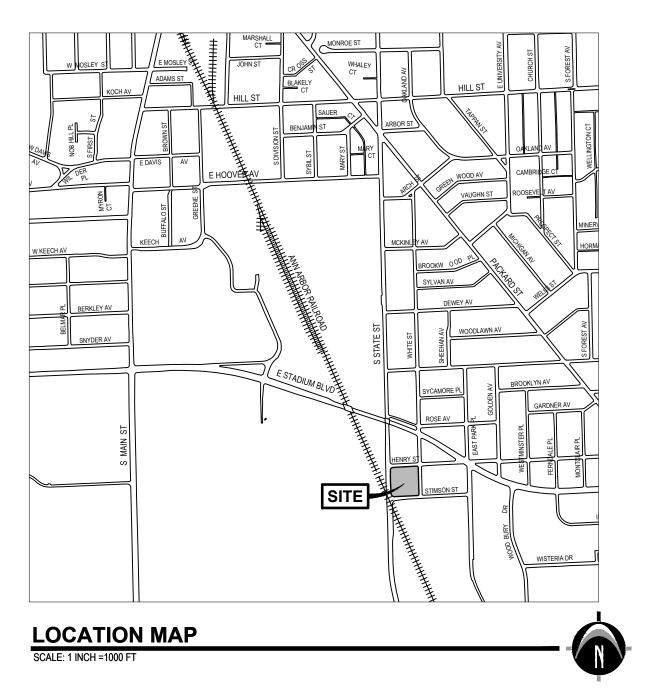
Total Setback

Building Heigh Vehicle Parki Vehicle Parkin

Vehicle Parkin

EV Parking

Required Bicy


Space

Office (O)

DEVELOPMENT SUMMARY & COMPARISON CHART

	Existing (R4C)	Required / Permitted (R4C)	Proposed (C1A/R)	Required / Permitted (C1 A/R)
ea (min)	72,148 sf	8,500 sf	72,148 sq. ft.	none
h (ft)	40.3'	60	none	none
ace (% of Lot Area)	82%	40%	none	none
pen Space (per dwelling - sq. ft.)	1,555	300	91	none (50 sq. ft. per dwelling unit)
ı (sq. ft.)	13,065	-	222,044 (1)(2)	216,444 (224,444 with premium)
ot Area)	18.11%	-	307.28% (1)(2)	300% Max + premium
acre)	22.9	20 units / acre	130.9	_
q. ft.)	none	none	4,498 (2)	8,000
cks				
	24.2'	25'	5.1' min. 6.3' max.	10' min. (5' with 50% rule)
et	N/A	25'	10.4' min. 48.5' max.	10' min. (5' with 50% rule)
	18.4'	25'	9.5' min. 15.5' max.	10' min. (5' with 50% rule)
	19.7'	25'	6.4' min. 53.9' max.	10' min. (5' with 50% rule)
Area (square feet)	N/A	N/A	13,249 sq. ft.	10,135 sq. ft. min.
ht	30'	30'	85'	none (8 stories, 100')
king	- 11			
ng (per dwelling unit)	-	none (was 1.5)	0.25	0.25 proposed max.
ng (per sq. ft. nonresidential)	-	none	1 per 600 sq. ft.	none
	0	RESIDENTIAL: EV-C: 90% EV-I: 10%	RESIDENTIAL: EV-C: 45 EV-I: 8	RESIDENTIAL: EV-C: 90% EV-I: 10%
	28	none	54 total (Including 8 EV & 3 Accessible Spaces)	none
cycle Parking	n			
	1 per 5 dwelling units Class A: 50% Class B: 0% Class C: 50%	1 per 5 dwelling units Class A: 50% Class B: 0% Class C: 50%	1 per 1.1 dwelling units: 216 Class A: 40% : 124 Class B: 22% : 48 Class C: 38% : 44	1 per 5 dwelling units: 50 Class A: 50%: 25 Class B: 0% Class C: 50%: 25
	N/A	N/A	1 per 2,100 sq. ft.: 8	1 per 3,000 sq. ft.: 7
	0	8	224 total	57

(1) VARIANCE REQUIRED. A VARIANCE APPLICATION WAS SUBMITTED TO THE ZBA ON FEBRUAURY 22, 2023 & THE PROJECT HAS BEEN PLACED ON THE MAY 24TH ZBA AGENDA. (2) FLOOR AREA PREMIUM OPTION = PEDESTRIAN AMENITY PREMIUM OPTION - PLAZA

DESIGN TEAM CONTACTS

APPLICANT / OWNER SOUTHTOWN BY 4M, LLC 2082 S. STATE STREET ANN ARBOR, MI 48104 P: 415.810.8124 ATTN: MARGE POSCHER

CIVIL / LANDSCAPE ARCHITECT NEDERVELD. INC. 3037 MILLER RD.

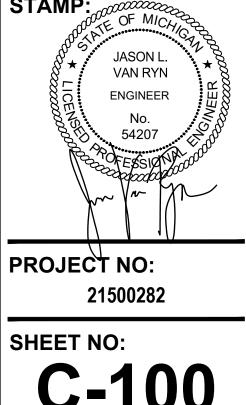
ANN ARBOR, MI 48103 P: 734.929.6963 ATTN: BRANDON CHANEY

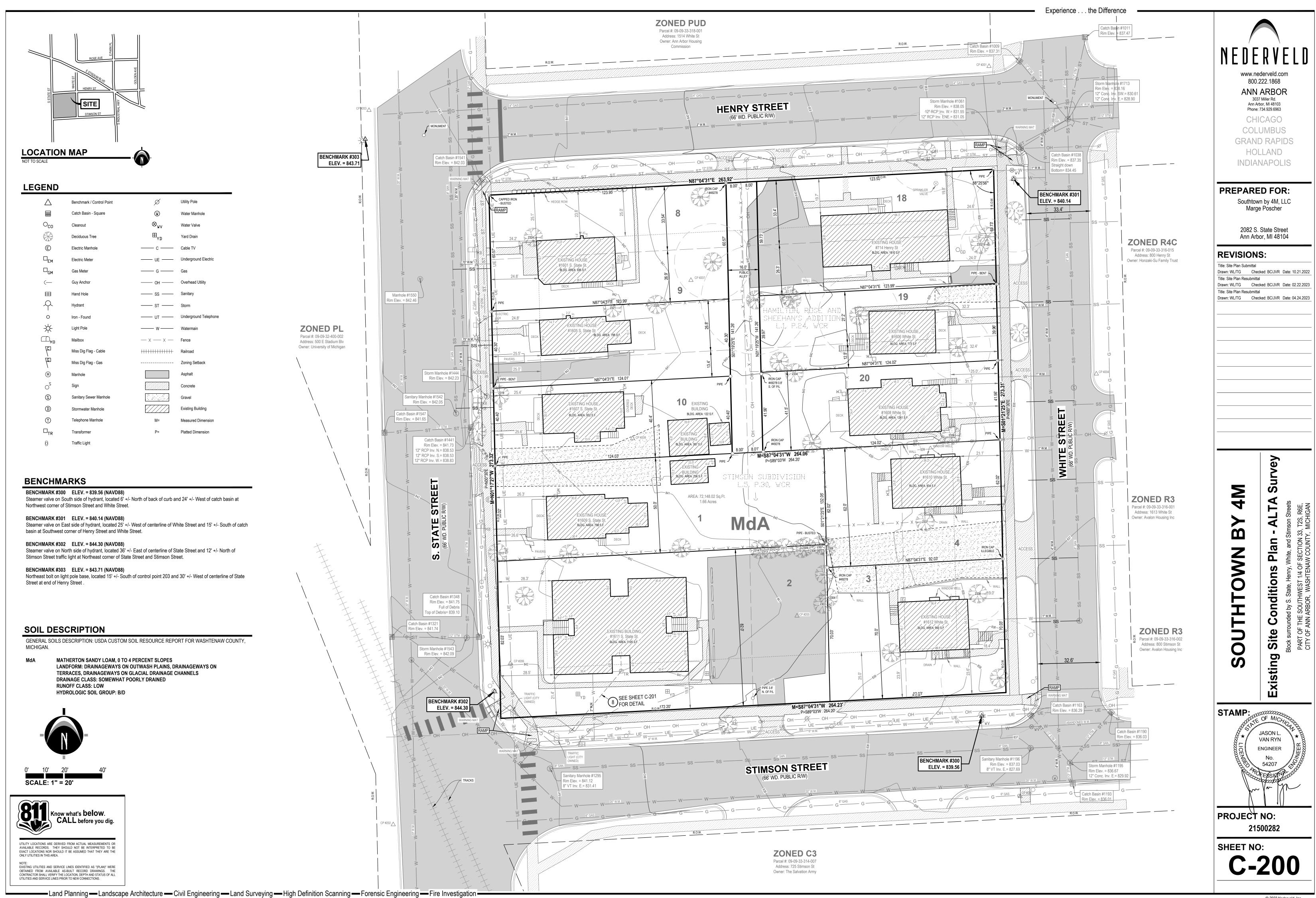
ARCHITECT

SYNECDOCHE DESIGN STUDIO 1342 N. MAIN STREET #11 ANN ARBOR, MI 48104 P: 734.926.5593 ATTN: ADAM SMITH

STRUCTURAL ASPECT STRUCTURAL ENGINEERS 101-190 W. 3RD AVE VANCOVER, BRITISH COLUMBIA V5Y1E9 P: 604.762.7844 ATTN: SHAWN KENNEDY

MECHANICAL / PLUMBING GREENPATH DESIGN 139 W. LIBERTY STREET PLYMOUTH, MI 48170 P: 248.310.7286 ATTN: KELLY SUGG


ELECTRICAL


ETS ENGINEERING 418-1/2 S. WASHINGTON BOULEVARD ROYAL OAK, MI 48067 P: 248.744.0360 ATTN: SCOTT LEO

SHEET INDEX

IVIL PLANS	
COVER SHEET	C-1
EXISTING CONDITIONS PLAN - ALTA SURVEY	C-2
EXISTING CONDITIONS PLAN - ALTA SURVEY	C-2
NATURAL FEATURES PLAN	C-2
SOIL REPORTS	C-2
ALTERNATIVE ANALYSIS	C-20
DEMOLITION PLAN	C-20
SITE LAYOUT PLAN - LEVEL 1	C-2
SITE LAYOUT PLAN - LEVEL 2	C-20
FIRE PROTECTION PLAN	C-2
LANDSCAPE PLAN	L-1(
S.E.S.C. & GRADING PLAN	C-3
UTILITY PLAN	C-4
STORM WATER MANAGEMENT CALCULATIONS	C-4
DETAILS & SPECIFICATIONS	C-50
ARCHITECTURAL PLANS	
COVER SHEET	G00
FAR CALCULATIONS	A00
FAR CALCULATIONS	A00
LEVEL 1 PLAN	A10
LEVEL 2 PLAN	A10
LEVEL 3 PLAN	A10
LEVEL 4 PLAN	A10
LEVEL 5 PLAN	A10
LEVEL 6 PLAN	A10
LEVEL 7 PLAN	A10
LEVEL 8 PLAN	A10
ROOF AREA DIAGRAM	A10
LEVEL 1 - EXTERIOR LIGHTING	A20
LEVEL 2 - EXTERIOR LIGHTING	A20
EXTERIOR ELEVATIONS	A30
EXTERIOR ELEVATIONS	A30
BUILDING SECTIONS	A40
BUILDING SECTIONS	A40
AXONOMETRIC - SUSTAINABILITY	A70
ENLARGED PLANS - BIKE ROOM	A70
STREET SECTIONS	A70

NEUERVELD www.nederveld.com 800.222.1868 **ANN ARBOR** 3037 Miller Rd. Ann Arbor, MI 48103 Phone: 734.929.6963 CHICAGO COLUMBUS **GRAND RAPIDS** HOLLAND **INDIANAPOLIS** PREPARED FOR: Southtown by 4M, LLC Marge Poscher 2082 S. State Street Ann Arbor, MI 48104 **REVISIONS:** Title: Site Plan Submittal Drawn: WL/TG Checked: BC/JVR Date: 10.21.2022 Title: Site Plan Resubmittal Drawn: WL/TG Checked: BC/JVR Date: 02.22.2023 Title: Site Plan Resubmittal Drawn: WL/TG Checked: BC/JVR Date: 04.24.2023 Σ イ \mathbf{m} 33 et NN he S 0 Ve ____ 0 ЪĿ PAR1 CITY 0 S STAMP:

© 2023 Nederveld, Inc.

TITLE INFORMATION

TITLE DESCRIPTION

Issuing Office File Number: MIFA22-3540

The land is described as follows: City of Ann Arbor, County of Washtenaw

The North 40.02 feet, excepting the North 20.15 feet thereof, of Lot(s) 18, Block 3, also the South 13.5 feet of Lot 18 and the North 26.7 feet of Lot 19, all in Block 3 of HAMILTON, ROSE AND SHEEHAN'S ADDITION TO THE CITY OF ANN ARBOR, according to the plat thereof recorded in Liber 1 of Plats, Page 24 of Washtenaw County Records.

The Title Description and Schedule B items hereon are from First American Title Insurance Company, LSU#: MIFA22-3540, dated May 31, 2022.

SCHEDULE B - SECTION II NOTES

(11) Easement(s), Restrictions and/or Setback Lines, if any, as disclosed by the recorded plat. Nothing to show.

Commonly known as: 714 Henry St. Ann Arbor, MI 48104-4366

TITLE INFORMATION

The Title Description and Schedule B items hereon are from First American Title Insurance Company, LSU File No.: MIFA22-3535, dated May 31, 2022. TITLE DESCRIPTION

Issuing Office File Number: MIFA22-3535

The land is described as follows: City of Ann Arbor, County of Washtenaw:

The North 26.9 feet of Lot(s) 9 and the South 33.54 feet of Lot 8, Block 3 of HAMILTON, ROSE & SHEEHAN'S ADDITION TO THE CITY OF ANN ARBOR according to the plat thereof recorded in Liber 1 of Plats, Page 24 of Washtenaw County Records.

SCHEDULE B - SECTION II NOTES

(7) Easement(s), Restrictions and/or Setback Lines, if any, as disclosed by the recorded plat. Nothing to show.

Commonly known as: 1601 S. State St. Ann Arbor, MI 48104-4366

TITLE INFORMATION

The Title Description and Schedule B items hereon are from First American Title Insurance Company, LSU File No.: MIFA22-3536, dated June 03, 2022.

TITLE DESCRIPTION Issuing Office File Number: MIFA22-3536

The land is described as follows: City of Ann Arbor, County of Washtenaw:

The South 26.8 feet of Lot 9 and the North 13.4 feet of Lot 10, Block 3 of HAMILTON, ROSE & SHEEHAN'S ADDITION according to the plat thereof recorded in Liber 1 of Plats, Page 24 of Washtenaw County Records.

SCHEDULE B - SECTION II NOTES

T Easement(s), Restrictions and/or Setback Lines, if any, as disclosed by the recorded plat. Nothing to show.

Commonly known as: 1605 S. State St. Ann Arbor, MI 48104-4366

TITLE INFORMATION

The Title Description and Schedule B items hereon are from First American Title Insurance Company, LSU File No.: MIFA22-3537, dated June 06, 2022. TITLE DESCRIPTION

Issuing Office File Number: MIFA22-3537

The land is described as follows: City of Ann Arbor, County of Washtenaw:

The South 40.3 feet of Lot(s) 10, Block 3 of HAMILTON ROSE & SHEEHAN'S ADDITION TO THE CITY OF ANN ARBOR according to the plat thereof recorded in Liber 1 of Plats, Page 24 of Washtenaw County Records.

SCHEDULE B - SECTION II NOTES

(7) Easement(s), Restrictions and/or Setback Lines, if any, as disclosed by the recorded plat. Nothing to show.

Commonly known as: 1607 S. State St. Ann Arbor, MI 48104-4366

TITLE INFORMATION

The Title Description and Schedule B items hereon are from First American Title Insurance Company, Commitment Number: 9966-6074453, Revision A, dated June 17, 2022.

TITLE DESCRIPTION Issuing Office File Number: MIFA22-3541

The land is described as follows: City of Ann Arbor, Washtenaw County, State of Michigan:

The South 27 feet of Lot(s) 19, and the North 13.2 feet of Lot 20, Block 3, according to the recorded plat of HAMILTON, ROSE & SHEEHAN'S ADDITION to the City of Ann Arbor, Washtenaw County, Michigan, according to the plat thereof recorded in Liber 1 of Plats, Page 24 of Washtenaw County Records.

SCHEDULE B - SECTION II NOTES

(9) Easement(s), Restrictions and/or Setback Lines, if any, as disclosed by the recorded plat. Nothing to show.

Commonly known as: 1606 White St. Ann Arbor, MI 48104-4366

ine n	tle Description and Schedule B items hereon are from First American Title Insurance Company, LSU#: MIFA22-3542, dated May 31, 2022.
TIT	LE DESCRIPTION
lssuing	Office File Number: MIFA22-3542
The la	nd is described as follows: City of Ann Arbor, County of Washtenaw:
	outh 41.18 feet of Lot(s) 20, Block 3 of HAMILTON, ROSE & SHEEHAN'S ADDITION according to the plat thereof recorded in Liber 1 of Plats, Page 2 Shtenaw County Records.
SCI	HEDULE B - SECTION II NOTES
7	Easement(s), Restrictions and/or Setback Lines, if any, as disclosed by the recorded plat. Nothing to show.
Comm	only known as: 1608 White St. Ann Arbor, MI 48104-4366
тіті	
	LE INFORMATION tle Description and Schedule B items hereon are from First American Title Insurance Company, File No: MIFA22-3538, dated May 31, 2022.
The Ti	
The Tir TITI	LE INFORMATION the Description and Schedule B items hereon are from First American Title Insurance Company, File No: MIFA22-3538, dated May 31, 2022.
The Tir TITI Issuing	LE INFORMATION tle Description and Schedule B items hereon are from First American Title Insurance Company, File No: MIFA22-3538, dated May 31, 2022. LE DESCRIPTION
The Tir TITI Issuing The lar	LE INFORMATION the Description and Schedule B items hereon are from First American Title Insurance Company, File No: MIFA22-3538, dated May 31, 2022. LE DESCRIPTION office File Number: MIFA22-3538 and is described as follows: City of Ann Arbor, County of Washtenaw: both 50 feet of Lot(s) 1 and 2 of STIMSON SUBDIVISION according to the plat thereof recorded in Liber 5 of Plats, Page 30 of Washtenaw County

Commonly known as: 1609 S. State St. Ann Arbor, MI 48104-4366

TITLE INFORMATION

The Title Description and Schedule B items hereon are from First American Title Insurance Company, LSU File No.: MIFA22-3543, dated June 3, 2022.

TITLE DESCRIPTION

Issuing Office File Number: MIFA22-3543

The land is described as follows: City of Ann Arbor, County of Washtenaws

The North 62 feet of Lot(s) 3 and 4 of STIMSON SUBDIVISION according to the plat thereof recorded in Liber 5 of Plats, Page 30 of Washtenaw County Records.

SCHEDULE B - SECTION II NOTES

(7) Easement(s), Restrictions and/or Setback Lines, if any, as disclosed by the recorded plat. Nothing to show.

Commonly known as: 1610 White St. Ann Arbor, MI 48104-4366

SURVEYOR'S CERTIFICATION

To First American Title Insurance Company; Southtown by 4M LLC; Land Services USA LLC; Northeast Bank; ROSS-Ann Arbor: This is to certify that this map or plat and the survey on which it is based were made in accordance with the 2021 Minimum Standard Detail Requirements for ALTA/NSPS Land Title Surveys, jointly established and adopted by ALTA and NSPS, and includes Items 1, 2, 3, 4, 5, 6, 7(a), 7(b)(1), 8, 10, 11, 13, 16, 17, & 20 of Table A thereof. The fieldwork was completed on April 19, 2022.

July 21, 2022 Date of Plat or Map:

Brandon G. Parrent Professional Surveyor No. 4001063096 Nederveld, Inc. bparrent@nederveld.com

TITLE INFORMATION

TITLE DESCRIPTION

Issuing Office File Number: MIFA22-3539

Records.

7	Easement in favor contained in instru
8	Agreement in favo

Commonly known as: 1611 S. State St. Ann Arbor, MI 48104-4366

TITLE INFORMATION

TITLE DESCRIPTION

Issuing Office File Number: MIFA22-3544

Records.

SCHEDULE B - SECTION II NOTES

SURVEYOR'S NOTES

- 1612, Ann Arbor, MI 48104.
- (subject to map scale uncertainty).

- 11) ALTA TABLE "A" ITEM NO. 10 No division or party walls with respect to adjoining properties were observed in the process of conducting fieldwork.
- 12) ALTA TABLE "A" ITEM NO. 11 See Note 17 below.
- the fieldwork. None observed.

- excavation may be necessary.
- LOCATIONS ON THE GROUND.

The Title Description and Schedule B items hereon are from First American Title Insurance Company, File No: MIFA22-3539, dated June 3, 2022.

The land is described as follows: City of Ann Arbor, County of Washtenaws

The South 82 feet of Lot(s) 1 and 2 of STIMSON SUBDIVISION according to the plat thereof recorded in Liber 5 of Plats, Page 30 of Washtenaw County

SCHEDULE B - SECTION II NOTES

r of The Detroit Edison Company and the Michigan Bell Telephone Company and the Covenants, Conditions and Restrictions ment recorded in Liber 1075, page 439. The easement described in this document is a blanket easement.

or of The Detroit Edison Company and the Covenants, Conditions and Restrictions contained in instrument recorded in Liber 1076, page 518. The easement route described in this document is shown on this survey. No width has been provided.

(9) Easement(s), Restrictions and/or Setback Lines, if any, as disclosed by the recorded plat. Nothing to show.

The Title Description and Schedule B items hereon are from First American Title Insurance Company, LSU#: MIFA22-3544, dated May 31, 2022.

The land is described as follows: City of Ann Arbor, County of Washtenaws

The South 70 feet of Lot(s) 3 and 4 of STIMSON SUBDIVISION according to the plat thereof recorded in Liber 5 of Plats, Page 30 of Washtenaw County

(7) Easement(s), Restrictions and/or Setback Lines, if any, as disclosed by the recorded plat. Nothing to show.

Commonly known as: 1612 White St. Ann Arbor, MI 48104-4366

1) ALTA TABLE "A" ITEM NO. 1 - Existing and placed monuments at all major corners of the boundary of the property have been shown. 2) ALTA TABLE "A" ITEM NO. 2 - Address of the surveyed property is 714 Henry Street; 1601, 1605, 1607, 1609, 1611 S. State Street; 1606, 1608, 1610, and

3) ALTA TABLE "A" ITEM NO. 3 - Flood Zone Classification: An examination of the National Flood Insurance Program's Flood Insurance Rate Map for Community Number 260213, Map Number 26161C0263E, with an Effective Date of April 3, 2012, shows this parcel to be located in Zone X

4) ALTA TABLE "A" ITEM NO. 4 - Gross Land Area: 72,148.02 Square Feet / 1.66 Acres

5) ALTA TABLE "A" ITEM NO. 5 - Vertical relief shown per ground survey at 1' contour interval. NAVD88 Datum.

6) ALTA TABLE "A" ITEM NO. 6(a) - A zoning letter or report has not been provided to the surveyor at this time. Zoning is shown per research performed by Nederveld and Henry Street Feasibility Study November 2021. See "Zoning Information".

7) ALTA TABLE "A" ITEM NO. 6(b) - A zoning letter or report has not been provided to the surveyor at this time. Building setbacks are shown per research

and interpretation performed by Nederveld and Henry Street Feasibility Study November 2021..

8) ALTA TABLE "A" ITEM NO. 7(a) - Exterior dimensions of all permanent buildings at ground level have been shown.

9) ALTA TABLE "A" ITEM NO. 7(b)(1) - Building Area: 13,062 Square Feet (Total)

10) ALTA TABLE "A" ITEM NO. 8 - Substantial features observed in the process of conducting fieldwork have been shown.

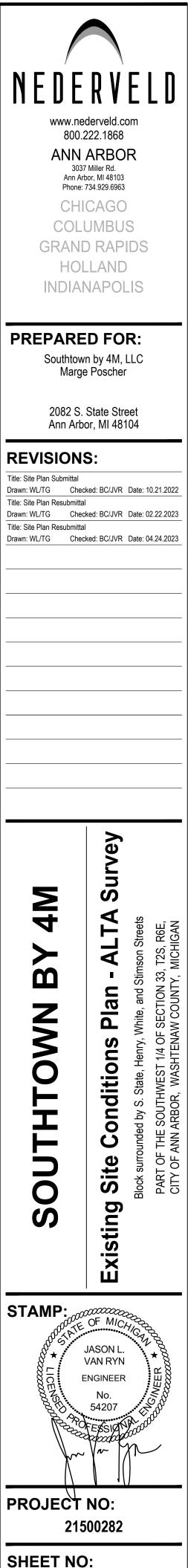
13) ALTA TABLE "A" ITEM NO. 13 - Names of adjoining owners have been shown according to current tax records.

14) ALTA TABLE "A" ITEM NO. 16 - Evidence of recent earth moving work, building construction or building additions observed in the process of conducting

15) ALTA TABLE "A" ITEM NO. 17 - Proposed changes in street right of way lines, if such information is made available to the surveyor by the controlling jurisdiction. Evidence of recent street or sidewalk construction or repairs observed in the process of conducting the fieldwork. **None observed.**

16) Note to the client, insurer, and lender - With regard to Table A, item 11, information from the sources checked above will be combined with observed

evidence of utilities pursuant to Section 5.E.iv. to develop a view of the underground utilities. However, lacking excavation, the exact location of underground features cannot be accurately, completely, and reliably depicted. In addition, in some jurisdictions, 811 or other similar utility locate requests from surveyors may be ignored or result in an incomplete response. Where additional or more detailed information is required, the client is advised that


17) Basis of Bearing: NAD83 Michigan State Planes, South Zone, International Foot

18) NOTE TO CONTRACTORS: 3 (THREE) WORKING DAYS BEFORE YOU DIG, CALL MISS DIG AT TOLL FREE 1-800-482-7171 FOR UTILITY

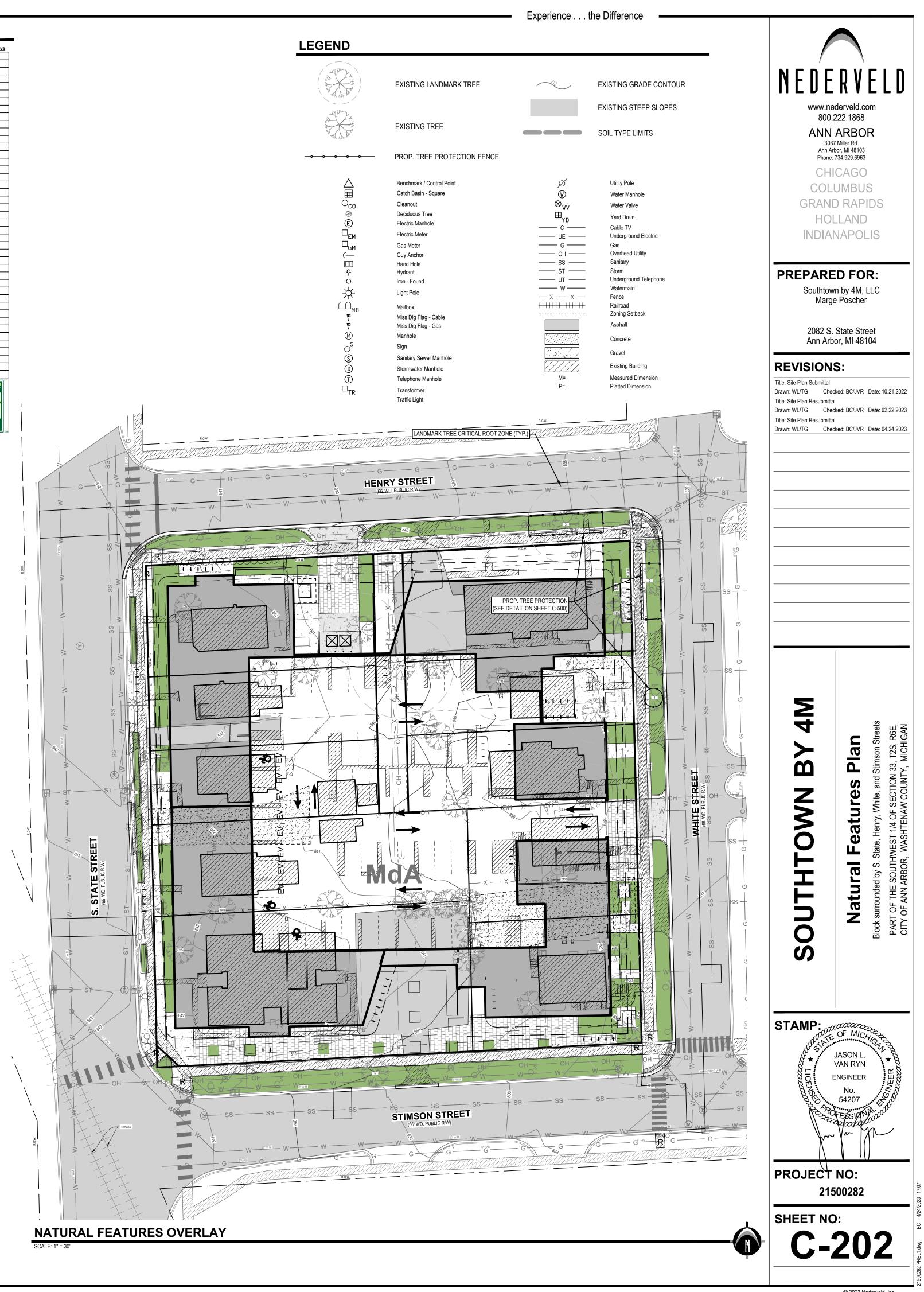
19) Access to property is from S. State Street, Henry Street, White Street, and Stimson Street.

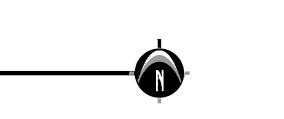
20) The surveyed boundary shown hereon is contiguous with adjoining properties and/or rights of way without any gaps, gores, or overlaps.

21) Survey includes a survey of the real property located at 1606 White Street, Ann Arbor, however this property is not part of the collateral in connection with that certain mortgage loan from ROSS-ANN ARBOR, LLC, a Delaware limited liability company, as lender, to South Town By 4M LLC, a Michigan limited liability company, as borrower, dated as of [].

NATURAL FEATURES ANALYSIS NOTES:

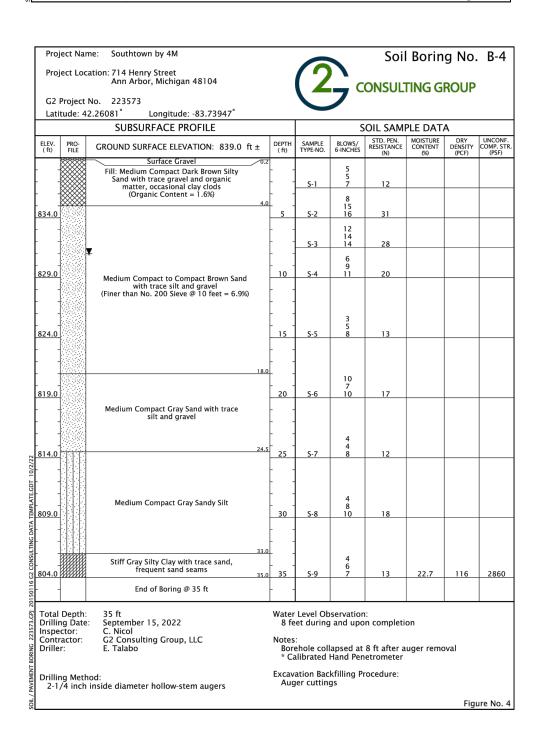
- 100-YEAR FLOODPLAIN: THERE IS NO FEMA MAPPED FLOOD PLAIN ON THE SITE.
- LANDMARK TREES: SEE NATURAL FEATURES PLAN (THIS SHEET) AND EXISTING TREE TABLE (SHEET C-203). THERE ARE TWO (2) LANDMARK TREES TO REMAIN WITHIN THE PROPOSED PROJECT SITE.
- 3. <u>STEEP SLOPES:</u> THERE ARE NO STEEP SLOPES ON THE PROJECT SITE. EXISTING WATERCOURSE: THERE ARE NO WATERCOURSES ON THE SITE.
- BOUNDARY AND BASAL AREA ESTIMATE WOODLANDS: THERE ARE NO WOODLANDS ON
- THE SITE 6. BOUNDARY AND CHARACTER OF ALL WETLANDS: THERE ARE NO WETLANDS ON THE

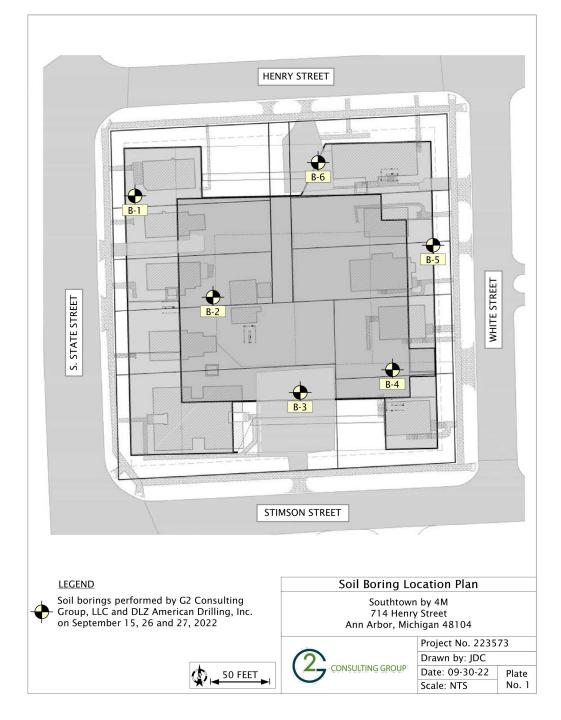


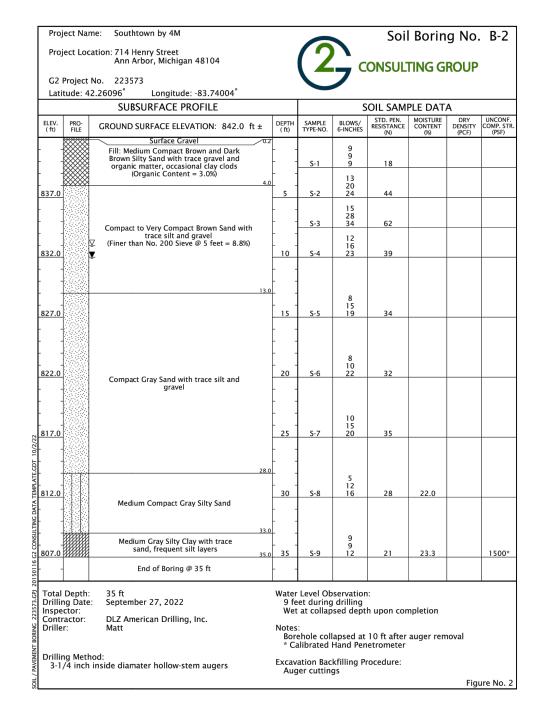

TREE SURVEY

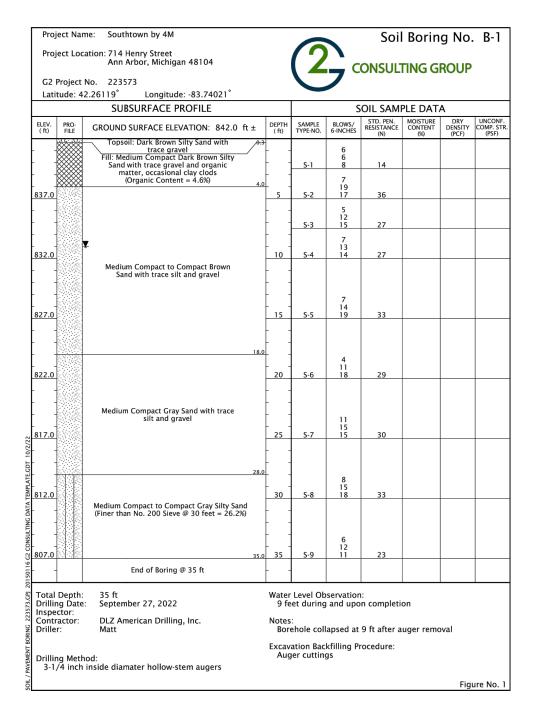
Tree ID	Scientific Name	Common Name	DBH	Landmark	Notes	Remove
2301	Acer saccharinum	Silver Maple	30.5"	Yes		х
2302	Thuja occidentalis	Arborvitae	10"	No		х
2303	Ulmus pumila	Siberian Elm	27.5"	No		х
2304	Acer platanoides	Norway Maple	8"	No		х
2305	Ulmus pumila	Siberian Elm	13.6"	No	multi-stem	х
2306	Acer platanoides	Norway Maple	11"	No		х
2307	Ulmus pumila	Siberian Elm	9"	No		х
2308	Ulmus pumila	Siberian Elm	14"	No		х
2309	Ulmus pumila	Siberian Elm	16"	No		х
2310	Ulmus pumila	Siberian Elm	7.5"	No		х
2311	Ulmus pumila	Siberian Elm	9"	No		х
2312	Ulmus pumila	Siberian Elm	8"	No		х
2313	Ulmus pumila	Siberian Elm	17"	No		х
2314	Ulmus pumila	Siberian Elm	21.7"	No	multi-stem	x
2315	Acer platanoides	Norway Maple	13.5"	No		х
2316	Ulmus americana	American Elm	8.5"	No		х
2317	Acer platanoides	Norway Maple	24.5"	No		х
2318	Acer platanoides	Norway Maple	28"	No		х
2319	Acer platanoides	Norway Maple	19"	No		x
2320	Morus alba	Muberry	25"	No		х
2321	Juglans nigra	Black Walnut	7"	No		х
2322	Acer saccharum	Sugar Maple	20"	Yes		х
2323	Ulmus pumila	Siberian Elm	23.5"	No		x
2324	Morus alba	Muberry	15.6"	No	multi-stem	x
2325	Juglans nigra	Black Walnut	8"	No		x
2326	Juglans nigra	Black Walnut	28.5"	Yes		x
2327	Morus alba	Muberry	24"	No		x
2328	Ulmus americana	American Elm	8"	No		x
2329	Pinus resinosa	Red Pine	21"	No		x
2330	Thuja occidentalis	Arborvitae	21.3"	Yes	multi-stem	x
2331	Juniperus virginiana	Eastern Red Cedar	9.5"	Yes		x
2332	Juniperus virginiana	Eastern Red Cedar	10"	Yes		x
2333	Thuja occidentalis	Arborvitae	17"	Yes	multi-stem	x
2334	Celtis occidentalis	Common Hackberry	7"	No		x
2335			14"	No	stump	x
2336	Thuja occidentalis	Arborvitae	17.5"	Yes	multi-stem	x
2337	Ulmus pumila	Siberian Elm	8"	No		x
2338	Thuja occidentalis	Arborvitae	14"	Yes	multi-stem	x
1	Acer miyabe	Miyabe Maple	8"	No	Street Tree	† ^
2	Acer saccharum	Sugar Maple	21.5"	Yes	Street Tree	<u> </u>
3	Acer saccharum	Sugar Maple	21.5	Yes	Street Tree	
4	Acer platanoides	Norway Maple	10"	No	Street Tree	x
5	Acer platanoides	Norway Maple	16.5"	No	Street Tree	x

**Multi-stemmed trees DBH calculated using the formula: $\sqrt{(x^2 \cdot y^2)}$








WHITE STREET

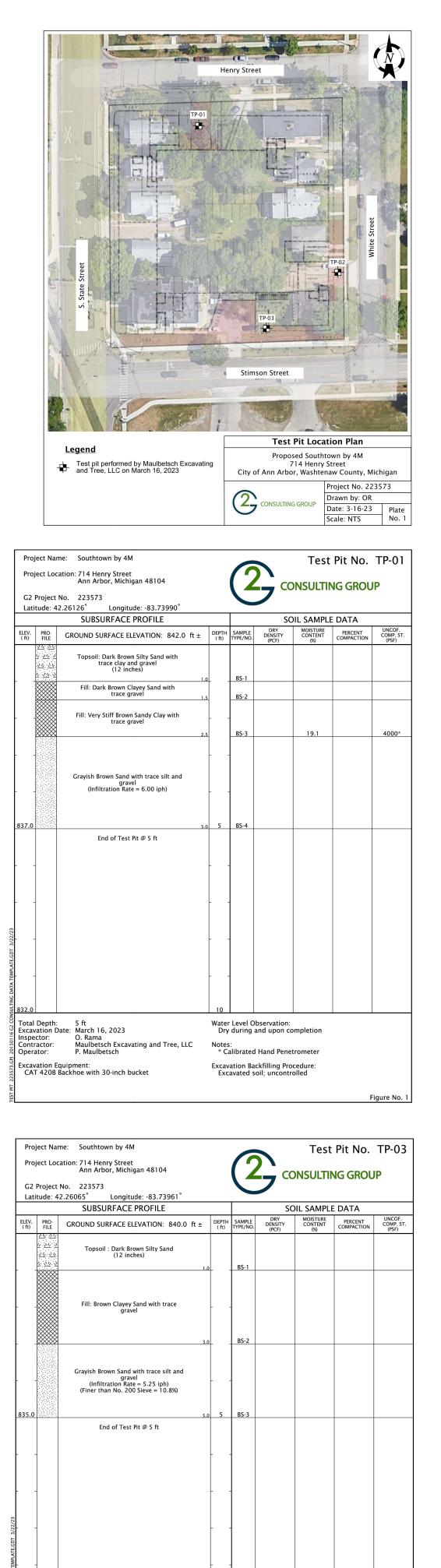
Proje	ect Nam	ne: Southtown by 4M				Soi	l Borin	ig No	. B-5
Proje	ect Loca	ation: 714 Henry Street Ann Arbor, Michigan 48104		(2		ONSUL	TING G	ROUP	
	roject N				ノ				
Latiti	ude: 42	2.26108 Longitude: -83.73933 SUBSURFACE PROFILE				OIL SAM		^	
ELEV.	PRO-	ł	DEPTH	SAMPLE	BLOWS/	STD. PEN. RESISTANCE	MOISTURE	DRY DENSITY	UNCON COMP. S
(ft)	FILE	GROUND SURFACE ELEVATION: 839.0 ft ±	(ft)	TYPE-NO.	6-INCHES	RESISTANCE (N)	CONTENT (%)	DENSITY (PCF)	COMP. S (PSF)
·		Fill: Medium Compact Brown Clayey Sand with trace gravel, occasional clay clods	3.0	S-1	8 8 8	16			
834.0			5_	S-2	8 19 28	47			
			-	S-3	10 15 16	31			
829.0	₽	Medium Compact to Compact Brown Z Sand with trace silt and gravel	10	S-4	7 9 11	20			
· -	<u> </u>	<u>.</u>	4.0	-	777				
<u>824.0</u>		Medium Compact to Compact Gray Sand	<u>15</u> - -	<u>S-5</u>	18	25			
<u>819.0</u>		with trace silt and gravel (Finer than No. 200 Sieve @ 20 feet = 5.2%)	20	<u>S-6</u>	14 22	36			
814.0		2	4.5 25	S-7	5 8 13	21			
	eeeee	Medium Compact Gray Sandy Silt with trace clay, frequent clay seams 2	8.0	-	8				
809.0			30	S-8	8 10	18	27.3	106	111
		Medium to Stiff Gray Silty Clay with trace sand, occasional silt layers	-	-					
			-		4 5 9		10.2		
804.0		End of Boring @ 35 ft	<u>5.0</u> 35	S-9	9	14	19.3		2500
Total I Drilling Inspec Contra Driller:	actor:	35 ft September 26, 2022 DLZ American Drilling, Inc. Matt	9 fe We Note: Bor	eet during t at collar :: ehole col	osed dept lapsed at	 h upon cor 14 ft after netrometer		ı noval	<u> </u>
	g Metho '4 inch i	od: inside diamater hollow-stem augers	Exca		ckfilling P	rocedure:			ure No

Project Nar	·		6		Soi	l Borin	g No.	B-3
Project Loc	ation: 714 Henry Street Ann Arbor, Michigan 48104		(2		ONSUL	TING G	ROUP	
G2 Project	No. 223573							
Latitude: 4	-							
	SUBSURFACE PROFILE			S	OIL SAM			
ELEV. PRO- (ft) FILE	GROUND SURFACE ELEVATION: 839.0 ft ±	DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE (N)	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	UNCONF COMP. ST (PSF)
	Bituminous Concrete (Asphalt) Fill: Medium Compact Brown and Dark Brown Silty Sand with trace gravel, occasional clay clods and asphalt fragments	 .0	S-1	5 9 9	18			
834.0	naginents		S-2	8 15 8	23			
			S-3	12 18 17	35			
829.0	፶ Medium Compact to Compact Brown Sand		S-4	9 14 16	30			
	with trace silt and gravel (Finer than No. 200 Sieve @ 15 feet = 11.3%)		-					
824.0	K		S-5	10 17 21	38			
	18		-					
819.0	-	20	S-6	8 12 17	29			
	Medium Compact Gray Sand with trace silt and gravel 24		-	3				
814.0		25	S-7	6 6	12			
809.0	Medium Compact to Compact Gray Silty Sand	 30	S-8	7 16 17	33			
	32 Medium Gray Silty Clay with trace sand, frequent silt layers	.0 		8 10				
804.0	35 End of Boring @ 35 ft	. <u>0 35</u> 	S-9	13	23	24.2	114	1030
Total Depth: Drilling Date Inspector: Contractor: Driller:	35 ft : September 26, 2022 M. Majed DLZ American Drilling, Inc. Matt	9 fe Wet Notes Bor	eet during t at collap s: ehole col	osed dept lapsed at	i: h upon cor 15 ft after etrometer		noval	
Drilling Meth 3-1/4 inch	nod: inside diamater hollow-stem augers	Excav Aug	ation Bac ger cuttin	:kfilling Pi gs		n	5	ure No.

Proj	ject Narr	ne: Southtown by 4M		6		Soi	l Borin	ig No.	B-6
Proj	ject Loca	ation: 714 Henry Street Ann Arbor, Michigan 48104		(2		ONSUL	TING G	ROUP	
	Project N				7				
Lati	tude: 42	2.26126 Longitude: -83.73967							
		SUBSURFACE PROFILE	-		1	STD PEN			UNCONE
ELEV. (ft)	PRO- FILE	GROUND SURFACE ELEVATION: 840.0 ft ±	DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE (N)	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	COMP. ST (PSF)
_		Bituminous Concrete (Asphalt) Fill: Medium Compact Brown and Dark	3		2				
-		Brown Clayey Sand with trace gravel and organic matter, occasional		S-1	5 8	13			
-		asphalt fragments	0 -	-	9				
835.0			5	S-2	10 13	23			
-				-	7				
		Madium Commenter Comment Press	t i	S-3	iò	21			
_	Į	Medium Compact to Compact Brown Sand with trace silt and gravel (Finer than No. 200 Sieve @ 7.5 feet = 8.9%)		-	8 16				
830.0		(Thier than No. 200 sleve @ 7.5 leet = 0.5%)	10	S-4	15	31			
-				-	8				
825.0			0 . 15	S-5	10	30			
		2			20	50			
-				-					
-				-	7				
820.0		Medium Compact Gray Sand with trace silt and gravel	20	S-6	13 16	29			
-				-					
-									
_		24.		1	2				
815.0		24.	25	S-7	7	13			
-		Medium Compact Gray Sandy Silt with trace clay, frequent clay seams							
_		28.	•						
0100				S-8	9 12 16	28			
810.0		Medium Compact Gray Silty Sand with trace clay	30	3-0	10	20			
-		,		-					
-		33.	<u> </u>	-	7				
- 805.0		Stiff Gray Silty Clay with trace sand 35.	0 35	S-9	8 12	20	20.9		3000*
-		End of Boring @ 35 ft		-					
Total	Depth:	35 ft			servatior	1:			
Inspe				eet during t at collap		h upon cor	npletion		
Contr Drille	ractor: r:	DLZ American Drilling, Inc. Matt	Notes						
						16 ft after etrometer	auger ren	noval	
	ng Meth					rocedure:			
3-1,	74 inch	inside diamater hollow-stem augers	Auc	ger cuttin	qs _	cold patch			ure No. (

	Proj	ect Na	me:	Southtown by 4M					Test	Pit No.	TP-02
	Proj	ect Loo	catior	n: 714 Henry Street Ann Arbor, Michigan 48104			(NG GROU	
		Project		223573				フ゛	SNOULIN		
	Lati	tude: 4	2.26	081° Longitude: -83.73931°							
				SUBSURFACE PROFILE					OIL SAMPLE	DATA	
	ELEV. (ft)	PRO- FILE	GR	OUND SURFACE ELEVATION: 839.0 ft ±		DEPTH (ft)	Sample Type/No.	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	PERCENT COMPACTION	UNCOF. COMP. ST. (PSF)
				Surface Gravel	0.5		BS-1				
				Fill: Dark Brown Silty Sand with trace clay and gravel	1.5		BS-2				
				Fill: Brown Silty Sand with trace clay and gravel	3.5		BS-3				
		XXXXX			3.3		00 0				
	834.0			Grayish Brown Sand with trace silt and gravel (Infiltration Rate = 6.00 iph)	5.0		BS-4				
				End of Test Pit @ 5 ft							
DNSULTING DATA TEMPLATE.GDT 3/22/23	 829.0										
C2 CC		Depth		5 ft March 16, 2023		Water	Level C	bservation: and upon c	ompletion		
20150116	Inspe	ctor: actor:		O. Rama Maulbetsch Excavating and Tree, LLC P. Maulbetsch		Excav	ation Ba	and upon c ackfilling Pro soil; uncont	ocedure:		
573.GPJ	Excav	ation E						,			
T PIT 223	CA	200	Juck								

Figure No. 2


Total Depth: 5 ft Excavation Date: March 16, 2023 Inspector: O. Rama Contractor: Maulbetsch Excavating and Tree, LLC Operator: P. Maulbetsch

Excavation Equipment: CAT 420B Backhoe with 30-inch bucket

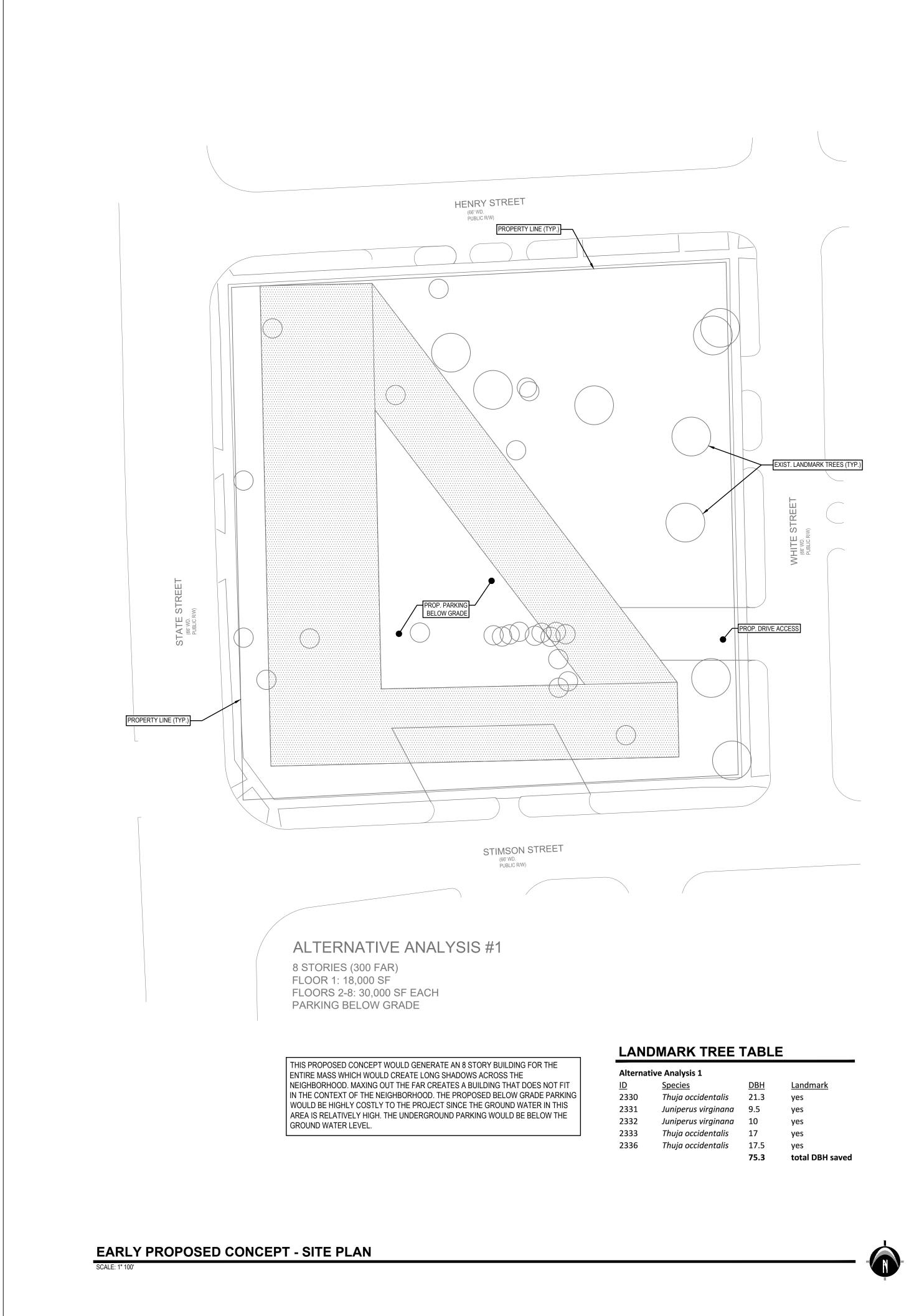
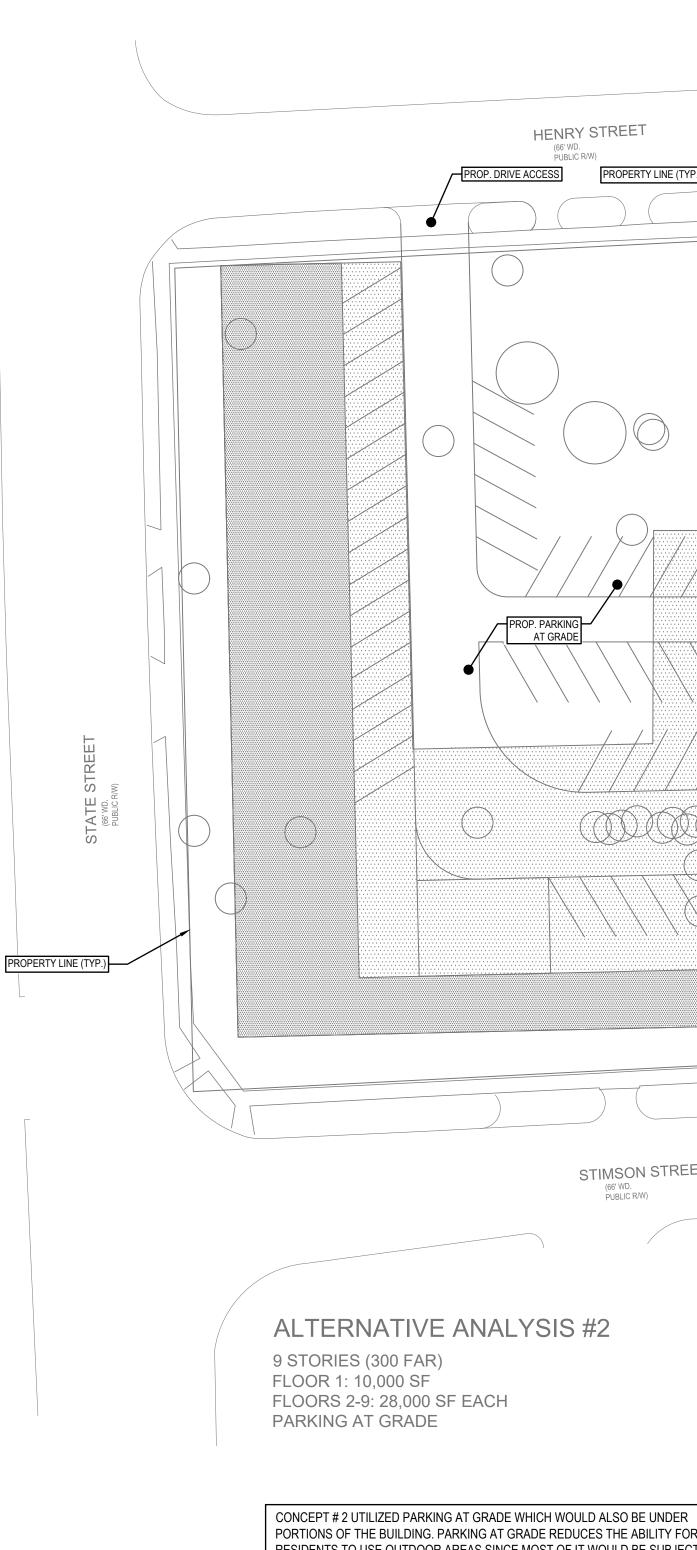
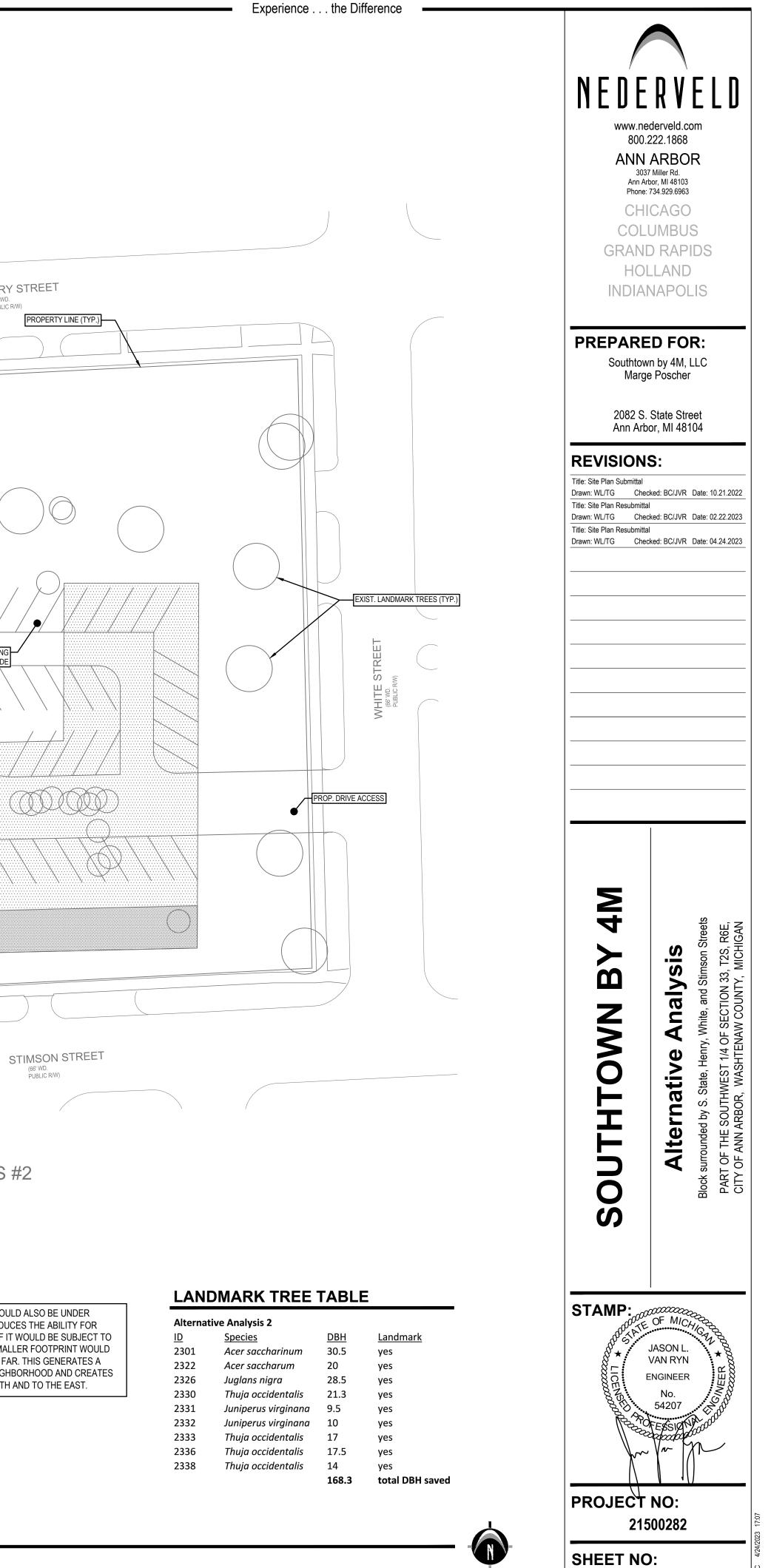

Water Level Observation: Dry during and upon completion

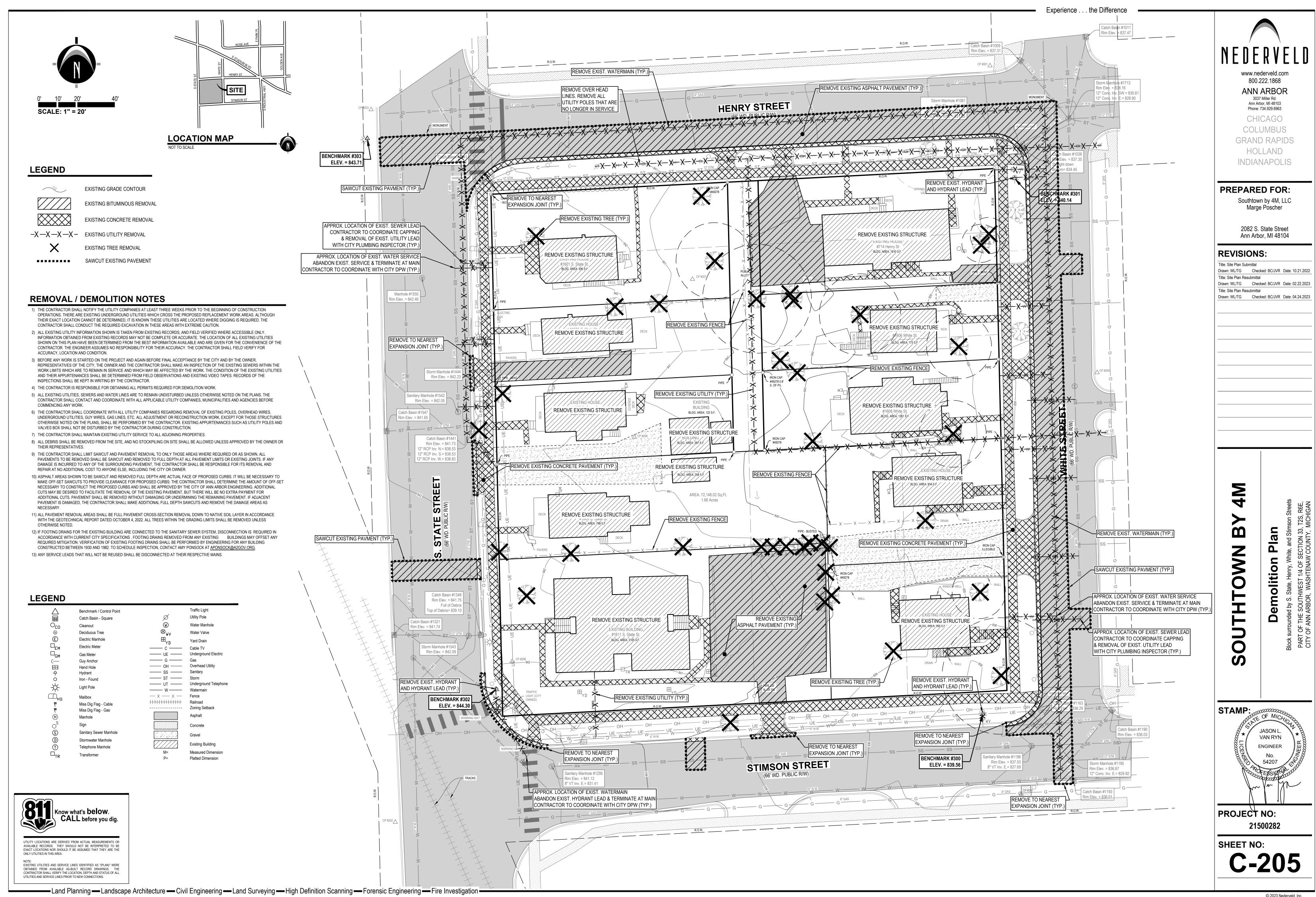
Figure No. 3

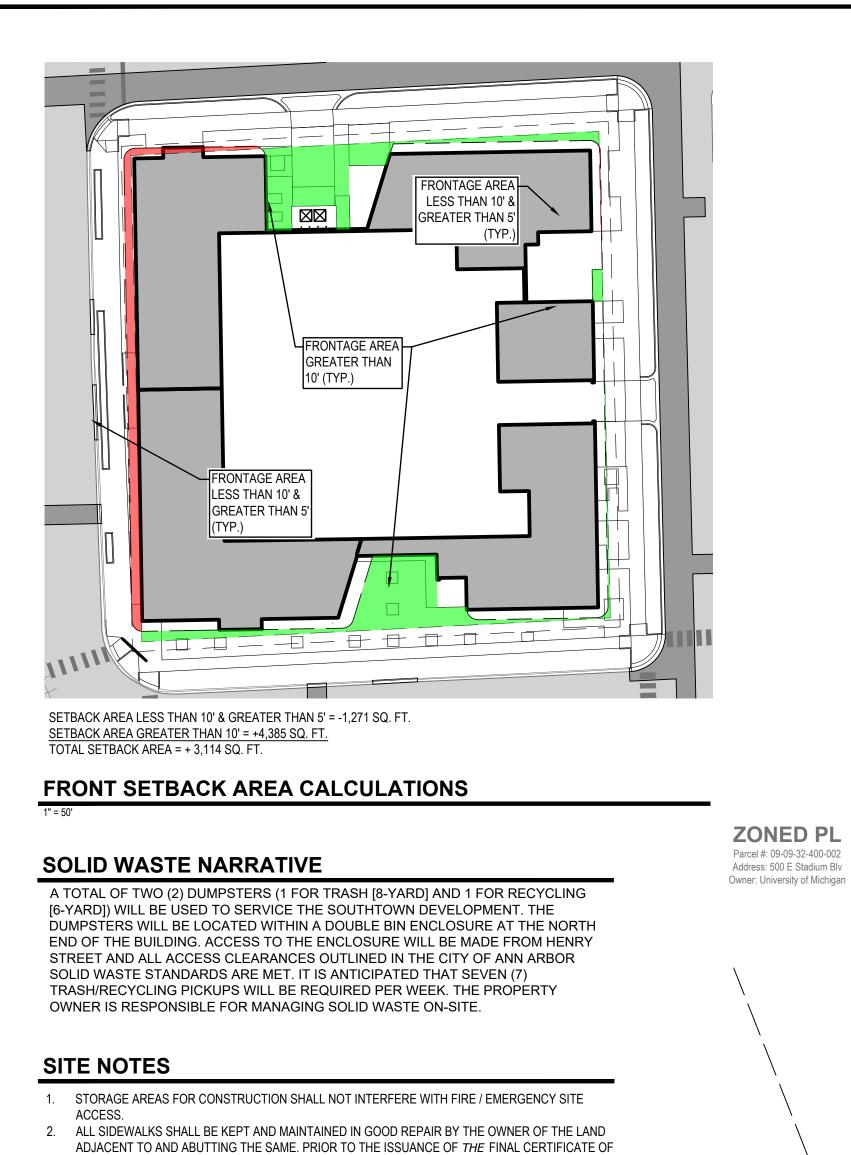

Excavation Backfilling Procedure: Excavated soil; uncontrolled

www.nederveld.com 800.222.1868 ANN ARBOR 3037 Miller Rd. Ann Arbor, MI 48103 Phone: 734.929.6963 CHICAGO COLUMBUS **GRAND RAPIDS** HOLLAND INDIANAPOLIS **PREPARED FOR:** Southtown by 4M, LLC Marge Poscher 2082 S. State Street Ann Arbor, MI 48104 **REVISIONS:** Title: Site Plan Submittal Drawn: WL/TG Checked: BC/JVR Date: 10.21.2022 Title: Site Plan Resubmittal Drawn: WL/TG Checked: BC/JVR Date: 02.22.2023 Title: Site Plan Resubmittal Drawn: WL/TG Checked: BC/JVR Date: 04.24.2023 **4**M Report R6E, IGAN B T2S, MICH ION 33, UNTY, N Infiltration THTOWN W CO U L ₹ <u></u> JTHWEST ر م , SOU APr త THE Soil Block surrol PART OF CITY OF A **NO** S STAMP: TE OF MICH JASON L. VAN RYN ENGINEER No. 54207 PROJECT NO: 21500282 SHEET NO: **C-203**



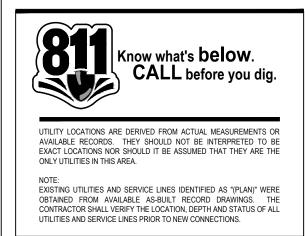
ialysis I		
<u>ecies</u>	<u>DBH</u>	<u>Landmark</u>
uja occidentalis	21.3	yes
niperus virginana	9.5	yes
niperus virginana	10	yes
uja occidentalis	17	yes
uja occidentalis	17.5	yes
	75.3	total DBH saved

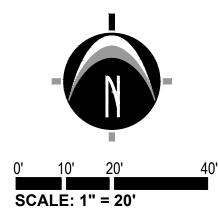

PORTIONS OF THE BUILDING. PARKING AT GRADE REDUCES THE ABILITY FOR RESIDENTS TO USE OUTDOOR AREAS SINCE MOST OF IT WOULD BE SUBJECT TO VEHICULAR AREAS. THE BUILDING SHAPE BEING A SMALLER FOOTPRINT WOULD NEED TO BE 9 STORIES TALL IN ORDER TO MEET THE FAR. THIS GENERATES A STRUCTURE THAT IS OUT OF CHARACTER IN THE NEIGHBORHOOD AND CREATES LONG SHADOWS ONTO THE NEIGHBORS TO THE NORTH AND TO THE EAST.

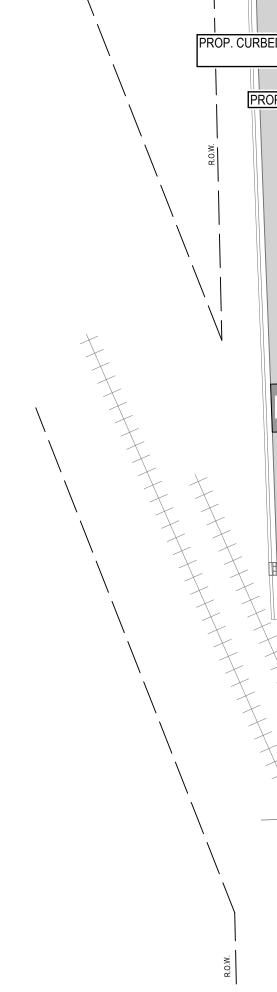

EARLY PROPOSED CONCEPT (#2) - SITE PLAN SCALE: 1" 100'

© 2023 Nederveld, Inc.

C-204

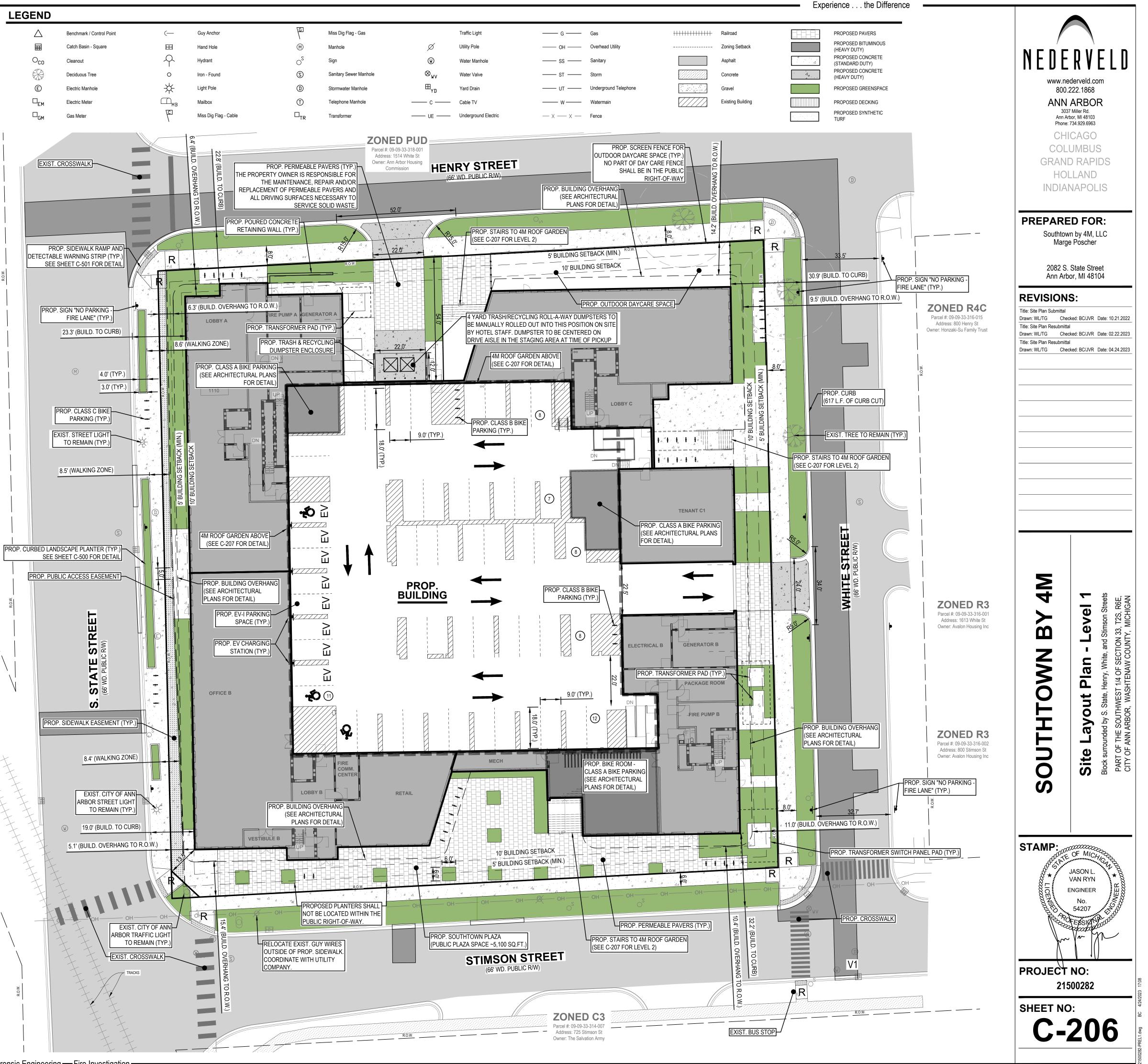


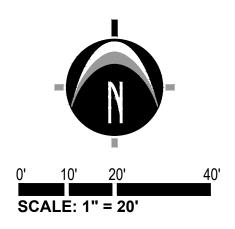



- OCCUPANCY FOR THIS SITE, ALL EXISTING SIDEWALKS IN NEED OF REPAIR MUST BE REPAIRED IN ACCORDANCE WITH CITY STANDARDS.
- 3. NO CHEMICALS ARE ALLOWED IN STORMWATER FEATURES OR BUFFER ZONES WITH THE FOLLOWING EXCEPTION: INVASIVE SPECIES MAY BE TREATED WITH CHEMICALS BY A CERTIFIED APPLICATOR.
- 4. THE MAINTENANCE OF THE DROP OFF LANE, LOCATED ALONG WHITE STREET, WILL BE THE RESPONSIBILITY OF THE OWNER, INCLUDING SNOW AND ICE REMOVAL.
- 5. FIRE DEPARTMENT REQUIREMENT: THE BUILDING SHALL BE COMPLIANT WITH 2015 IFC 510 -
- EMERGENCY RESPONDER RADIO COVERAGE. 6. ANY DAMAGE TO PUBLIC STREETS AS A RESULT OF CONSTRUCTION SHALL BE REPAIRED BY THE
- CONTRACTOR AS DIRECTED BY CITY ENGINEERING. 7. IF A CRANE WILL BE USED IN THE RIGHT OF WAY, THE CONTRACTOR SHALL OBTAIN A
- TEMPORARY LICENSE AGREEMENT FROM THE CITY AS NEEDED. 8. A LOGISTICS PLAN MUST BE SUBMITTED TO THE CITY FOR REVIEW IF ANY LONG TERM LANE CLOSURE OR SIDEWALK CLOSURE IS ANTICIPATED
- NO PART OF STAIRS SHALL BE LOCATED WITHIN THE PUBLIC RIGHT-OF-WAY.
- 10. ELECTRIC TRANSFORMER SHALL NOT BE LOCATED IN THE PUBLIC RIGHT-OF-WAY. 11. PAVERS SHALL NOT BE LOCATED WITHIN THE PUBLIC RIGHT-OF-WAY.

ADA ACCESSIBILITY NOTES

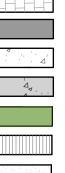
- 1. ALL HANDICAPPED PARKING SPACES AND ACCESS AISLES ADJACENT TO THE HANDICAP PARKING SPACES SHALL HAVE A MAXIMUM OF 2% SLOPE IN ALL DIRECTIONS (THIS INCLUDES RUNNING SLOPE AND CROSS SLOPE).
- 2. AN ACCESSIBLE ROUTE FROM THE PUBLIC STREET OR SIDEWALK TO THE BUILDING ENTRANCE MUST BE PROVIDED. THIS ACCESSIBLE ROUTE SHALL BE A MINIMUM OF 60" WIDE. THE RUNNING SLOPE OF AN ACCESSIBLE ROUTE SHALL NOT EXCEED 5% AND THE CROSS SLOPE SHALL NOT EXCEED 2%.
- 3. SLOPES EXCEEDING 5% BUT LESS THAN 8% WILL REQUIRE A RAMP AND MUST CONFORM TO THE REQUIREMENTS FOR RAMP DESIGN (HANDRAILS, CURBS, LANDINGS). NO RAMP SHALL EXCEED AN 8% RUNNING SLOPE OR 2% CROSS SLOPE. IF THE SIDEWALK IS ADJACENT TO THE STREET, THE SIDEWALK GRADE MAY BE EQUAL TO THE GRADE OF THE STREET AND NOT BE CONSIDERED A RAMP
- 4. IN THE CASE THAT A NEW SIDEWALK WILL BE CONSTRUCTED IN THE RIGHT OF WAY THE RUNNING SLOPE OF THE SIDEWALK SHALL NOT EXCEED 5% AND THE CROSS SLOPE SHALL NOT EXCEED 2% THIS STANDARD APPLIES TO CROSS WALKS IN THE DRIVEWAY AS WELL AND WILL REQUIRE SPECIAL ATTENTION DURING STAKING TO MAKE SURE THE 2% CROSS SLOPE IS MET IN THE CROSS WALK. IF THE SIDEWALK IS ADJACENT TO THE STREET, THE SIDEWALK GRADE MAY BE EQUAL TO THE GRADE OF THE STREET AND NOT BE CONSIDERED A RAMP.
- 5. IT WILL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR TO ENSURE THAT THE HANDICAP PARKING SPACES, ACCESSIBLE ROUTES, AND SIDEWALKS/CROSSWALKS ARE CONSTRUCTED TO MEET ADA REQUIREMENTS.
- 6. ANY REQUIREMENTS LISTED ABOVE THAT CAN NOT BE MET SHALL BE BROUGHT TO THE ENGINEERS ATTENTION IMMEDIATELY. ANYTHING NOT BUILT TO THE ABOVE STANDARDS WILL REQUIRE REMOVAL AND REPLACEMENT OF THE NON COMPLIANT AREAS AT THE GENERAL CONTRACTORS COST.
- 7. LEAD RAMPS SHALL CONNECT PERPENDICULAR TO THE SIDEWALK AND SHALL BE ADA COMPLIANT.




LEGEND

 \wedge

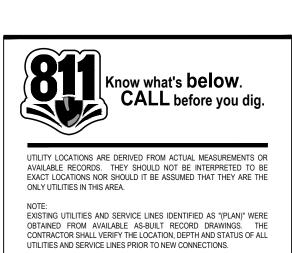
(M)


^{© 2023} Nederveld, Inc.

LEGEND

\bigtriangleup	Benchmark / Control Point
Ħ	Catch Basin - Square
O _{CO}	Cleanout
	Deciduous Tree
E	Electric Manhole
□ _{EM}	Electric Meter
□ _{GM}	Gas Meter
(—	Guy Anchor
HH	Hand Hole
\mathbf{P}	Hydrant
0	Iron - Found
*	Light Pole
Ш _{мв}	Mailbox
	Miss Dig Flag - Cable
G	Miss Dig Flag - Gas
(M)	Manhole
O_{Z}	Sign
(s)	Sanitary Sewer Manhole
D	Stormwater Manhole
T	Telephone Manhole
\Box_{TR}	Transformer
0	Traffic Light
Ø	Utility Pole
⊛ ⊗ _{wv}	Water Manhole
\otimes_{wv}	Water Valve

⊞ _{YD}
c
UE
G
—— ОН ——
ss
ST
—— UT ——
w
— x — x —
+++++++++++++++++++++++++++++++++++++++
M=
P=
م م

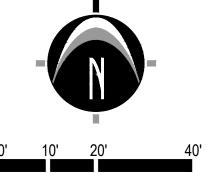

Overhead Utility Storm Underground Telephone oning Sethacl Asphal Gravel Existing Building Measured Dimension Platted Dimension PROPOSED PAVERS PROPOSED BITUMINOUS (HEAVY DUTY)

Yard Drain

Cable TV

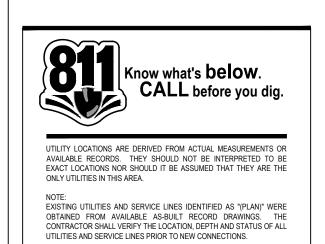
Underground Electric

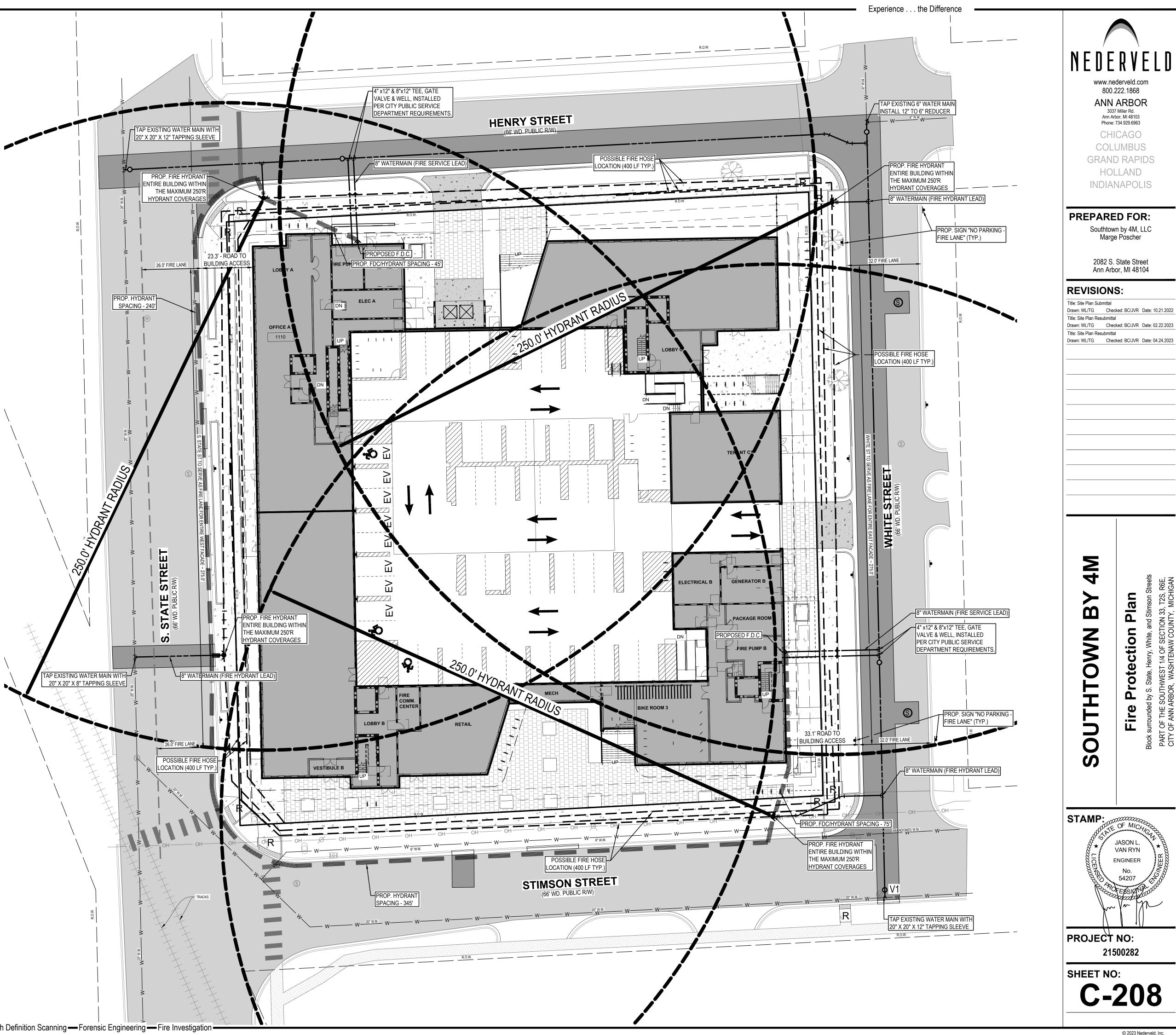
PROPOSED CONCRETE (STANDARD DUTY) PROPOSED CONCRETE (HEAVY DUTY) PROPOSED GREENSPACE PROPOSED DECKING PROPOSED SYNTHETIC TURF

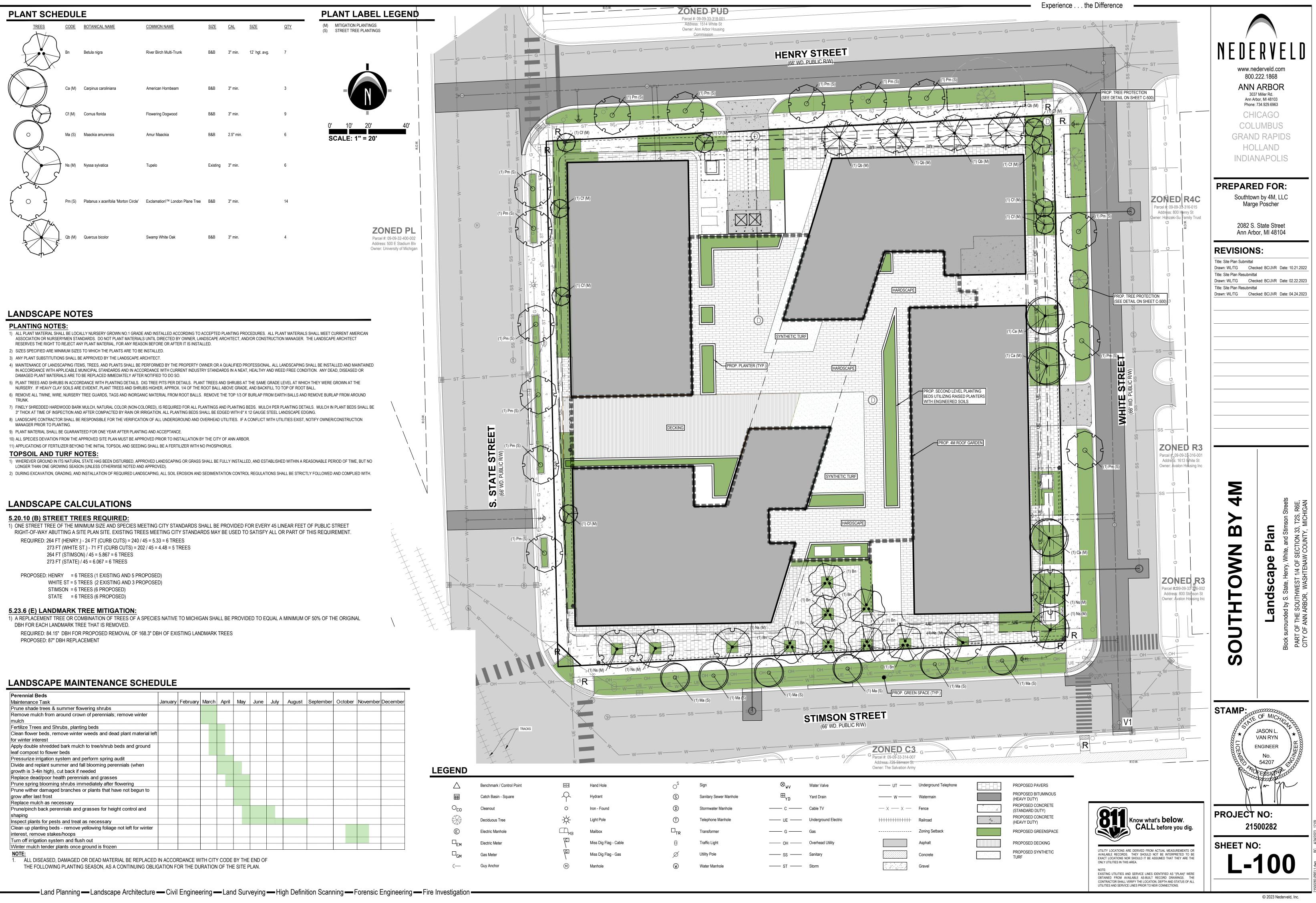

ZONED PL Parcel #: 09-09-32-400-002 Address: 500 E Stadium Blv

Owner: University of Michigan

E


SCALE: 1" = 20'


LEGEND


\bigtriangleup	Benchmark / Control Point	$\boxplus_{_{YD}}$	Yard Dra
Ħ	Catch Basin - Square	c	Cable T\
O _{CO}	Cleanout	UE	Undergro
	Deciduous Tree	G	Gas
E	Electric Manhole	—— ОН ——	Overhea
\Box_{EM}	Electric Meter	SS	Sanitary
\square_{GM}	Gas Meter	st	Storm
(—	Guy Anchor	UT	Undergro
HH	Hand Hole	—— w ——	Waterma
P.	Hydrant	— x — x —	Fence
0	Iron - Found	+++++++++++++++++++++++++++++++++++++++	Railroad
*	Light Pole		Zoning S
Шмв	Mailbox		Asphalt
	Miss Dig Flag - Cable		Concrete
	Miss Dig Flag - Gas		Gravel
(M)	Manhole		Existing I
$O_{\mathcal{S}}$	Sign	M=	Measure
(s)	Sanitary Sewer Manhole	P=	Platted D
D	Stormwater Manhole		PROPOS
T	Telephone Manhole		PROPOS (HEAVY
\Box_{TR}	Transformer	а Д	PROPOS (STAND/
0	Traffic Light		PROPOS (HEAVY
Ø	Utility Pole		PROPOS
(w)	Water Manhole		PROPOS
\otimes_{wv}	Water Valve		PROPOS TURF

	Yard Drain
	Cable TV
	Underground Electric
	Gas
	Overhead Utility
	Sanitary
	Storm
	Underground Telephone
	Watermain
	Fence
++	Railroad
	Zoning Setback
	Asphalt
	Concrete
]	Gravel
	Existing Building
	Measured Dimension
	Platted Dimension
]	PROPOSED PAVERS
]	PROPOSED BITUMINOUS (HEAVY DUTY)
]	PROPOSED CONCRETE
]	(STANDARD DUTY) PROPOSED CONCRETE
1	(HEAVY DUTY)
	PROPOSED GREENSPACE

PROPOSED DECKING PROPOSED SYNTHETIC

Perennial Beds												
Maintenance Task	January	February	March	April	May	June	July	August	September	October	November	Decembe
Prune shade trees & summer flowering shrubs												
Remove mulch from around crown of perennials; remove winter												
mulch												
Fertilize Trees and Shrubs, planting beds												
Clean flower beds, remove winter weeds and dead plant material left												
for winter interest												
Apply double shredded bark mulch to tree/shrub beds and ground												
leaf compost to flower beds												
Pressurize irrigation system and perform spring audit												
Divide and replant summer and fall blooming perennials (when												
growth is 3-4in high), cut back if needed												
Replace dead/poor health perennials and grasses												
Prune spring blooming shrubs immediately after flowering												
Prune wither damaged branches or plants that have not begun to												
grow after last frost												
Replace mulch as necessary												
Prune/pinch back perennials and grasses for height control and												
shaping												
Inspect plants for pests and treat as necessary												
Clean up planting beds - remove yellowing foliage not left for winter												
interest, remove stakes/hoops												
Turn off irrigation system and flush out												
Winter mulch tender plants once ground is frozen												
NOTE:												

SITE CONSTRUCTION SEQUENCE & TIMING							20)24	4						
SEQUENCE & HIMING	MA	RCH	APF	RIL	MAY	JUNE	JULY	AUG		SEP	00	CT	NO	/	DEC
INSTALL SOIL EROSION CONTROL MEASURES															
DEMOLITION & REMOVALS									Τ						
ROUGH GRADE SITE									Τ						
CONSTRUCT STORM WATER MANAGEMENT SYSTEM															
CONSTRUCT UTILITY LINES TO BUILDING															
CURBING AND FIRST COURSE OF ASPHALT PAVING									Τ						
CONSTRUCT BUILDING FOUNDATION AND BUILDING															
CONSTRUCT IMPROVEMENTS AROUND BUILDING															
FINISH GRADE SITE									Τ						
PAVE SITE									Τ						
RESPREAD TOPSOIL/COMPACTION															
SEED DISTURBED AREAS															
SITE RESTORATION/CLEAN UP															

SOIL EROSION AND SEDIMENTATION CONTROL NOTES

26)

29

- 1) CONTRACTOR SHALL POSSESS THE SOIL EROSION AND SEDIMENTATION CONTROL PERMIT PRIOR TO START OF ANY EARTH WORK. 2) CONTRACTOR SHALL MODIFY THIS SOIL EROSION AND SEDIMENTATION CONTROL PLAN TO SHOW THE ADDITIONAL CONTROL MEASURES INTENDED TO BE USED DURING CONSTRUCTION. SUBMIT MODIFICATIONS TO THE
- CONTROLLING AGENCY, THE OWNER, AND THE ENGINEER. 3) EROSION PROTECTION SHALL BE PROVIDED AT ALL STORM SEWER INLETS
- AND OUTLETS. ALL BARE EARTH SHALL BE STABILIZED WITH SEEDING.
- 4) REFER TO THE M.D.O.T. "SOIL EROSION AND SEDIMENTATION CONTROL MANUAL" (APRIL 2006) FOR ADDITIONAL INFORMATION 5) THE ENTIRE STORM SEWER SYSTEM SHALL BE CLEANED AND FLUSHED FOLLOWING CONSTRUCTION AND PAID RECEIPT THEREOF PROVIDED TO
- THE ENGINEER AND COUNTY SESC AGENT PRIOR TO FINAL PAYMENT TO THE CONTRACTOR OR FINAL ACCEPTANCE OF THE CONSTRUCTION BY THE OWNER.
- 6) THE CONTRACTOR SHALL BE RESPONSIBLE TO INSPECT, TAKE CORRECTIVE ACTION AND MAINTAIN ALL TEMPORARY SESC MEASURES DAILY AND AFTER EACH RAIN EVENT UNIT FINAL COMPLETION AND ACCEPTANCE OF THE PROJECT.

GRADING NOTES:

- 1. ALL PROPOSED PAVING AND GRADING IMPROVEMENTS SHALL BE DESIGNED AND ANN ARBOR ENGINEERING DESIGN STANDARDS.
- 2. CONTRACTOR SHALL REFERENCE AND ABIDE BY THE RECOMMENDATIONS SET FORTH IN THE GEOTECHNICAL EVALUATION PREPARED BY G2 CONSULTING, PROJECT NO. 223573, DATED OCTOBER
- 3. ESTABLISH PERMANENT BENCH MARK ON-SITE PRIOR 9. UTILITIES SHOWN ARE APPROXIMATE LOCATIONS TO GRADING.
- 4. PROPOSED SPOT GRADES ARE TO BOTTOM OF CURB UNLESS OTHERWISE NOTED.
- 5. EXISTING AND PROPOSED GRADE CONTOURS SHOWN AT 1 FOOT INTERVALS.
- 6. THE EARTHWORK FOR ALL BUILDING FOUNDATIONS AND SLABS SHALL BE IN ACCORDANCE WITH THE 11. CURBING AND FIRST COARSE OF ASPHALT NEEDS TO GEOTECHNICAL REPORT AND ARCHITECTURAL BUILDING PLANS AND SPECIFICATIONS.
- 7. CONTRACTOR IS RESPONSIBLE FOR UNDERCUTTING EXISTING POOR SOIL AND REPLACING WITH APPROVED FILL. IF POOR SOIL IS ENCOUNTERED THE GENERAL CONTRACTOR SHALL NOTIFY THE OWNER

- PRIOR TO MAKING ANY SOIL CORRECTIONS & SHALL
- PROVIDE UNIT COSTS IN THEIR BID FOR SUCH WORK. CONSTRUCTED IN ACCORDANCE WITH THE CITY OF 8. BEST MANAGEMENT PRACTICES WILL BE UTILIZED DURING AND AFTER CONSTRUCTION OF THE PROJECT. MEASURES WILL INCLUDE THE USE OF SEEDING AND MULCHING, SEDIMENT INLET FILTERS, COMPACTION AND PAVING. THE OWNER OF THE SUBJECT PARCEL
 - SHALL HAVE THE RESPONSIBILITY TO MAINTAIN THE PERMANENT SOIL EROSION PROTECTION MEASURES. DERIVED FROM ACTUAL MEASUREMENTS OR
 - AVAILABLE RECORDS. THEY SHOULD NOT BE INTERPRETED TO BE EXACT LOCATIONS NOR SHOULD IT BE ASSUMED THAT THEY ARE THE ONLY UTILITIES IN THIS AREA.
 - 10. CONTRACTOR TO FIELD VERIFY ALL INVERTS PRIOR TO START OF CONSTRUCTION.
 - BE COMPLETED PRIOR TO VERTICAL CONSTRUCTION. 12. VERTICAL CONSTRUCTION CANNOT BEGIN UNTIL UNTIL THE STORM WATER MANAGEMENT SYSTEM IS

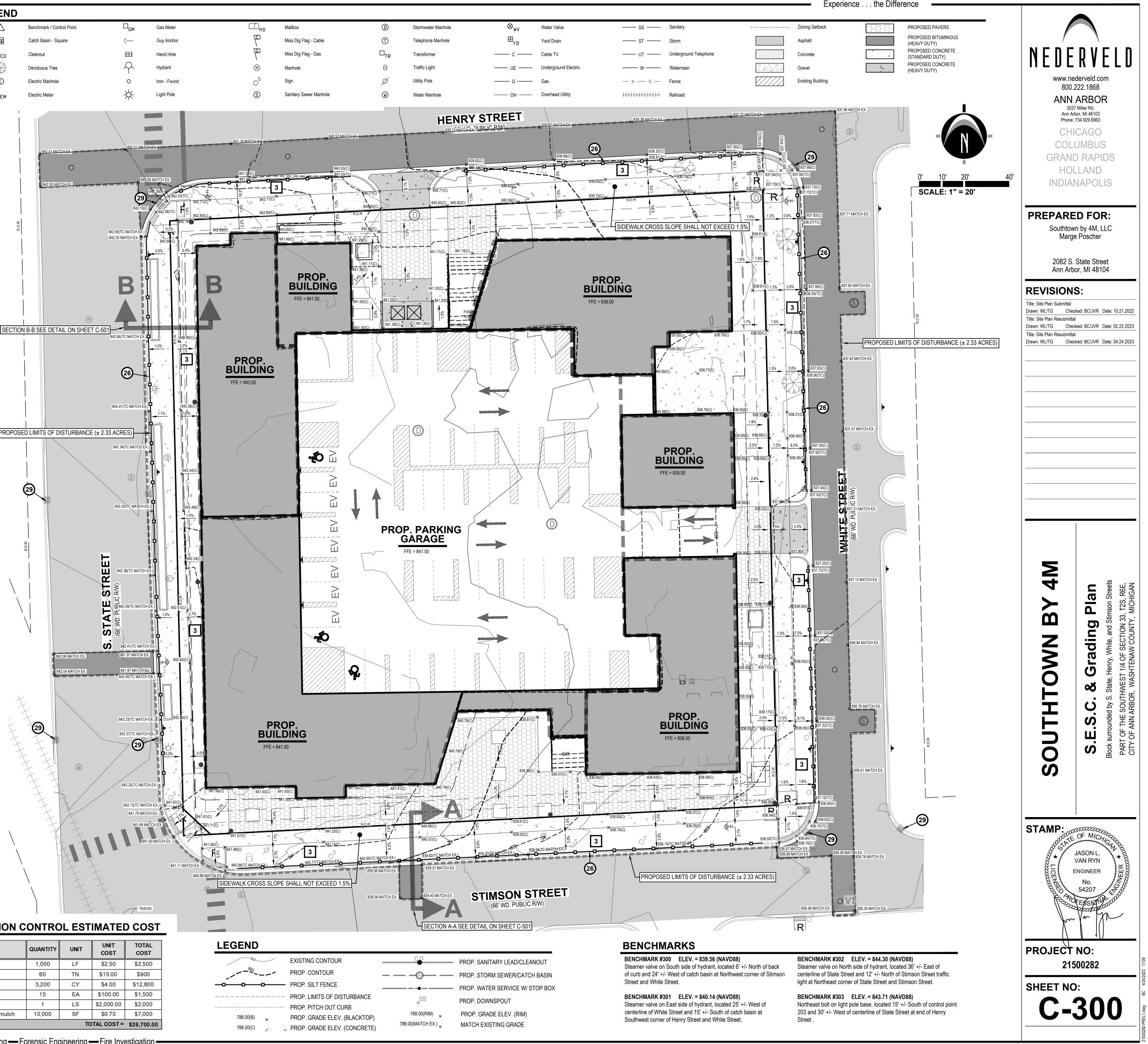
MAINTENANCE TASKS & SCHEDULE

_	DURING CONSTRUCTION TASKS	PAVED AREAS	PERVIOUS AREAS	RIP-RAP/SILT FENCE	STORM DRAINAGE SYSTEM	CATCH BASIN SUMPS	CATCH BASIN INLET CASINGS	RESTRICTOR STRUCTURE	SEDIMENT SEPARATOR	UNDERGROUND DETENTION AREA	SCHEDULE
	INSPECT FOR SEDIMENT ACCUMULATION	X		Х	Х	Х		Х	Х	Х	WEEKLY
	REMOVAL OF SEDIMENT ACCUMULATION	Х		Х	Х	Х		Х	Х	Х	AS NEEDED* AND PRIOR TO TURNOVER
	INSPECT FOR FLOATABLES AND DEBRIS				Х	Х	Х	Х	Х	Х	QUARTERLY
	CLEANING FOR FLOATABLES AND DEBRIS				Х	Х	Х	Х	Х	Х	QUARTERLY AND AT TURNOVER
	INSPECTION FOR EROSION		Х	Х							WEEKLY
	REESTABLISH PERMANENT VEGETATION ON ERODED SLOPES		Х								AS NEEDED* AND PRIOR TO TURNOVER
	CLEAN DRIVES AND PARKING LOTS	Х									WEEKLY OR AS DETERMINED BY PERMITTING AGENCY
	WATER DISTURBED AREAS TO PROVIDE DUST CONTROL	AL	L DI	STU	RBE) AR	EAS	OF	SITE		AS NEEDED
	INSPECT STRUCTURAL ELEMENTS DURING WET WEATHER AND COMPARE TO AS-BUILT PLANS (BY A PROFESSIONAL ENGINEER REPORTING TO THE OWNER)			Х	Х			Х	Х	Х	ANNUALLY AND AT TURNOVER
	MAKE ADJUSTMENTS OR REPLACEMENTS AS DETERMINED			Х	Х			Х	Х	Х	AS NEEDED

COMPLETED.

* "AS NEEDED" MEANS WHEN SEDIMENT HAS ACCUMULATED TO A MAXIMUM OF ONE FOOT DEPTH

PERMANENT PERMANENT LONG-TERM MAINTENANCE MAINTENANCE ACTIVITIES MAINTENANCE		PAVED AREAS	PERVIOUS AREAS	STORM CONVEYANCE SYSTEM	CATCH BASIN SUMPS	CATCH BASIN INLET CASINGS	HYDRODYNAMIC SEPARATOR	UNDERGROUND DETENTION AREA	OUTLET CONTROL STRUCTURE	RESPONSIBL FOR MAINTE SOUTHTOW (OWNE SCHEDULE	ENANCE: /N BY 4M
INSPECT FOR SEDIMENT ACCUMULATION		х		Х	Х		Х	Х	Х	SEMI-ANNUALLY/AS NEEDED*	\$250.00
REMOVAL OF SEDIMENT ACCUMULATION		х		Х	Х		Х	Х	Х	ANNUALLY/AS NEEDED*	\$750.00
INSPECT FOR FLOATABLES AND DEBRIS				Х	Х	Х	Х	Х	Х	ANNUALLY	\$150.00
CLEANING FOR FLOATABLES AND DEBRIS				Х	Х	Х	Х	Х	Х	ANNUALLY	\$300.00
INSPECTION FOR EROSION			Х							SEMI-ANNUALLY	\$100.00
CLEAN DRIVES AND PARKING LOTS)	Х								ANNUALLY	\$250.00
INSPECT STRUCTURAL ELEMENTS DURING WET WEATHER AND COMPARE TO AS-BUILT PLANS (BY A PROFESSIONAL ENGINEER REPORTING TO THE OWNER)				Х			Х	х	Х	ANNUALLY	\$500.00
INSPECT INFILTRATION AREA FOLLOWING RAIN EVENTS OF 1 INCH OR MORE	T							Х		AS NEEDED	\$500.00
MAKE ADJUSTMENTS OR REPLACEMENTS AS DETERMINED BY ANNUAL WET WEATHER INSPECTION				Х			Х	Х	Х	AS NEEDED	\$500.00
KEEP RECORDS OF ALL INSPECTIONS AND MAINTENANCE AG	CTIV	ITIE	ES A	ND F	REPO	ORT	TO			ANNUALLY	
KEEP RECORDS OF ALL COSTS FOR INSPECTIONS, MAINTEN PROPERTY OWNER	IANC	ΕA	ND	REP	AIRS	5. RI	EPO	RT T	0	ANNUALLY	
PROPERTY OWNER REVIEWS COST EFFECTIVENESS OF THE PROGRAM AND MAKES NECESSARY ADJUSTMENTS	E PRE	EVE	ENT/	ATIV	E MA	AINTI	ENAI	NCE		ANNUALLY	
OWNER TO HAVE A PROFESSIONAL ENGINEER CARRY OUT E IDENTIFICATION OF SEVERE PROBLEMS	EMEF	RGE	ENC	Y IN	SPE	СТІС	NS (UPO	N	AS NEEDED	\$500.00


LEGEND Benchmark / Control Point \land Catch Basin - Square OCO Deciduous Tre (E) Electric Manhole ЦЕМ Electric Meter 50 MATCH EX.

> PROPOSED LIMITS OF DISTURBANCE (± 2.33 ACRES) 29 ш 2.06 MATCH EX. 842.04 MATCH EX. 841.97 MATCH 842.40(TC MATC 29

SOIL EROSION CONTROL ESTIMATED COST

ITEM	QUANTITY	UNIT	UNIT
Siltfence	1,000	LF	\$2.5
Mud Mat	60	TN	\$15.0
Excavation & Fill	3,200	CY	\$4.0
Inlet/CB filter	15	EA	\$100.
Dust Control	1	LS	\$2,000
Permanent seed & mulch	10,000	SF	\$0.7
		то	TAL CO

- Land Planning - Landscape Architecture - Civil Engineering - Land Surveying - High Definition Scanning - Forensic Engineering - Fire Investigation -

SANITARY SEWER EXISTING AND PROPOSED FLOWS

Use the City of Ann Arbor "Table A" and "Michigan Criteria for Subsurface Sewage Disposal" Michigan Department of Public Health April 1994 & the "Ten States Standards"

		Quantity of Base	Unit	Flow Rate For Given Use	Avg.	Flow
		Unit		(gpd/unit)	(gpd)	(gpm)
Existing	g Site (Table A Designation)					
	1601 S. State St (Apartment ≤ 600 sq. ft.)	3	Apartment	175	525	0.36
	1605 S. State St (Apartment ≤ 600 sq. ft.)	3	Apartment	175	525	0.36
	1607 S. State St (Apartment ≤ 600 sq. ft.)	3	Apartment	175	525	0.36
	1609 S. State St (Apartment ≤ 600 sq. ft.)	3	Apartment	175	525	0.36
Uses:	1611 S. State St (Apartment ≤ 600 sq. ft.)	10	Apartment	175	1,750	1.22
0565.	714 Henry St (Apartment ≤ 600 sq. ft.)	6	Apartment	175	1,050	0.73
	1606 White St (Apartment ≤ 600 sq. ft.)	3	Apartment	175	525	0.36
	1608 White St (Apartment ≤ 600 sq. ft.)	3	Apartment	175	525	0.36
	1610 White St (Apartment ≤ 600 sq. ft.)	2	Apartment	175	350	0.24
	1612 White St (Apartment ≤ 600 sq. ft.)	2	Apartment	175	350	0.24
Total E	xisting Flow				6,650	4.62

Quantity

Unit

of Base

16

Unit

Apartment

16 Apartment

Sanitary Sewer Connection #1 (Building A)*

See architectural plans for building division

Total Proposed Flow (Area C)

Proposed Site (Table A Designation)

Apartment ≤ 600 sq. ft

Apartment > 600 sq. ft, < 1200 sq. ft.

Flow Rate

For Given Use

(gpd/unit)

175

Avg. Flow

(gpd) (gpm)

988 0.69

1.94

2.78

2,800

250 4,000

-		
10'	20'	

SCALE: 1" = 20'

ILITY LOCATIONS ARE DERIVED FROM ACTUAL MEASUREMENTS OF AVAILABLE RECORDS. THEY SHOULD NOT BE INTERPRETED TO BE EXACT LOCATIONS NOR SHOULD IT BE ASSUMED THAT THEY ARE THE ONLY UTILITIES IN THIS AREA

EXISTING UTILITIES AND SERVICE LINES IDENTIFIED AS "(PLAN)" WERE OBTAINED FROM AVAILABLE AS-BUILT RECORD DRAWINGS. THE CONTRACTOR SHALL VERIFY THE LOCATION, DEPTH AND STATUS OF ALL

JTILITIES AND SERVICE LINES PRIOR TO NEW CONNECTIONS

Uses:	Apartment ≥ 1200 sq. ft	12	Apartment	300	3,600	2.50
	Non-Medical Office space	6,760	sf	0.06	406	0.28
Total P	roposed Flow (Area A)				10,806	7.50
		[,		
	y Sewer Connection #2 (Building BCD)* itectural plans for building divisions	Quantity of Base	Unit	Flow Rate For Given Use	Avg.	Flow
ecc aron		Unit		(gpd/unit)	(gpd)	(gpm)
Propos	ed Site (Table A Designation)					
	Apartment ≤ 600 sq. ft	47	Apartment	175	8,225	5.71
Uses:	Apartment > 600 sq. ft, < 1200 sq. ft.	123	Apartment	250	30,750	21.35
	Apartment ≥ 1200 sq. ft	2	Apartment	300	600	0.42
Total P	roposed Flow (Area B)				39,575	27.48
		[1		
	y Sewer Connection #3 (Area Podium)* itectural plans for building divisions	Quantity of Base	Unit	Flow Rate For Given Use	Avg.	Flow
		Unit		(gpd/unit)	(gpd)	(gpm)
Propos	ed Site (Table A Designation)					
	Non-Medical Office Space	10,680	sf	0.06	641	0.45
Uses:	Daycare (nursery & elementary)	30	Student	10	300	0.21
	Retail Store (no process water discharge)	1,587	Gross Floor	0.03	48	0.03
,						1

	Sanitary Sewer Connection Area (A + BCD + Podium)	Avg	Avg. Flow		
		(gpd)	(gpm)		
Propos	sed Site (Table A Designation)				
Uses:	Total Proposed Flow (Building A)	10,806	7.50		
	Total Proposed Flow (Building BCD)	39,575	27.48		
	Total Proposed Flow (Building Podium)	988	0.69		
Total P	roposed Flow Area	51,369	35.67		

SANITARY SEWER BASIS OF DESIGN

Sanitary Flow Offset Mitigation Summary		
Proposed - Existing Flows		
Proposed Site Average Flow (51369) - Existing Site Average Flow (6650) =	44,719	gpd
44719 gpd x 4 (Peaking Factor) x 1.1 (System Recovery Factor) =	196,763	gpd
196763 gpd x 1 day / 24 hrs x 1 hr / 60 min) =	136	gpm
136 gpm Peak Flow to be mitigated		

UTILITY NOTES

GENERAL 1. CONSTRUCTION MUST CONFORM TO THE CITY OF ANN ARBOR STANDARD SPECIFICATIONS AND STANDARD DETAILS.

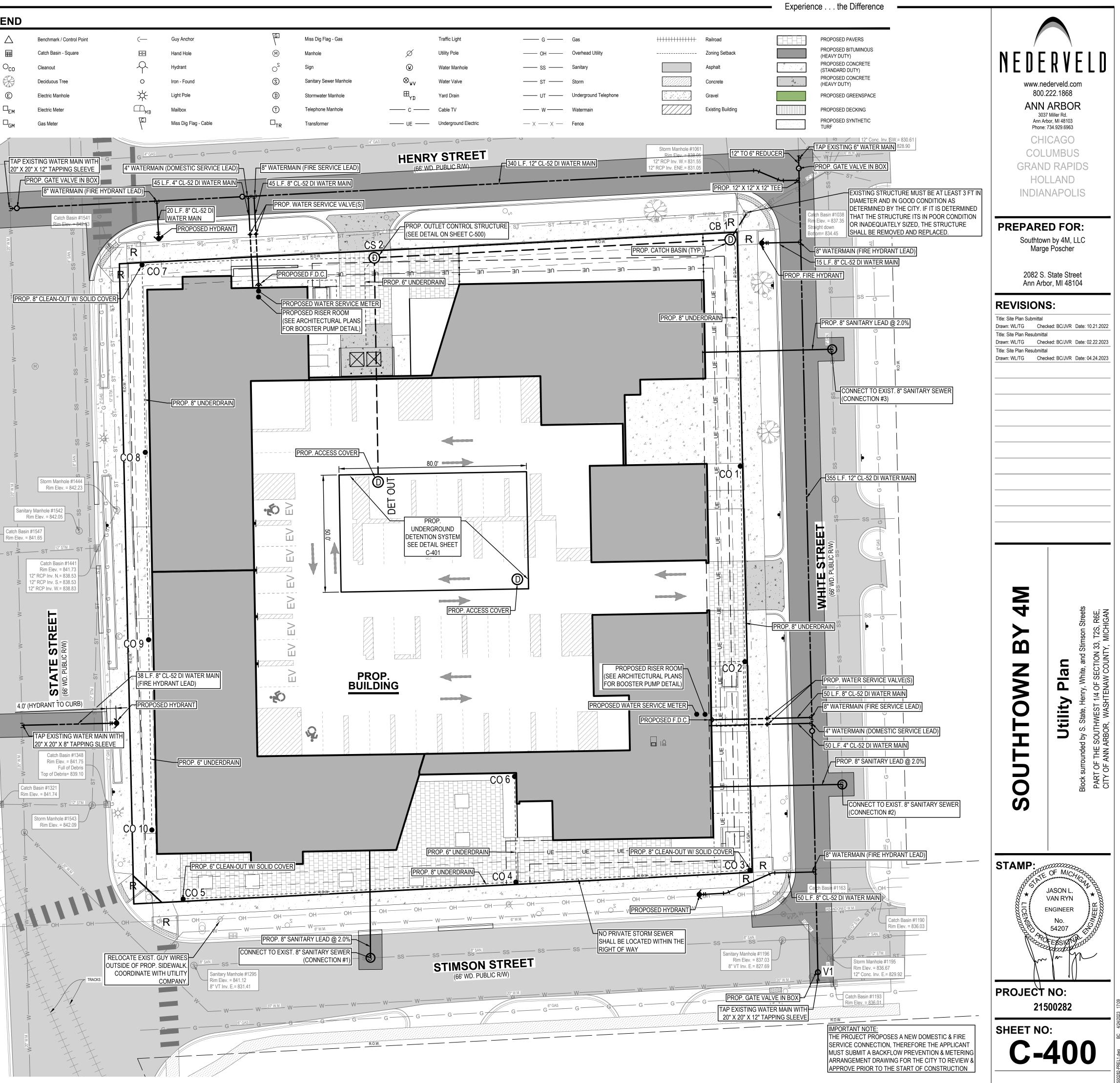
- 2. EXISTING UTILITIES SHALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW LINES.
- 3. CONTRACTOR IS RESPONSIBLE FOR REPAIRS OF DAMAGE TO ANY EXISTING UTILITY DURING CONSTRUCTION.
- 4. UTILITY TRENCHES WITHIN A 1 ON 1 INFLUENCE OF CITY OF ANN ARBOR R.O.W. SHALL BE BACKFILLED IN ACCORDANCE WITH THE CITY OF ANN ARBOR PUBLIC SERVICES DEPARTMENT STANDARD SPECIFICATIONS.
- 5. CONTRACTOR SHALL SUBMIT SHOP DRAWINGS OR DATA CUT SHEETS FOR PIPE MATERIALS, VALVES, CASTINGS, STEPS, AND MANHOLE STRUCTURES FOR REVIEW.
- 6. MAINTAIN A MINIMUM OF 10' HORIZONTAL AND 18" VERTICAL SEPARATION BETWEEN WATER AND SEWERS, AND A MINIMUM OF 5'
- HORIZONTAL AND 12" VERTICAL SEPARATION BETWEEN WATER AND OTHER UTILITIES. 6. SUMP PUMPS PROPOSED IN ELEVATOR PITS ONLY. SEE ARCHITECTURAL PLANS FOR DETAIL.

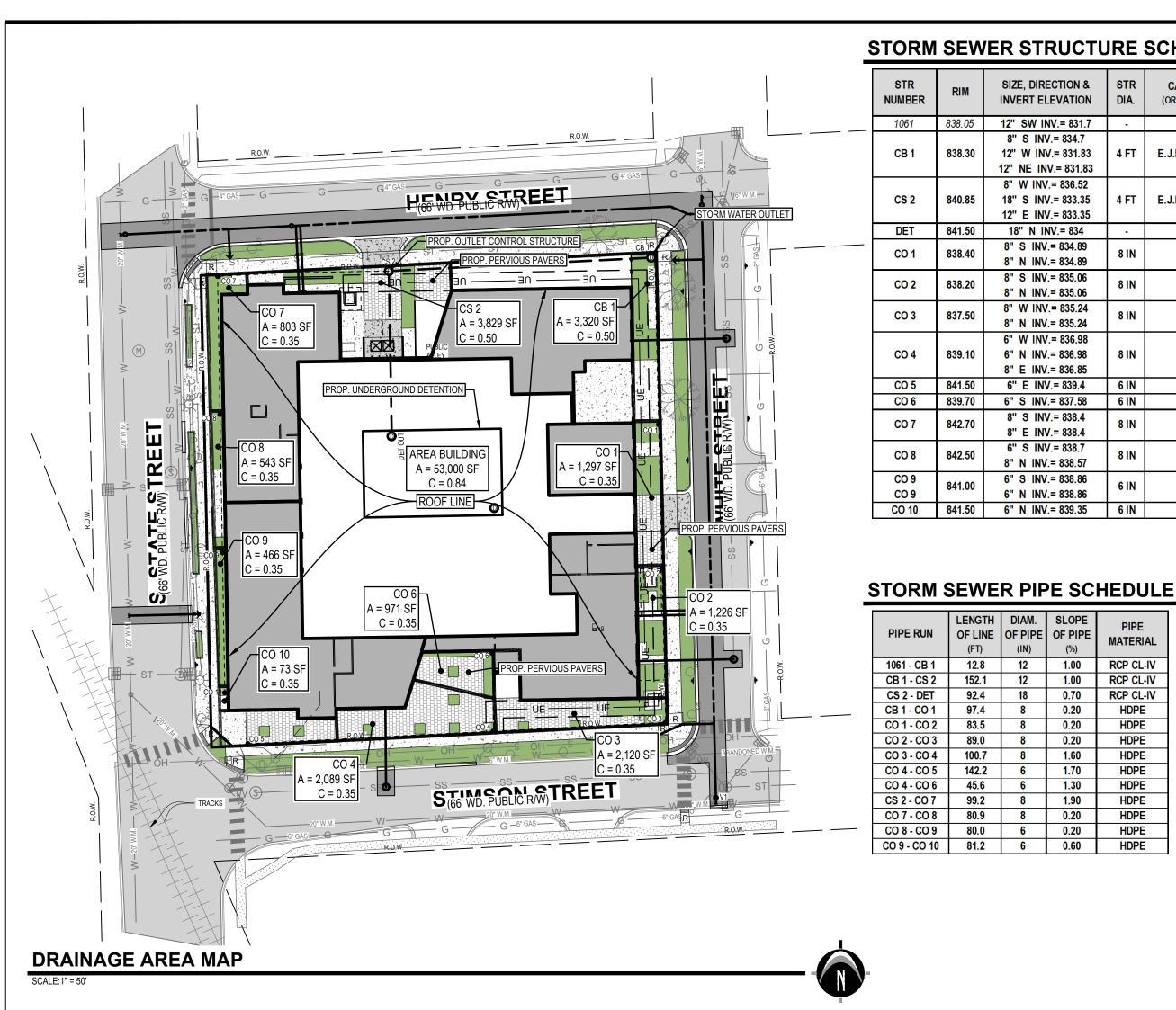
WATER SERVICE

- 1. HYDRANTS SHALL BE IN SERVICE DURING CONSTRUCTION.
- 2. THE PROPOSED BUILDING WILL BE SERVICED BY A NEW 4" DUCTILE IRON WATER LINE AND 8" DUCTILE IRON FIRE SUPPRESSION SERVICE LINE. 3. WATER SERVICE LINE IMPROVEMENTS SHALL BE DESIGNED AND CONSTRUCTED IN ACCORDANCE WITH THE CITY OF ANN ARBOR
- ENGINEERING DESIGN STANDARDS.
- 4. THE 4-INCH DOMESTIC WATER SERVICE SHALL BE CONSTRUCTED OF DUCTILE IRON AND INSTALLED BY THE CONTRACTOR UNDER CITY OF ANN ARBOR INSPECTION.
- 5. ALL WATER SERVICE PIPES MUST BE LAID WITH A MINIMUM OF FIVE AND ONE-HALF (5.5) FEET, OF FINAL EARTH GRADE COVER, TYPICAL. 6. WATER SERVICE METERING SHALL OCCUR AT THE POINT THE SERVICE LEAD ENTERS THE BUILDING.
- 7. A BOOSTER PUMP SHALL BE USED FOR BUILDINGS WATER SERVICE LEADS.

SANITARY SERVICE

- 1. SANITARY SEWER IMPROVEMENTS SHALL BE DESIGNED AND CONSTRUCTED IN ACCORDANCE WITH THE CITY OF ANN ARBOR ENGINEERING DESIGN STANDARDS.
- THE PROPOSED SANITARY SEWER LEAD SHALL BE PVC SDR-23.5 OR PVC SCH 40 UNLESS OTHERWISE NOTED.
- 3. NO CONNECTION TO RECEIVING STORM WATER, SURFACE WATER OR GROUNDWATER SHALL BE MADE TO SANITARY SEWER 4. NO FOOTING DRAINS SHALL BE CONNECTED TO THE BUILDING SANITARY SEWER.
- 5. THE INSTALLATION OF SANITARY LEAD AND TAP SHALL BE INSPECTED BY CITY STAFF.


STORM WATER MANAGEMENT


- 1. STORM SEWER IMPROVEMENTS SHALL BE DESIGNED AND CONSTRUCTED IN ACCORDANCE WITH THE CITY OF ANN ARBOR ENGINEERING
- DESIGN STANDARDS.
- 2. AN AGREEMENT FOR OPERATION AND MAINTENANCE OF ALL DETENTION SYSTEMS MUST BE COMPLETED BY THE OWNER AND SUBMITTED TO THE CITY PRIOR TO FINAL ACCEPTANCE OF THE PROJECT BY THE CITY.
- 3. STORM WATER RUNOFF GENERATED BY THE PROPOSED SITE IMPROVEMENTS WILL BE DETAINED ON-SITE, PER THE CITY OF ANN ARBOR REQUIREMENTS
- 4. 12" STORM SEWER PIPE SHALL BE REINFORCED CONCRETE MEETING THE REQUIREMENTS OF ASTM C-76-III, UNLESS OTHERWISE NOTED. JOINTS SHALL BE TONGUE AND GROOVE PREMIUM JOINTS WITH RUBBER GASKETS
- 5. 6" UNDERDRAIN SHALL BE PERFORATED PIPE WITH SOCK, MEETING THE REQUIREMENTS OF AASHTO M-252 AND THE GEOTEXTILE SHALL MEET AASHTO M-88 REQUIREMENTS. 6. ALL CATCH BASINS AND MANHOLES SHALL BE CONCRETE, CONFORMING TO ASTM C-478 WITH BUTYL RUBBER GASKETED JOINTS AND
- BOOT TYPE PIPE CONNECTORS, CONFORMING TO ASTM C-923
- 7. NO PART OF THE PRIVATE STORM SEWER STRUCTURES SHALL ENCROACH INTO THE PUBLIC RIGHT-OF-WAY. 8. VERTICAL CONSTRUCTION CANNOT BEGIN UNTIL UNTIL THE STORM WATER MANAGEMENT SYSTEM IS COMPLETED.
- 9. NO PRIVATE STORM SEWER SHALL BE LOCATED WITHIN THE RIGHT OF WAY.

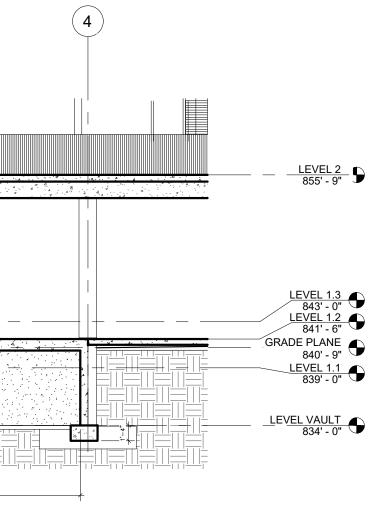
LEGEND

 Δ

⊔ЕМ

STORM SEWER PIPE SCHEDULE

PIPER	RUN				HYDRO	LOGY									HYDRAUL	lics						H.G. ELE	VATION	F.G. ELE	VATION	INVERT	TELEV.
FROM STR	TO STR	INC RE- MENT AREA (SF)	INCRE- MENT AREA ACRES (A)	RUNOFF COEFF. (C)	EQUIV. AREA 100% (CA)	TOTAL AREA 100% ACRES SUM (CA)	TIME (T) MIN.	10 YR INTEN- SITY (I) INCHES PER HOUR	10-YR FLOW (C.F.S.) Q=CIA	CAPACITY OF SEWER (C.F.S.)		LENGTH OF LINE (FEET)	PIPE MATERIAL	SLOPE OF PIPE (%)	ENERGY GRADE SLOPE	VELOCITY ACTUAL		HG FOR 3 FPS GIVEN "D" (%)	ACTUAL HG	VEL. FULL (FT./ SEC.)	TIME OF FLOW (MIN)	upper End	Lower End	Upper End	Lower END	UPPER END	Lower END
CO 9 CO 8	CO 9 CO 8 CO 7 CS 2	73 466 543 803	0.002 0.011 0.012 0.018	0.35 0.35 0.35 0.35 0.35	0.00 0.00 0.00 0.01	0.00 0.00 0.01 0.02	10.00 10.50 11.40 12.10	5.00 4.93 4.81 4.72	0.00 0.02 0.04 0.07	0.5 0.3 0.6 2.0	6 6 8 8	81.21 80.00 80.88 99.19	HDPE HDPE HDPE HDPE	0.60 0.20 0.20 1.90	0.008% 0.439% 0.658% 50.157%	0.16 1.16 1.57 8.37	0.000 0.001 0.001 0.003	0.79 0.79 0.54 0.54	0.008% 0.200% 0.200% 1.900%	2.6 1.5 1.8 5.6	0.5 0.9 0.7 0.3	839.35 838.94 838.65 838.45	838.94 838.78 838.49 836.56	841.50 841.00 842.50 842.70	841.00 842.50 842.70 840.85	839.35 838.86 838.57 838.40	838.86 838.70 838.40 836.52
CO 6 CO 5 CO 4 CO 3 CO 2	CO 4 CO 4 CO 3 CO 2 CO 1	971 1,217 2,089 2,120 1,226	0.022 0.028 0.048 0.049 0.028	0.35 0.35 0.35 0.35 0.35	0.01 0.01 0.02 0.02 0.01	0.01 0.01 0.03 0.05 0.06	10.00 10.00 10.00 10.30 11.10	5.00 5.00 5.00 4.96 4.85	0.04 0.05 0.17 0.25 0.30	0.8 0.9 1.8 0.6 0.6	6 6 8 8	45.64 142.18 100.70 89.00 83.46	HDPE HDPE HDPE HDPE HDPE	1.30 1.70 1.60 0.20 0.20	7.951% 12.490% 0.098% 0.158% 0.152%	3.82 4.78 1.20 1.58 1.62	0.003 0.005 0.014 0.032 0.043	0.79 0.79 0.54 0.54 0.54	1.300% 1.700% 0.098% 0.158% 0.152%	3.9 4.4 5.2 1.8 1.8	0.2 0.5 0.3 0.8 0.8	837.63 839.46 836.98 835.53 835.38	837.04 837.04 835.53 835.38 835.24	839.70 841.50 839.10 837.50 838.20	839.10 839.10 837.50 838.20 838.40	837.58 839.40 836.85 835.24 835.06	836.98 836.98 835.24 835.06 834.89
DET CS 2	CB1 CS2 CB1 1061	1,297 63,810 3,829 3,320	0.030 1.465 0.088 0.076	0.35 0.85 0.50 0.50	0.01 1.25 0.04 0.04	0.07 1.25 1.30 1.41	11.90 10.00 10.30 10.90	4.74 5.00 4.96 4.87	0.34 6.23 6.47 6.89	0.6 8.8 3.6 3.6	8 18 12 12	97.41 92.42 152.05 12.84	HDPE RCP CL-IV RCP CL-IV RCP CL-IV	0.20 0.70 1.00 1.00	0.199% 0.589% 3.297% 3.746%	1.85 5.03 8.23 8.78	0.057 0.351 3.294 3.743	0.54 0.25 0.44 0.44	0.199% 0.589% 1.000% 1.000%	1.8 5.0 4.5 4.5	0.9 0.3 0.6 0.0	835.24 834.92 834.35 832.83	835.05 834.35 832.83 832.70	838.40 841.50 840.85 838.30	838.30 840.85 838.30 838.05	834.89 834.00 833.35 831.83	834.70 833.35 831.83 831.70
-					SPENDED				PARKII 150					A 1 10 11									<u>LEVE</u> 855' · LEVEL 843' ·	<u>L 2</u> .9"			
	<u>GRADE</u> 840' - 9"	<u>= PL</u> AN <u>E</u>			TE SLAB				STORMWATER				ACCESS										LEVEL 841'- BRADE PLA 840'- LEVEL 839'-	$ \frac{1.2}{-6"} \bigcirc \\ NE \\ -9" \bigcirc \\ \frac{1.1}{-0"} \bigcirc $			


STORM SEWER STRUCTURE SCHEDULE

			CONFRONT
	SIZE, DIRECTION & INVERT ELEVATION	STR DIA.	CASTING/ GRATE (OR APPROVED EQUAL)
5	12" SW INV.= 831.7	Ξ.	
D	8" S INV.= 834.7 12" W INV.= 831.83 12" NE INV.= 831.83	4 FT	E.J.I.W.1040, TYPE M1
5	8" W INV.= 836.52 18" S INV.= 833.35 12" E INV.= 833.35	4 FT	E.J.I.W.1040, TYPE M1
0	18" N INV.= 834	Ξ.	-
0	8" S INV.= 834.89 8" N INV.= 834.89	8 IN	E.J.I.W.8396
0	8" S INV.= 835.06 8" N INV.= 835.06	8 IN	E.J.I.W.8396
0	8" W INV.= 835.24 8" N INV.= 835.24	8 IN	E.J.I.W.8396
0	6" W INV.= 836.98 6" N INV.= 836.98 8" E INV.= 836.85	8 IN	E.J.I.W.8396
0	6" E INV.= 839.4	6 IN	E.J.I.W.8396
0	6" S INV.= 837.58	6 IN	E.J.I.W.1578
0	8" S INV.= 838.4 8" E INV.= 838.4	8 IN	E.J.I.W.1578
0	6" S INV.= 838.7 8" N INV.= 838.57	8 IN	E.J.I.W.1578
0	6" S INV.= 838.86 6" N INV.= 838.86	6 IN	E.J.I.W.1578
0	6" N INV.= 839.35	6 IN	E.J.I.W.1578

STORM SEWER PIPE SCHEDULE

IGTH LINE ⁻ T)	DIAM. OF PIPE (IN)	SLOPE OF PIPE (%)	PIPE MATERIAL
2.8	12	1.00	RCP CL-IV
2.1	12	1.00	RCP CL-IV
2.4	18	0.70	RCP CL-IV
7.4	8	0.20	HDPE
3.5	8	0.20	HDPE
9.0	8	0.20	HDPE
0.7	8	1.60	HDPE
2.2	6	1.70	HDPE
5.6	6	1.30	HDPE
9.2	8	1.90	HDPE
0.9	8	0.20	HDPE
0.0	6	0.20	HDPE
1.2	6	0.60	HDPE

	Total Drainage Area of B Total Drainage Area Exc		editing" BMPs			=	53,006 53,006	sf sf
-	Rational Method Variabl	es						
	Cover Type	<u>co</u>		Slope	Soil Group	Area (sq. ft)	<u>C factor</u>	<u>(C) x (A</u>
	Roofs Pavement: Top of Podiur	n		-	с с	35,079 8,577	0.95 0.90	33,32 7,71
	Semi-pervious: Green Ro				c	9,350	0.35	3,27
	Water Surface			-	С	0	1.00	0
							Total = ∑(C)(Area) Area Total = ∑sf =	
						Weighted	$C = \sum (C)(Area)/\sum f =$	
ŀ	NRCS Variables (Pervio	us)						
W1	<u>Cover Type</u> Open Space: lawns & pla	nting beds		ic Condition cover < 50%)	<u>Soil Group</u> C	<u>Area (sq. ft)</u>	Curve Number 86	<u>(C) x (A</u> 0
	Open Space: lawns & pla	nting beds	Fair (grass co	over 50% to 75%)	С		79	0
	Open Space: lawns & pla	nting beds	Good (grass	s cover > 75%)	С	9,350	74	691,9 - 691,9
							Total = ∑(C)(Area) Area Total = ∑sf =	9,35
						Weighted	C=∑ (C)(Area)/∑sf=	
Ī	NRCS Variables (Imperv Cover Type	ious)	Hydrolog	ic Condition	Soil Group	Area (sq. ft)	Curve Number	(C) x (A
	Roof & Pavement Water Surface			-	C C	43,656	98 98	4,278,2
	vvater Sunace			-	C	U	90 Total = Σ(C)(Area)	_ 4,278,2
						Weighted	Area Total = ∑sf = C = Σ (C)(Area)/Σsf =	43,65
						Weighted		
ŀ	First Flush Runoff Calcu Volume of 1 inch rain ove		a					
W2	$V_{\text{ff}} = (1") \left(\frac{1'}{12"}\right) \left(\frac{43560 \text{ ft}^2}{1 \text{ ac}}\right)$	XAXC				=	3,693	ft ³
ŀ	Pre-Development Bankf A. 2-year / 24 hour storm		iculations (V _{bf-p}	ere)		=	2.35	in
	B. Curve Number (CN)	(Cover Desc	cription: Meadow,	Good, Hydrologic	Soil Group C)	=	74	
W3	C . S = $1000/CN - 10$					=	3.51	in
	D , Q = $(P-0.2S)^2/(P+0.8S)$ E , Total Site Area	5)				=	0.526 53,006	in ft ²
	F. V _{bf-pre} = Q(1/12)(site a	rea)				=	2,323	ft ³
	Pervious Cover Post-De	velopment B	ankfull Runoff (Calculations (V	sf-ner-noet)			
ł	A. 2-year / 24 hour storm				n-per-post/	=	2.35	in
	B. Curve Number (CN)					=	74	
W4	C . S = 1000/CN - 10					=	3.51	in
	D. Q = (P-0.2S) ² /(P+0.8S	5)				=	0.526	in
	E. Pervious Cover Area F. V _{bf-per-post} = Q(1/12)(sit	te area)				=	9,350 410	ft ² ft ³
	· · · bi-pa-post							n.
ŀ	Impervious Cover Post- A. 2-year / 24 hour storm	-	Bankfull Runo	ff Calculations	V _{bf-imp-post})		0.95	in
	B. Curve Number (CN)	evenii – F				-	2.35 98	in
W5	C . S = 1000/CN - 10					=	0.20	in
	D. Q = (P-0.2S) ² /(P+0.8S	5)				=	2.122	in
	E. Impervious Cover Area	a				=	43,656	ft²
	F. V _{bf-imp-post} = Q(1/12)(pr	oposed imper	vious area)			=	7,719	ft ³
	Pervious Cover Post-De	-	0-year Storm R	Runoff Calculati	ons (V _{100-per-post})		
	A. 100-year / 24 hour stor	mevent = P				=	5.11 74	in
W6	B. Curve Number (CN) C. S = 1000/CN - 10					=	74 3.51	in
~~~	D. Q _{100-per} = (P-0.2S) ² /(P	+0.85)				=	2.452	in
	E. Pervious Cover Area					=	9,350	ft ²
	F. V _{100-per-post} = Q(1/12)(p	proposed impe	rvious area)			=	1,911	ft ³
	Impervious Cover Post-I	Development	100-year Storm	n Runoff Calcul	ations (V _{100-imp-p}	ost)		
ľ	A. 100-year / 24 hour sto					=	5.11	in
	B. Curve Number (CN)					=	98	
W7	<b>C</b> . S = 1000/CN - 10					=	0.20	in
	D. Q _{100-post} = (P-0.2S) ² /(F E. Impervious Cover Area					=	4.873	in ft ²
	E. Impervious Cover Area F. V _{100-imp-post} = Q(1/12)(p		rvious area)			=	43,656 17,728	π ft ³
	Determine Time of Conc	entration for	Applicable Flov	v Types (Tabra)			•	
ľ			Change In			S ^{0.5}	V = K*S ^{0.5}	T _c =
ŀ	Flow Type Sheet Flow	<u>к</u> 0.48	Elevation 0	Length (L) 0	Slope % (S) 0.00	0.00	0.00	L/(V*36
W8	Sheet Flow	0.48	0	0	0.00	0.00	0.00	0.00
	Waterway	1.2	0	0	0.00	0.00	0.00	0.00
	Small Tributary	2.1	-	-	-	-	-	0.00
	Total Time of Concentrati	on (T _{c-hrs} )				=	0.25	hrs
ŀ	Runoff Summary and Or A. Runoff Summary from			t				
	A. Runoff Summary from Total Post-Developme					=	8,128	ft ³
w9	Total 100-year Volume					=	19,639	π ft ³
	B. Determine Onsite Infilt		ment					
								2
	Bankfull Volume Differ	ence (V _{bf-post} -	V _{bf-pre} )			=	5,806	ft ³



#### STORM WATER MANAGEMENT CALCULATIONS (BUILDING)

Design Basis: Use the Washtenaw County Water Resources Commissioner Rules and Guidelines, Revised - October 17, 2016

	$F. V_{det} = \left(\frac{\Delta}{PF} \times V_{100}\right)$						
	Determine Applicable BM Proposed BMP	IPs and Assoc	iated Volume Area (ft ² )	Credits Rur Storage V		Ave. Design Infiltration Rate	Infilti Vol During
W11	Porous Pavement w/Infiltr Infiltration Basin Subsuface Infiltration Bed Infiltration Trench Rain Garden Dry Well			Surface	Soil	(in/hr)	(1
	Bioswale Vegetated Filter Strip Green Roof (Level 2) Green Roof (Level 6) Green Roof (Level 7)		1,850 6,000 800	0 0	916 990 132	0	
	Green Roof (Level 8)			0 al Volume Reduc Runoff Volume In	filtration Require	ment (V _{inf} ) from	Workshe
	Natural Features Invento		tal Designed/I	Provided Infiltrat	ion Volume fro	om Building and	d Site BN
	Existing Natural Reaso Waterbodies	urces		Mapped (yes, no, n/a) no	Total A	rea (ac)	Prot
W12	Floodplains Riparian Areas Wetlands			no no no			
VV 12	Woodlands Natural Drainage Area			no no			
	Steep Slopes, 15%-25% Steep Slopes, over 25% Special Habitat Areas			no no no			
	TOTAL EXISTING (ac) Site Summary of Infiltrati		ı				
	A. Stormwater Managem Minimum Onsite Infiltra Total Designed/Provide	tion Requiremen		ding and Site BM	Ps	= =	5,8 21,
N13	% Minimum Required I Total Calculated Deten	tion Volume, V _d	et			= =	37 19,
	Net Required Detention B. Detention Volume Incre % Required Infiltration No	ease for site if re	equired infiltrati	on volume not acl	nieved	=	17, [.] 0
	Net % Penalty (20% × ⁽ Total Required Deter [(100% + Net % Penalt	tion Volume, i	ncluding penalt	y		=	0 17,
	Underground Detention					]	
	Vault Size = Detention Area (ft ² ) = Bottom of Storage =	<u>Width (ft)</u> 50 4,000 834.00	<u>Length (ft)</u> 80				
	Bollom of Storage -	Height of System	Elevation	Total Storage Volume			
		(feet) 6.00 5.80	840.00 839.80	(cubic feet) 24,000 23,200			
		5.60 5.40 5.20	839.60 839.40 839.20	22,400 21,600 20,800			
		5.00 4.80 4.60	839.00 838.80 838.60	20,000 19,200 18,400			
		4.40 4.20 4.00	838.40 838.20 838.00	17,600 16,800 16,000			
		3.80 3.60 3.40	837.80 837.60 837.40	15,200 14,400 13,600			
		3.20 3.00	837.20 837.00	12,800 12,000			
		2.80 2.60 2.40	836.80 836.60 836.40	11,200 10,400 9,600			
		2.20 2.00 1.80	836.20 836.00 835.80	8,800 8,000 7,200			
		1.60 1.40 1.20	835.60 835.40 835.20	6,400 5,600 4,800			
		1.00 0.80 0.60	835.00 834.80 834.60	4,000 3,200 2,400			
		0.40 0.20 0.00	834.40 834.20 834.00	1,600 800 0			
	Storage Elevations		833.35 836.00		834.90 838.30		
	Outlet Control Structure Orifice hole(s) sizing - "fi	rst flush" disc	harge			-	
	$Q_{ff} = V_{ff} / 24 \text{ hrs} / 3600 \text{ se}$ $h_{ave} = \frac{2}{3} \times (X_{ff} - X_o)$		narge	Q _{ff} = h _{ave} =	0.043 1.033		
	A = Q _{ff} / .62 x sqrt(2 x 32. Area of an orifice with dia Number of orifice holes		1 1/8	A = =	0.0085 0.0069 1		833.35
	Q _{ff} design Time to Discharge (great	er than 24 hours	)	=	0.035		
	Orifice hole(s) sizing - "E Bankfull should discharge						
	$h_{ave} = {}^{2}/_{3} \times (X_{bf} - X_{o})$ Release from first flush ho Q=a x .62 x sqrt(2 x 32.2 x)			h _{ave} = Q =	1.767 0.046		
	T _{bf} with first flush holes on The first flush volume will o	ly = discharge in	n ond 4. —	=	49	hrs < 44 hrs hrs > 24 hrs	
	$\frac{\text{The volume between the B}}{V_{rem} = V_{bf} - V_{ff} =}$ $T_{rem} = 42 \text{ hr} - T_{ff}$	zaniki uli elevatio	n anu me First	usri ⊏leVation	4,435 13	ft ³ hrs	
	$h_{ave}^{ff} = {}^{2}/_{3} \times (X_{bf} - X_{ff}) + (X_{bf} - X_{ff}) + (X_{bf} - X_{ff}) + (X_{bf} - X_{bf}) + (X_{bf} - X_{bf$			Q ₁ =	2.28 0.052	ft ft ³ /s	
	$V_1 = T_{rem} \times Q_1 =$ $V_2 = V_{rem} - V_1 =$ $Q_2 = V_0 / T$			$V_1 =$ $V_2 =$ $O_2 =$	2,357 2,078 0.046	ft ³	
	$Q_2 = V_2 / T_{rem}$ $h^{bf}_{ave} = {}^2/_3 (X_{bf} - X_{ff})$ $A_{bf} = Q_2 / .62 \times sqrt(2 \times 32)$	2 x h ^{bf} ∞∽)		$Q_2 = h^{bf}_{ave} = A_2 =$	0.046 0.73 0.0107	ft	
	Area of an orifice with dia Number of orifice holes Bankfull storage time che	meter (in) =	<b>1 3/8</b> and 48)	=	0.0096 1		834.9
	<u>Orifice hole(s) sizing - "1</u> <u>Peak Flow,</u> Q _a = 0.15 cfs/			Q _a =	0.183	ft ³ /s	
	$h_{tot} = (X_{100} - X_o)$ $h^{bf}_{tot} = (X_{100} - X_{ff})$			$h_{tot} = h_{tot}^{bf} =$	4.95 3.40		
	$Q_{ff} + Q_{bf} =$ a x 0.62 x sqrt(2 x 32.2 x h _{tot} )+	a x .62 x sqrt(2 x :	32.2 x h ^{bf} tot) =	$Q_{ff} + Q_{bf} =$	0.164		
	$Q_{100} = Q_a^{-}(Q_{ff}^{-}Q_{bf}) =$ $A_{100} = Q_{100} / (.62 \times \text{sqrt}(2))$ Area of an orifice with dia		5/8	Q ₁₀₀ = A ₁₀₀ =	0.018 0.0024 0.0021	ft ²	
	Number of orifice holes <u>Confirm allowable flow rat</u> $Q_{ff} + Q_{bf} + 0.62 \times \#_{orif} \times A$	e is not exceed	ed	=	1	holes at elev = a	
	$\frac{100\text{-year storm volume di}}{h^{all}_{ave}} = \frac{2}{3}(X_{100} - X_{bf}) + (X_{bf})$	scharge < 72 ho _{of} - X _o )	ours	-	4.18	ft	
	$Q_{all} = 0.62 \times \#^{ff}_{orif} \times A^{ff}_{orif}$ $\frac{Calculate Q_{bf+100}}{h^{bf} - 2^{2}} (X - X) + (X)$		_{ive} )	=	0.070		
,	$h_{ave}^{bf} = {}^{2}/_{3}(X_{100} - X_{bf}) + (X_{bf})$ $Q_{bf+100} = 0.62 \times \#_{orif}^{bf} \times A^{b}$	f _{orif} x sqrt(2 x g x		= = per Orifice (s) are	2.63 0.077 contributing		
	Average Discharge throug	gh 100-vear Orit	ICe(S) When on	of Office (3) Ale			
	$\frac{100}{h_{ave}^{100}} = \frac{2}{3} (X_{100} - X_{bf})$ $Q_{ave}^{100} = 0.62 \times \#_{orif}^{100} \times A$	1 ⁰⁰ orif x sqrt(2 x	g x h ¹⁰⁰ ave)	=	1.53 0.013	_	
	$h_{ave}^{100} = \frac{2}{3}(X_{100} - X_{bf})$	1 ¹⁰⁰ _{orif} x sqrt(2 x r storm volume	g x h ¹⁰⁰ ave) discharge in le:	= = ss than 72 hours		ft ³ /s	

Detention/Retention Requirement A. Peak of Unit Hydrograph =  $Q_p = 238.6T_c^{-0}$ 

C. Q₁₀₀ = Q_{100-per} + Q_{100-imp}

**E.** Δ = PF - 0.15*(area)

**F.**  $V_{det} = \left(\frac{\Delta}{PF} \times V_{100}\right)$ 

**D.** Peak Flow (PF) =  $\left(\frac{Q_p \times Q_{100} \times \text{Area} (ac)}{Q_1 \times Q_1}\right)$ 

B. Total Site Area (ac) excluding "Self-Crediting" BMPs

## STORM WATER MANAGEMENT PLAN NARRATIVE

THE EXISTING DEVELOPED SITE CONTAINS TEN (10) SEPARATE PARCELS THAT DRAIN FROM WEST TO EAST TOWARD THE EXISTING CITY OF ANN ARBOR STORM SEWER SYSTEM LOCATED WITHIN THE HENRY STREET RIGHT-OF-WAY AT THE NORTHEAST CORNER OF THE SITE. THIS CITY OWNED CATCH BASIN AND THE SUBSEQUENT DOWNSTREAM STORM SEWER SYSTEM DRAIN TO THE EAST AND CONNECT TO THE PITTSFIELD #3 DRAIN BEFORE HEADING SOUTHEAST TOWARD MALLETS CREEK. THIS EXISTING DRAINAGE PATTERN WILL BE MAINTAINED, AND THE EXISTING CATCH BASIN WILL BE USED AS AN OUTLET TO THE PROPOSED UNDERGROUND DETENTION SYSTEM FOR THE PROPOSED PROJECT.

THE PROPOSED PROJECT CONSISTS OF 2 SEPARATE DRAINAGE DESIGNS REQUIRING 2 SEPARATE STORM WATER MANAGEMENT CALCULATIONS, 1 FOR THE PROPOSED BUILDING ROOF RUNOFF THAT IS DIRECTED TO THE UNDERGROUND DETENTION SYSTEM AND THE OTHER FOR THE SITE RUNOFF. BOTH SETS OF CALCULATIONS ARE PROVIDED ABOVE.

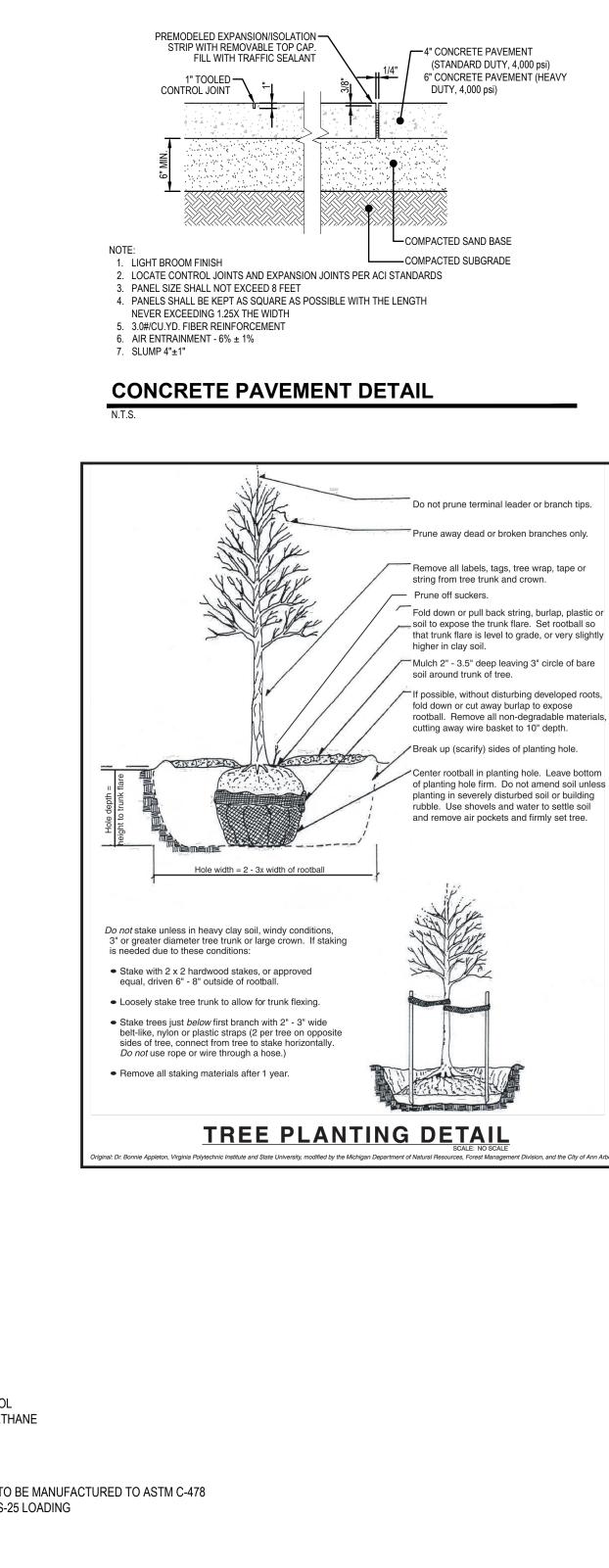
- CALCULATIONS ABOVE, NO STORM WATER DETENTION IS REQUIRED FOR THE SITE RUNOFF.

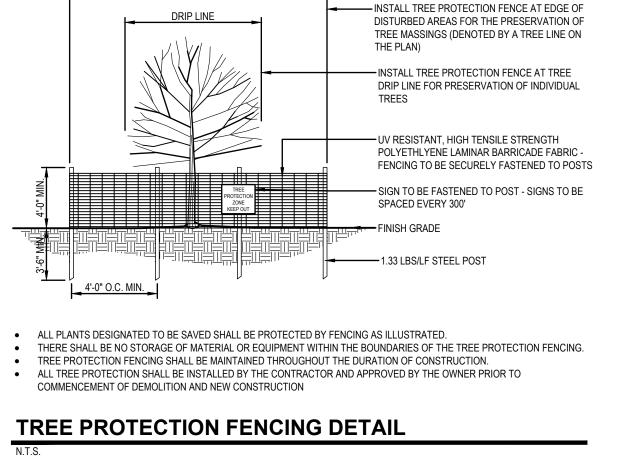


UTILITY LOCATIONS ARE DERIVED FROM ACTUAL MEASUREMENTS OR AVAILABLE RECORDS. THEY SHOULD NOT BE INTERPRETED TO BE EXACT LOCATIONS NOR SHOULD IT BE ASSUMED THAT THEY ARE THE ONLY UTILITIES IN THIS AREA.

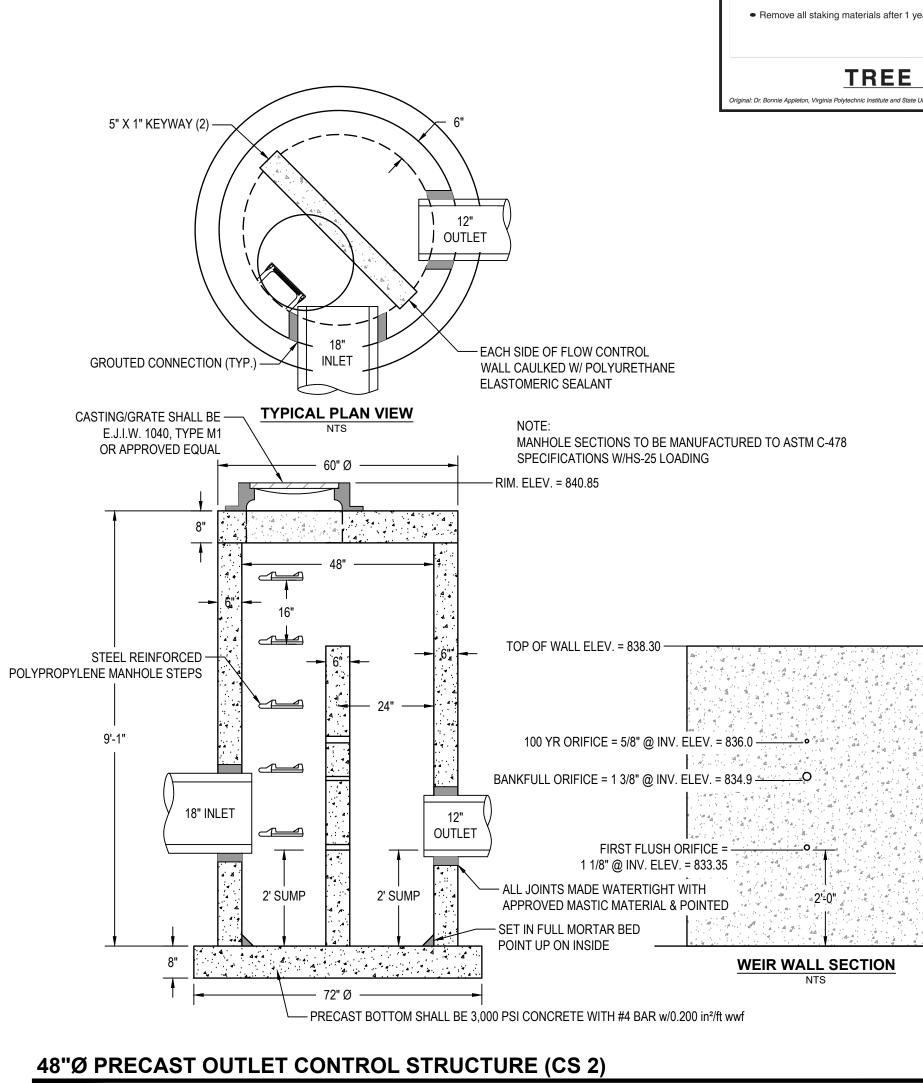
EXISTING UTILITIES AND SERVICE LINES IDENTIFIED AS "(PLAN)" WERE OBTAINED FROM AVAILABLE AS-BUILT RECORD DRAWINGS. THE CONTRACTOR SHALL VERIFY THE LOCATION, DEPTH AND STATUS OF ALL UTILITIES AND SERVICE LINES PRIOR TO NEW CONNECTIONS.

			<u> </u>
=	743.63	cfs/in-mi ²	
=	1.22	acres	
=	7.33	in	
=	10.36	ft ³ /s	
=	10.17	ft ³ /s	
=	19,293	ft ³	
Ave. Design	Infiltration	Total	
Infiltration	Volume	Volume	
Rate (in/hr)	During Storm (ft ³ )	Reduction (ft ³ )	
0 0	0	916 990	
0	0	132	
0 posed Structura	0	116 2,153	
ent (V _{inf} ) from V		5,806	
Building and		21,652	
ea (ac)	Protected/U Area		
	Altu	(00)	
=	5,806	ft ³	
=	21,652	ft ³	
=	372.9 19,293	% ft ³	
=	17,139	ft ³	
=	0.0	%	
=	0.0	%	
=	17,139	ft ³	
		1	
. ³ /s			
2			
2			


	Determining Post-Development Cover	Types, Areas, Curve N	vumbers, a	nd Runoff Co	pefficients		
	Total Drainage Area Total Drainage Area Excluding "Self-Crec	liting" BMPs			=	<b>17,953</b> 17,953	sf sf
	Rational Method Variables Cover Type	Slo		Soil Group	Area (sq. ft)	C factor	(C) x (Area)
	Roofs Pavement	<u></u>	- -	C C	0 5,245	0.95	0 4.721
	PaveDrain Pourous Paver Semi-pervious: lawns & planting beds	-	-	C C	6,324 6,384	0.35 0.35	2,213 2,234
	Water Surface	-	-	С	0	1.00 Total = Σ(C)(Area) =	
					Weighted (	Area Total = ∑sf = C=Σ (C)(Area)/Σsf =	17,953
W1	NRCS Variables (Pervious)						
VVI	<u>Cover Type</u> Open Space: lawns & planting beds	<u>Hydrologic Conditi</u> Poor (grass cover < 5		<u>Soil Group</u> C	<u>Area (sq. ft)</u>	Curve Number 86	<u>(C) x (Area)</u> 0
	Open Space: lawns & planting beds Open Space: lawns & planting beds	Fair (grass cover 50% to Good (grass cover > 3		с с	12,708	79 74	0 940,392
						Total = ∑(C)(Area) = Area Total = ∑sf =	12,708
					Weighted (	C=Σ (C)(Area)/Σsf=	74
	NRCS Variables (Impervious) Cover Type	Hydrologic Conditi	tion s	Soil Group	Area (sq. ft)	Curve Number	(C) x (Area)
	Roof & Pavement Water Surface	-		с с	5,245	98 98	514,010 0
						Total = ∑(C)(Area) = Area Total = ∑sf =	514,010 5,245 98
					Weighted 0	C=Σ (C)(Area)/Σsf=	90
	First Flush Runoff Calculations (V _{ff} ) Volume of 1 inch rain over total site area						
W2	$V_{\text{ff}}$ =(1") $\left(\frac{1'}{12"}\right)\left(\frac{43560 \text{ ft}^2}{1 \text{ ac}}\right) \times A \times C$				=	764	ft ³
	Pre-Development Bankfull Runoff Calc A. 2-year / 24 hour storm event = P	Jiations (Vbf-pre)			=	2.35	in
wз	B. Curve Number (CN) (Cover Description C. S = 1000/CN - 10	ption: Meadow, Good, Hy	/drologic Soil	Group C)	=	74 3.51	in
	D. Q = (P-0.2S) ² /(P+0.8S) E. Total Site Area				=	0.526	in
	E. Total Site Area F. V _{bf-pre} = Q(1/12)(site area)				=	17,953 787	ft ² ft ³
	Pervious Cover Post-Development Ban	kfull Runoff Calculati	ions (V _{bf-per}	-post)			
	A. 2-year / 24 hour storm event = P B. Curve Number (CN)				= =	2.35 74	in
W4	<b>C</b> . S = 1000/CN - 10				=	3.51	in
	D. Q = (P-0.2S) ² /(P+0.8S) E. Pervious Cover Area				=	0.526 12,708	in ft ²
	F. V _{bf-per-post} = Q(1/12)(site area)				=	557	ft ³
	Impervious Cover Post-Development B A. 2-year / 24 hour storm event = P	ankfull Runoff Calcula	ations (V _{bf-}	mp-post)	=	2.35	in
W5	B. Curve Number (CN) C. S = 1000/CN - 10				=	98	
σvv	D. Q = (P-0.2S) ² /(P+0.8S)				=	0.20 2.122	in in
	E. Impervious Cover Area F. V _{bf-imp-post} = Q(1/12)(proposed impervio	ous area)		_	=	5,245 <b>927</b>	ft ² ft ³
	Pervious Cover Post-Development 100		alculations	(V _{100-per-poer} )			
	A. 100-year / 24 hour storm event = P			post/	=	5.11	in
W6	B. Curve Number (CN) C. S = 1000/CN - 10				=	74 3.51	in
	D. $Q_{100\text{-per}} = (P-0.2S)^2/(P+0.8S)$ E. Pervious Cover Area				=	2.452 12.708	in ft ²
	<ul> <li>F. V_{100-per-post} = Q(1/12)(proposed imperv</li> </ul>	ious area)			=	12,708 <b>2,597</b>	ft ³
	Impervious Cover Post-Development 1	00-year Storm Runoff	Calculatio	15 (V _{100-imp-pc}			
	A. 100-year / 24 hour storm event = P B. Curve Number (CN)				= =	5.11 98	in
W7	<b>C</b> . S = $1000/CN - 10$				=	0.20	in
	D. Q _{100-post} = (P-0.2S) ² /(P+0.8S) E. Impervious Cover Area				=	4.873 5,245	in ft ²
	F. V _{100-imp-post} = Q(1/12)(proposed imperv	ious area)			=	2,130	ft ³
	Determine Time of Concentration for A	oplicable Flow Types ( Change In	(T _{c-hrs} )				T _c =
	Flow Type     K       Sheet Flow     0.48	Elevation Lengt		lope % (S) 0.00	<b>s</b> ^{0.5} 0.00	V = K*S ^{0.5} 0.00	L/(V*3600) 0.00
W8	Sheet Flow 0.48	0 0		0.00	0.00	0.00	0.00
	Waterway1.2Small Tributary2.1	0 0		0.00 -	0.00	0.00	0.00 0.00
	Total Time of Concentration $(T_{c-hrs})$				=	0.25	hrs
	Runoff Summary and Onsite Infiltration A. Runoff Summary from Previous Workst						
W9	Total Post-Development Bankfull Volun Total 100-year Volume (V ₁₀₀ )	ne (V _{bf-post} )			=	1,484 4,727	ft ³
vv9	B. Determine Onsite Infiltration Requirem				-	4,727	-
	Bankfull Volume Difference (V _{bf-post} - V	ent					ft ³
	Onsite Infiltration Requirement = Greater of Ba	_{of-pre} )	1 First Flush V	olume = (V _{inf} )	= =	698 764	
	Detention/Retention Requirement	_{of-pre} ) nkfull Volume Difference and	J First Flush V	olume = (V _{inr} )	=		ft ³ ft ³
		of-pre) nkfull Volume Difference and	d First Flush V	olume = (V _{inf} )	= = = =		ft ³ ft ³
	Detention/Retention Requirement           A. Peak of Unit Hydrograph = $Q_p$ = 238.61           B. Total Site Area (ac) excluding "Self-Credit C, $Q_{100} = Q_{100-per} + Q_{100-imp}$	or-pre) http://www.bifference.and 0.82 editing" BMPs	d First Flush V	olume = (V _{inf} )	= = = = =	764	ft ³ ft ³ cfs/in-mi ²
W10	Detention/Retention Requirement A. Peak of Unit Hydrograph = $Q_p$ = 238.61 B. Total Site Area (ac) excluding "Self-Crr C. $Q_{100} = Q_{100\text{-per}} + Q_{100\text{-lmp}}$ D. Peak Flow (PF) = $\left(\frac{Q_p \times Q_{100} \times \text{Area}}{640}\right)$	or-pre) http://www.bifference.and 0.82 editing" BMPs	d First Flush V	olume = (V _{int} )	= 	764 743.63 0.41 7.33 3.51	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s
W10	Detention/Retention Requirement A. Peak of Unit Hydrograph = Q _p = 238.6° B. Total Site Area (ac) excluding "Self-Crt C. Q ₁₀₀ = Q _{100-per} + Q _{100-imp} D. Peak Flow (PF) = $\left(\frac{Q_p \times Q_{100} \times Area (ac)}{640}\right)$ E. Δ = PF - 0.15°(area)	or-pre) http://www.bifference.and 0.82 editing" BMPs	d First Flush V	olume = (V _{int} )	= = = = = = = = =	764 743.63 0.41 7.33	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s
W10	$\label{eq:constraint} \begin{array}{l} \hline \textbf{Detention/Retention Requirement} \\ \textbf{A}. Peak of Unit Hydrograph = Q_p = 238.61 \\ \textbf{B}. Total Site Area (ac) excluding "Self-Crit C. Q_{100} = Q_{100,per} + Q_{100,imp} \\ \textbf{D}. Peak Flow (PF) = \left( \frac{\Omega_P \times Q_{100} \times Area (ac)}{640} \right) \\ \textbf{E}. \Delta = PF - 0.15^* (area) \\ \textbf{F}. V_{det} = \left( \frac{\Delta}{PF} \times V_{100} \right) \end{array}$	or-pre) hthfull Volume Difference and rc ^{-0.82} aditing" BMPs		olume = (V _{int} )		764 743.63 0.41 7.33 3.51 3.45	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s
W10	$\label{eq:constraint} \begin{array}{l} \hline \textbf{Detention/Retention Requirement} \\ \textbf{A}. Peak of Unit Hydrograph = Q_p = 238.6^\circ\\ \textbf{B}. Total Site Area (ac) excluding "Self-CrdC. Q_{100} = Q_{100-per} + Q_{100-imp} \\ \textbf{D}. Peak Flow (PF) = \left( \frac{\Omega_P \times Q_{100} \times Area (ac)}{640} \right) \\ \textbf{E}. \Delta = PF - 0.15^\circ (area) \\ \textbf{F}. V_{det} = \left( \frac{\Delta}{PF} \times V_{100} \right) \\ \hline \end{array}$	or-pre) htfull Volume Difference and rc ^{-0.82} editing" BMPs 2)	Runoff		= = = = = = = Ave. Design	764 743.63 0.41 7.33 3.51 3.45	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s
W10	$\label{eq:constraint} \begin{array}{l} \hline \textbf{Detention/Retention Requirement} \\ \textbf{A}. Peak of Unit Hydrograph = Q_p = 238.61 \\ \textbf{B}. Total Site Area (ac) excluding "Self-Crit C. Q_{100} = Q_{100,per} + Q_{100,imp} \\ \textbf{D}. Peak Flow (PF) = \left( \frac{\Omega_P \times Q_{100} \times Area (ac)}{640} \right) \\ \textbf{E}. \Delta = PF - 0.15^* (area) \\ \textbf{F}. V_{det} = \left( \frac{\Delta}{PF} \times V_{100} \right) \end{array}$	or-pre) hkfull Volume Difference and rc ^{-0.82} editing" BMPs 2)	Runoff orage Volue		= = = = Ave. Design	764 743.63 0.41 7.33 3.51 3.45 4,544 Infiltration Volume During Storm	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ Volume Reduction
W10	$\label{eq:constraint} \begin{array}{l} \hline \textbf{Detention/Retention Requirement} \\ \textbf{A}. Peak of Unit Hydrograph = Q_p = 238.6^\circ\\ \textbf{B}. Total Site Area (ac) excluding "Self-CrdC. Q_{100} = Q_{100-per} + Q_{100-imp} \\ \textbf{D}. Peak Flow (PF) = \left( \frac{\Omega_P \times Q_{100} \times Area (ac)}{640} \right) \\ \textbf{E}. \Delta = PF - 0.15^\circ (area) \\ \textbf{F}. V_{det} = \left( \frac{\Delta}{PF} \times V_{100} \right) \\ \hline \end{array}$	or-pre) hthfull Volume Difference and rc ^{-0.82} editing" BMPs )) ) iated Volume Credits Area (ft ² ) Sto	Runoff orage Volui face	me (ft ³ )	= = = = Ave. Design Infiltration Rate	764 743.63 0.41 7.33 3.51 3.45 4,644 Infiltration Volume	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³
W10	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p = 238.6^\circ$ B. Total Site Area (ac) excluding "Self-Crr         C. $Q_{100} = Q_{100\text{-per}} + Q_{100\text{-mp}}$ D. Peak Flow (PF) = $\left(\frac{Q_p \times Q_{100} \times \text{Area}}{640} \right)$ E. $\Delta = PF - 0.15^\circ$ (area)         F. $V_{det} = \left(\frac{\Lambda}{PF} \times V_{100}\right)$ Determine Applicable BMPs and Assoc         Proposed BMP         Porous Pavement w/Infiltration Bed	or-pre) hkfull Volume Difference and rc ^{-0.82} editing" BMPs ) ) iated Volume Credits Area (ft ² ) Sto Surf.	Runoff orage Volui face	me (ft ³ ) Soil	= = = Infiltration Rate (in/hr)	764 743.63 0.41 7.33 3.51 3.45 4.644 Uning Storm (R ³ )	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ /s ft ³ Volume Reduction (ft ³ )
	$\label{eq:product} \hline \begin{array}{c} \hline \textbf{Detention/Retention Requirement} \\ \hline \textbf{A}. Peak of Unit Hydrograph = Q_p = 238.61 \\ \hline \textbf{B}. Total Site Area (ac) excluding "Self-Crite C. Q_{100} = Q_{100,per} + Q_{100,imp} \\ \hline \textbf{D}. Peak Flow (PF) = \left( \frac{\Omega_p \times Q_{100} \times Area (ac)}{640} \right) \\ \hline \textbf{E}. \Delta = PF - 0.15^{*} (area) \\ \hline \textbf{F}. V_{det} = \left( \frac{\Lambda}{PF} \times V_{100} \right) \\ \hline \hline \begin{array}{c} \hline \textbf{Determine Applicable BMPs and Assoce} \\ \hline \textbf{Proposed BMP} \\ \hline \end{array} \\ \hline \hline Porous Pavement w/Infiltration Bed \\ Infiltration Trench \\ Rain Garden \\ Dry Well \\ \hline \end{array}$	or-pre) hkfull Volume Difference and rc ^{-0.82} editing" BMPs ) ) iated Volume Credits Area (ft ² ) Sto Surf.	Runoff orage Volui face	me (ft ³ ) Soil	= = = Infiltration Rate (in/hr)	764 743.63 0.41 7.33 3.51 3.45 4.644 Uning Storm (R ³ )	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ /s ft ³ Volume Reduction (ft ³ )
	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p = 238.6^\circ$ B. Total Site Area (ac) excluding "Self-Crd         C. $Q_{100} = Q_{100\text{-per}} + Q_{100\text{-lmp}}$ D. Peak Flow (PF) = $\left(\frac{Q_p \times Q_{100} \times \text{Area}}{640} + C_{100} \times \text{Area}\right)$ F. $\Delta = PF - 0.15^\circ$ (area)         F. $V_{det} = \left(\frac{\Lambda}{PF} \times V_{100}\right)$ Determine Applicable BMPs and Assoc         Proposed BMP         Porous Pavement w/Infiltration Bed         Infiltration Basin         Subsuface Infiltration Bed         Infiltration Trench         Rain Garden         Dry Well         Bioswale         Vegetated Filter Strip	or-pre) hkfull Volume Difference and rc ^{-0.82} editing" BMPs ) ) iated Volume Credits Area (ft ² ) Sto Surf.	Runoff orage Volui face	me (ft ³ ) Soil	= = = Infiltration Rate (in/hr)	764 743.63 0.41 7.33 3.51 3.45 4.644 Uning Storm (R ³ )	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ /s ft ³ Volume Reduction (ft ³ )
	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p = 238.6^\circ$ B. Total Site Area (ac) excluding "Self-Crd         C. $Q_{100} = Q_{100\text{-per}} + Q_{100\text{-imp}}$ D. Peak Flow (PF) = $\left(\frac{\Omega_p \times \Omega_{100} \times \text{Area}}{640}\right)^{-1}$ E. $\Delta = PF - 0.15^\circ$ (area)         F. $V_{det} = \left(\frac{\Lambda}{PF} \times V_{100}\right)^\circ$ Determine Applicable BMPs and Assoc         Proposed BMP         Porous Pavement w/Infiltration Bed         Infiltration Basin         Subsuface Infiltration Bed         Infiltration Trench         Rain Garden         Dry Well         Bioswale	or-pre) hthull Volume Difference and rc ^{-0.82} editing" BMPs )) ) iated Volume Credits Area (ft ² ) Sto Surfi 6,324 52 Total Volume	Runoff orage Volui face 27 ne Reduction	me (ft ³ ) Soil 3,162	= = = Ave. Design Infiltration Rate (in/hr) 5	764 743.63 0.41 7.33 3.51 3.45 4,544 Infiltration Volume During Storm (ft ³ ) 15,810	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ Volume Reduction (ft ³ ) 19,499
	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p = 238.6^\circ$ B. Total Site Area (ac) excluding "Self-Crd         C. $Q_{100} = Q_{100\text{-per}} + Q_{100\text{-imp}}$ D. Peak Flow (PF) = $\left(\frac{\Omega_p \times \Omega_{100} \times \text{Area}}{640} \times 10^\circ \text{C}^\circ\right)$ E. $\Delta = PF - 0.15^\circ$ (area)         F. $V_{det} = \left(\frac{\Delta}{PF} \times V_{100}\right)$ Determine Applicable BMPs and Assoc         Proposed BMP         Porous Pavement w/Infiltration Bed         Infiltration Trench         Rain Garden         Dry Well         Bioswale         Vegetated Filter Strip         Green Roof	or-pre) hthull Volume Difference and rc ^{-0.82} editing" BMPs )) ) iated Volume Credits Area (ft ² ) Sto Surfi 6,324 52 Total Volume	Runoff orage Volur face 27 27 ne Reduction	me (ft ³ ) Soil 3,162	= = = Ave. Design Infiltration Rate (in/hr) 5	764 743.63 0.41 7.33 3.51 3.45 4,644 Volume During Storm (ft ³ ) 15,810	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ Volume Reduction (ft ³ ) 19,499
	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p = 238.6^\circ$ B. Total Site Area (ac) excluding "Self-Crd         C. $Q_{100} = Q_{100\text{-per}} + Q_{100\text{-imp}}$ D. Peak Flow (PF) = $\left(\frac{\Omega_p \times \Omega_{100} \times \text{Area}}{640} \times 10^\circ \text{C}^\circ\right)$ E. $\Delta = PF - 0.15^\circ$ (area)         F. $V_{det} = \left(\frac{\Delta}{PF} \times V_{100}\right)$ Determine Applicable BMPs and Assoc         Proposed BMP         Porous Pavement w/Infiltration Bed         Infiltration Trench         Rain Garden         Dry Well         Bioswale         Vegetated Filter Strip         Green Roof	or-pre) ht/ull Volume Difference and r_c^-0.82 editing" BMPs ) ) ) iated Volume Credits Area (ft ² ) Sto Surf 6,324 52 Total Volume Runoff Vo al Designed/Provided	Runoff orage Volut face 27 Pe Reduction folume Infiltration	me (ft ³ ) Soil 3,162	= = = Ave. Design Infiltration Rate (in/hr) 5	764 743.63 0.41 7.33 3.51 3.45 4,544 Infiltration Volume During Storm (ft ³ ) 15,810	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ Volume Reduction (ft ³ ) 19,499 764 21,652
	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p = 238.6^\circ$ B. Total Site Area (ac) excluding "Self-Crd.         C. $Q_{100} = Q_{100-per} + Q_{100-imp}$ D. Peak Flow (PF) = $\left(\frac{Q_p \times Q_{100} \times Area}{640} + Crd. \right)$ E. $\Delta = PF - 0.15^\circ$ (area)         F. $V_{det} = \left(\frac{\Lambda}{PF} \times V_{100}\right)$ Determine Applicable BMPs and Assoc         Proposed BMP         Porous Pavement w/Infiltration Bed         Infiltration Trench         Rain Garden         Dry Well         Bioswale         Vegetated Filter Strip         Green Roof         Tot	or-pre) hkfull Volume Difference and rc ^{-0.82} editing" BMPs )) iated Volume Credits Area (ft ² ) Sto Surfi 6,324 52 Total Volume Runoff Vo ial Designed/Provided (yes, m	Runoff orage Volui face 27 27 be Reduction olume Infiltration	me (ft ³ ) Soil 3,162	= = = Ave. Design Infiltration Rate (in/hr) 5	764 743.63 0.41 7.33 3.51 3.45 4,644 Volume During Storm (ft ³ ) 15,810	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ /s ft ³ Volume Reduction (ft ³ ) 19,499 19,499 764 21,662
	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p = 238.6^\circ$ B. Total Site Area (ac) excluding "Self-Crt         C. $Q_{100} = Q_{100-per} + Q_{100-imp}$ D. Peak Flow (PF) = $\left(\frac{\Omega_p \times \Omega_{100} \times Area (ac)}{640}\right)^\circ$ E. $\Delta = PF - 0.15^\circ$ (area)         F. $V_{det} = \left(\frac{\Delta}{PF} \times V_{100}\right)^\circ$ Determine Applicable BMPs and Assoc         Proposed BMP         Porous Pavement w/Infiltration Bed         Infiltration Basin         Subsuface Infiltration Bed         Infiltration Trench         Rain Garden         Dry Well         Bioswale         Vegetated Filter Strip         Green Roof         Tot         Natural Features Inventory         Existing Natural Reasources         Waterbodies         Floodplains	Area (ft ² ) Total Volume Total Volume Total Volume Total Volume Total Volume Total Volume Total Volume Total Volume Total Volume Runoff Vc al Designed/Provided	Runoff orage Volut face 27 27 27 27 20 27 20 20 20 20 20 20 20 20 20 20 20 20 20	me (ft ³ ) Soil 3,162 ACredit by Pro- tion Requirem Volume fror	= = = Ave. Design Infiltration Rate (in/hr) 5	764 743.63 0.41 7.33 3.51 3.45 4,644 Uning Storm (ft ³ ) 15,610 al BMPs (ft ³ ) = Worksheet 9 = I Site BMPs =	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ /s ft ³ Volume Reduction (ft ³ ) 19,499 19,499 764 21,662
W11	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p = 238.6^\circ$ B. Total Site Area (ac) excluding "Self-Crr         C. $Q_{100} = Q_{100-per} + Q_{100-hmp}$ D. Peak Flow (PF) = $\left(\frac{Q_p \times Q_{100} \times Area}{640} + Cre)\right)$ E. $\Delta = PF - 0.15^\circ$ (area)         F. $V_{det} = \left(\frac{\Lambda}{PF} \times V_{100}\right)$ Determine Applicable BMPs and Assoc         Proposed BMP         Porous Pavement w/Infiltration Bed         Infiltration Trench         Rain Garden         Dry Well         Bioswale         Vegetated Filter Strip         Green Roof         Tot         Natural Reasources         Waterbodies         Floodplains         Riparian Areas         Wetlands	Area (ft ² )  Total Volume  Total Volume  Total Volume  Total Volume  Runoff Vo  al Designed/Provided  (yes, nr  n  n  n  n  n  n  n  n  n  n  n  n	Runoff orage Volui face 27 27 27 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	me (ft ³ ) Soil 3,162 ACredit by Pro- tion Requirem Volume fror	= = = Ave. Design Infiltration Rate (in/hr) 5	764 743.63 0.41 7.33 3.51 3.45 4,644 Uning Storm (ft ³ ) 15,610 al BMPs (ft ³ ) = Worksheet 9 = I Site BMPs =	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ /s ft ³ Volume Reduction (ft ³ ) 19,499 19,499 764 21,652
	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p = 238.6^\circ$ B. Total Site Area (ac) excluding "Self-Crd.         C. $Q_{100} = Q_{100-per} + Q_{100-imp}$ D. Peak Flow (PF) = $\left(\frac{\Omega_p \times \Omega_{100} \times Area}{640}\right)^\circ$ E. $\Delta = PF - 0.15^\circ$ (area)         F. $V_{det} = \left(\frac{\Delta}{PF} \times V_{100}\right)^\circ$ Determine Applicable BMPs and Assoc         Proposed BMP         Porous Pavement w/Infiltration Bed         Infiltration Basin         Subsuface Infiltration Bed         Infiltration Trench         Rain Garden         Dry Well         Bioswale         Vegetated Filter Strip         Green Roof         Total Natural Reasources         Waterbodies         Floodplains         Riparian Areas         Wetlands         Natural Drainage Area	Area (ft ² ) Total Volume Credits Area (ft ² ) Total Volume Credits Area (ft ² ) Total Volume Total Volume Runoff Vo al Designed/Provided Mapi (yes, nr nc nc nc nc nc nc nc nc nc nc	Runoff orage Volut face 27 be Reduction folume Infiltration boped to, n/a) bo	me (ft ³ ) Soil 3,162 ACredit by Pro- tion Requirem Volume fror	= = = Ave. Design Infiltration Rate (in/hr) 5	764 743.63 0.41 7.33 3.51 3.45 4,644 Uning Storm (ft ³ ) 15,610 al BMPs (ft ³ ) = Worksheet 9 = I Site BMPs =	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ /s ft ³ Volume Reduction (ft ³ ) 19,499 19,499 764 21,652
W11	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p = 238.6^\circ$ B. Total Site Area (ac) excluding "Self-Crr         C. $Q_{100} = Q_{100-per} + Q_{100-imp}$ D. Peak Flow (PF) = $\left(\frac{\Omega_p \times Q_{100} \times Area}{640}\right)^\circ$ E. $\Delta = PF - 0.15^\circ$ (area)         F. $V_{det} = \left(\frac{\Delta}{PF} \times V_{100}\right)^\circ$ Determine Applicable BMPs and Assoc         Proposed BMP         Porous Pavement w/Infiltration Bed         Infiltration Basin         Subsuface Infiltration Bed         Infiltration Trench         Rain Garden         Dry Well         Bioswale         Vegetated Filter Strip         Green Roof         Tot         Natural Reasources         Waterbodies         Floodplains         Riparian Areas         Woodlands         Natural Drainage Area         Steep Slopes, 15%-25%         Steep Slopes, over 25%	Area (ft ² ) Total Volume Total	Runoff orage Volut face 27 27 be Reduction olume Infiltration bo no, n/a) 100 100 100 100 100 100 100	me (ft ³ ) Soil 3,162 ACredit by Pro- tion Requirem Volume fror	= = = Ave. Design Infiltration Rate (in/hr) 5	764 743.63 0.41 7.33 3.51 3.45 4,644 Uning Storm (ft ³ ) 15,610 al BMPs (ft ³ ) = Worksheet 9 = I Site BMPs =	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ /s ft ³ Volume Reduction (ft ³ ) 19,499 19,499 764 21,652
w11	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p = 238.6^\circ$ B. Total Site Area (ac) excluding "Self-Crr         C. $Q_{100} = Q_{100\text{-per}} + Q_{100\text{-imp}}$ D. Peak Flow (PF) = $\left(\frac{Q_p \times Q_{100} \times \text{Area}}{640} + Cre + Cre$	or-pre) hkfull Volume Difference and rc ^{-0.82} editing" BMPs 2) iated Volume Credits Area (ft ² ) Sto Surfi 6,324 52 Total Volume Runoff Vo al Designed/Provided (yes, m nx nx nx nx nx nx nx nx nx nx	Runoff orage Volut face 27 27 be Reduction olume Infiltration bo no, n/a) 100 100 100 100 100 100 100	me (ft ³ ) Soil 3,162 ACredit by Pro- tion Requirem Volume fror	= = = Ave. Design Infiltration Rate (in/hr) 5	764 743.63 0.41 7.33 3.51 3.45 4,644 Uning Storm (ft ³ ) 15,610 al BMPs (ft ³ ) = Worksheet 9 = I Site BMPs =	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ /s ft ³ Volume Reduction (ft ³ ) 19,499 19,499 764 21,652
W11	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p = 238.6^\circ$ B. Total Site Area (ac) excluding "Self-Crt         C. $Q_{100} = Q_{100-per} + Q_{100-imp}$ D. Peak Flow (PF) = $\left(\frac{\Omega_p \times \Omega_{100} \times Area (ac)}{640}\right)^{-1}$ E. $\Delta = PF - 0.15^\circ$ (area)         F. $V_{det} = \left(\frac{\Lambda}{PF} \times V_{100}\right)^{-1}$ Determine Applicable BMPs and Assoc         Proposed BMP         Porous Pavement w/Infiltration Bed         Infiltration Basin         Subsuface Infiltration Bed         Infiltration Trench         Rain Garden         Dry Well         Bioswale         Vegetated Filter Strip         Green Roof         Tot         Natural Reasources         Waterbodies         Floodplains         Riparian Areas         Wetands         Natural Drainage Area         Steep Slopes, 15%-25%         Steep Slopes, 15%-25%         Steep Slopes, 15%-25%	Area (ft ² )  Total Volume  Total Volume  Total Volume  Total Volume  Runoff Volume Runoff Volume  Runoff Volume Runoff Volume Runoff Volume Runoff Volume Runoff Volume Runoff Volume Runoff Volume Runo	Runoff orage Volut face 27 27 be Reduction olume Infiltration bo no, n/a) 100 100 100 100 100 100 100	me (ft ³ ) Soil 3,162 ACredit by Pro- tion Requirem Volume fror	= = = Ave. Design Infiltration Rate (in/hr) 5	764 743.63 0.41 7.33 3.51 3.45 4,644 Uning Storm (ft ³ ) 15,610 al BMPs (ft ³ ) = Worksheet 9 = I Site BMPs =	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ /s ft ³ Volume Reduction (ft ³ ) 19,499 19,499 764 21,652
W11	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p$ = 238.6°         B. Total Site Area (ac) excluding "Self-Crt         C. $Q_{100} = Q_{100-per} + Q_{100-imp}$ D. Peak Flow (PF) = $\left(\frac{\Omega_p \times \Omega_{100} \times Area}{640}\right)^{-1}$ E. $\Delta$ = PF - 0.15*(area)         F. $V_{det} = \left(\frac{\Delta}{PF} \times V_{100}\right)^{-1}$ Determine Applicable BMPs and Assoc         Proposed BMP         Porous Pavement w/Infiltration Bed         Infiltration Basin         Subsuface Infiltration Bed         Infiltration Trench         Rain Garden         Dry Well         Bioswale         Vegetated Filter Strip         Green Roof         Total         Natural Features Inventory         Existing Natural Reasources         Waterbodies         Floodplains         Riparian Areas         Weodlands         Natural Drainage Area         Steep Slopes, 15%-25%         Steep Slopes, over 25%         Special Habitat Areas         TOTAL EXISTING (ac)	Area (ft ² ) Total Volume Credits Area (ft ² ) Stor 6,324 Total Volume Total Volume Total Volume Cal Designed/Provided Mapi (yes, nr nc nc nc nc nc nc nc nc nc nc	Runoff orage Volut face 27 27 27 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	me (ft ³ ) Soil 3,162 ACredit by Pro- tion Requirem Volume fror	= = = Ave. Design Infiltration Rate (in/hr) 5	764 743.63 0.41 7.33 3.51 3.45 4,644 Infiltration Volume During Storm (ft ³ ) 15,810 al BMPs (ft ³ ) = Worksheet 9 = I Site BMPs = Protected/U Area 764	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ volume Reduction Reduction (ft ³ ) 19,499 764 21,652 
W11	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p = 238.6^\circ$ B. Total Site Area (ac) excluding "Self-Crr         C. $Q_{100} = Q_{100-per} + Q_{100-imp}$ D. Peak Flow (PF) = $\left(\frac{\Omega_p \times \Omega_{100} \times Area}{840}\right)^{-1}$ E. $\Delta = PF - 0.15^\circ$ (area)         F. $V_{det} = \left(\frac{\Delta}{PF} \times V_{100}\right)^{-1}$ Determine Applicable BMPs and Assoc         Proposed BMP         Porous Pavement w/Infiltration Bed         Infiltration Basin         Subsuface Infiltration Bed         Infiltration Trench         Rain Garden         Dry Well         Bioswale         Vegetated Filter Strip         Green Roof         Tot         Natural Reasources         Waterbodies         Floodplains         Riparian Areas         Woodlands         Natural Drainage Area         Steep Slopes, 15%-25%         Steep Slopes, over 25%         Special Habitat Areas         TOTAL EXISTING (ac)         Site Summary of Infiltration Requirement         A. Stormwater Management Summary         Minimum Onsite Infiltration Provide Infiltration Provide	Area (ft ² )  Total Volume  Total Volume  Total Volume  Total Volume  Total Volume  Total Volume  Runoff Volume  Runoff Volume  Runoff Volume  Total Volume	Runoff orage Volut face 27 27 27 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	me (ft ³ ) Soil 3,162 ACredit by Pro- tion Requirem Volume fror	= = = = Ave. Design Infiltration Rate (in/hr) 5 5 s s s s s s s s s s s s s s s s s	764 743.63 0.41 7.33 3.51 3.45 4,644 Infiltration Volume During Storm (ft ³ ) 15,810 15,810 Protected/U Area 764 15,810 2,069.3	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ Total Volume Reduction (ft ³ ) 19,499 764 21,652 21,652 0 0 0 0 19,499 764 21,652 0 0 0 0 0 19,499 764 21,652
W11	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p = 238.6^\circ$ B. Total Site Area (ac) excluding "Self-Crt         C. $Q_{100} = Q_{100-per} + Q_{100-imp}$ D. Peak Flow (PF) = $\left(\frac{\Omega_p \times \Omega_{100} \times Area (ac)}{640}\right)^{-1}$ E. $\Delta = PF - 0.15^\circ$ (area)         F. $V_{det} = \left(\frac{\Delta}{PF} \times V_{100}\right)^{-1}$ Determine Applicable BMPs and Assoc         Proposed BMP         Porous Pavement w/Infiltration Bed         Infiltration Basin         Subsuface Infiltration Bed         Infiltration Trench         Rain Garden         Dry Well         Bioswale         Vegetated Filter Strip         Green Roof         Tot         Natural Reasources         Waterbodies         Floodplains         Riparian Areas         Wetlands         Woolands         Natural Drainage Area         Steep Slopes, 15%-25%         Steep Slopes, over 25%         Special Habitat Areas         TOTAL EXISTING (ac)	Area (ft ² ) Total Volume Credits Area (ft ² ) Stor Galaction Volume Credits Area (ft ² ) Stor Surf Galaction Volume Total Volume Runoff Vc al Designed/Provided Mapi (yes, ni ni ni Napi (yes, ni ni ni ni ni Napi (yes, ni ni ni Napi (yes, ni ni ni ni ni ni ni ni ni ni	Runoff orage Volu face 27 be Reduction colume Infiltration pped to n/a) bo	me (ft ³ ) Soil 3,162 Credit by Pro- tion Requirem Volume fror Volume fror	= = = = Ave. Design Infiltration Rate (in/hr) 5 5 posed Structur nent (V _{int} ) from n Building and ea (ac) = = =	764 743.63 0.41 7.33 3.51 3.45 4,644 Infiltration Volume During Storm (ft ³ ) 15,810 Area Protected/U Area 764 15,810	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ volume Reduction (ft ³ ) 19,499 764 21,652 21,652 19,499 764 21,652
W11	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p$ = 238.6°         B. Total Site Area (ac) excluding "Self-Crr         C. $Q_{100} = Q_{100-per} + Q_{100-imp}$ D. Peak Flow (PF) = $\left(\frac{Q_p \times Q_{100} \times Area}{640}\right)^{-1}$ E. $\Delta = PF - 0.15^{\circ}$ (area)         F. $V_{det} = \left(\frac{\Lambda}{PF} \times V_{100}\right)$ Determine Applicable BMPs and Assoce         Proposed BMP         Porous Pavement w/Infiltration Bed         Infiltration Basin         Subsuface Infiltration Bed         Infiltration Trench         Rain Garden         Dry Well         Bioswale         Vegetated Filter Strip         Green Roof         Total         Natural Reasources         Waterbodies         Floodplains         Riparian Areas         Woodlands         Natural Drainage Area         Steep Slopes, 15%-25%         Steep Slopes, over 25%         Special Habitat Areas         TOTAL EXISTING (ac)         Site Summary of Infiltration Requirement         Total Calculated Detention Volume (V _{det} )         Net Required Detention Volume (V _{det} )         B. Detention Volume Increase for site if re         % R	ar-pre) httull Volume Difference and  r_c^-0.82  additing" BMPs  2)  iated Volume Credits  Area (ft ² )  Sto  Gurf  6,324  52  Curf  6,324  S2  SU  SU  SU  SU  SU  SU  SU  SU  SU	Runoff orage Volur face 27 be Reduction 27 be Reduction 27 bit of the second se	me (ft ³ ) Soil 3,162 i Credit by Pro- tion Requiren Volume fror Volume fror Total Ar	= = = = Ave. Design Infiltration Rate (in/hr) 5 5 ea (ac) = = = = = =	764           743.63           0.41           7.33           3.51           3.45           4,644           Infiltration           Volume           During Storm           (t ³ )           15,810           Sterm           Protected/U           Area           764           15,810           2,069.3           4,644           (17,009)           0.0	ft ³ ft ³ cfs/in-mi ² acres in cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ volume Reduction (ft ³ ) 19,499 764 21,652 21,652 21,652 4 6 6 7 64 (ac) 7 64 5 7 64 6 7 64 7 64 7 64 7 64 7 64
W11	Detention/Retention Requirement         A. Peak of Unit Hydrograph = $Q_p = 238.6^\circ$ B. Total Site Area (ac) excluding "Self-Crt         C. $Q_{100} = Q_{100-per} + Q_{100-imp}$ D. Peak Flow (PF) = $\left(\frac{\Omega_p \times \Omega_{100} \times Area}{640}\right)^\circ$ E. $\Delta = PF - 0.15^\circ$ (area)         F. $V_{det} = \left(\frac{\Delta}{PF} \times V_{100}\right)^\circ$ Determine Applicable BMPs and Assoc         Proposed BMP         Porous Pavement w/Infiltration Bed         Infiltration Basin         Subsuface Infiltration Bed         Infiltration Trench         Rain Garden         Dry Well         Bioswale         Vegetated Filter Strip         Green Roof         Total         Natural Reasources         Waterbodies         Floodplains         Riparian Areas         Weodlands         Natural Drainage Area         Steep Slopes, 15%-25%         Steep Slopes, over 25%         Special Habitat Areas         TOTAL EXISTING (ac)         Site Summary of Infiltration Requiremer         Total Calculated Detention Volume (V_{de} - B, Detention Volume (N_{de} - B, Detention Volume (N_{de} - B, Detention Volume (N_{de} - B, Detention Volume Increase for site if re	Area (ft ² ) atted Volume Difference and r _c ^{-0.82} aditing" BMPs ) atted Volume Credits Area (ft ² ) Stor Surf 6,324 Stor Surf 6,324 Stor Surf 6,324 Stor Surf (yes, m Runoff Vc al Designed/Provided In tt (V _m 7) tume from Building and S ad Map (yes, m Runoff Vc al Designed/Provided Infilt quired infiltration volume Required ration Not Provided Infilt	Runoff orage Volur face 27 be Reduction 27 be Reduction 27 bit of the second se	me (ft ³ ) Soil 3,162 i Credit by Pro- tion Requiren Volume fror Volume fror Total Ar	= = = = = Ave. Design Infitration Rate (in/tr) 5  posed Structur nent(V _{int} ) from n Building and ea (ac) = = = = = = = = = = = = = = = = = = =	764           743.63           0.41           7.33           3.51           3.45           4,644           Infiltration           Volume           During Storm           (ft ³ )           15,610           Store BMPs =           Worksheet 9 =           ISite BMPs =           Protected/U           Area           764           15,810           2,069.3           4,644           (17,009)	ft ³ ft ³ cfs/in-mi ² acres in ft ³ /s ft ³ /s ft ³ /s ft ³ volume Reduction (ft ³ ) 19,499 764 21,652 (ft ³ ) 19,499 764 21,652

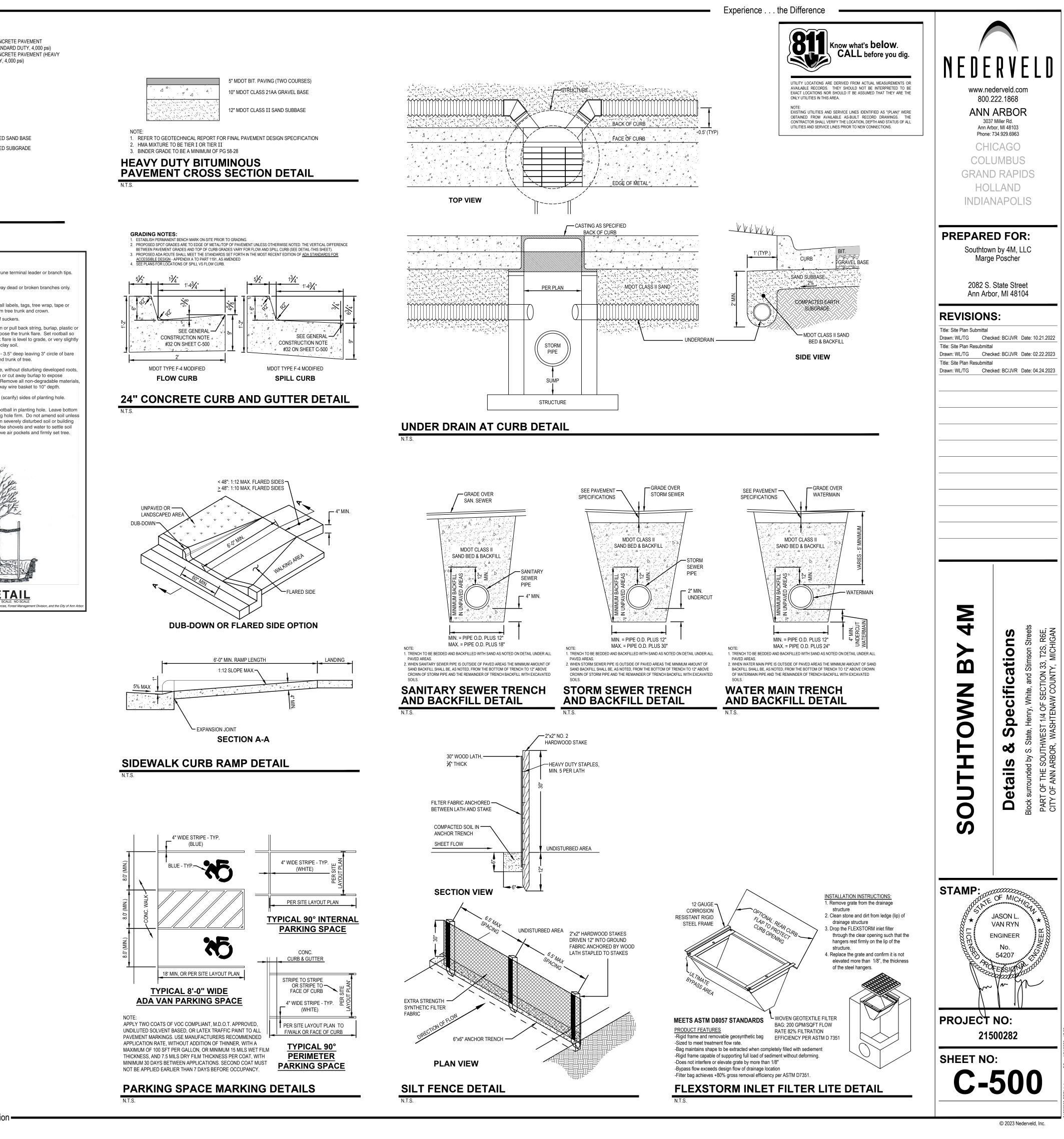

Experience . . . the Difference

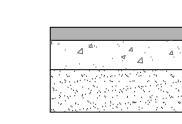
# STORM WATER MANAGEMENT CALCULATIONS (SITE) NEDERVELD www.nederveld.com 800.222.1868 ANN ARBOR 3037 Miller Rd. Ann Arbor, MI 48103 Phone: 734.929.6963 CHICAGO COLUMBUS **GRAND RAPIDS** HOLLAND INDIANAPOLIS **PREPARED FOR:** Southtown by 4M, LLC Marge Poscher 2082 S. State Street Ann Arbor, MI 48104 **REVISIONS:** Title: Site Plan Submittal Drawn: WL/TG Checked: BC/JVR Date: 10.21.2022 Title: Site Plan Resubmittal Drawn: WL/TG Checked: BC/JVR Date: 02.22.2023 Title: Site Plan Resubmittal Drawn: WL/TG Checked: BC/JVR Date: 04.24.2023 JS atio 4 Calcul $\succ$ M ≺ 33, anagement HTOWN S S Σ d by SOI ANN $\vdash$ Water ЪЧ **NO** PART CITY S LTM to S STAMP: F. OF MICH JASON L. VAN RYN ENGINEER No 54207 PROJECT NO: 21500282 SHEET NO: C-40

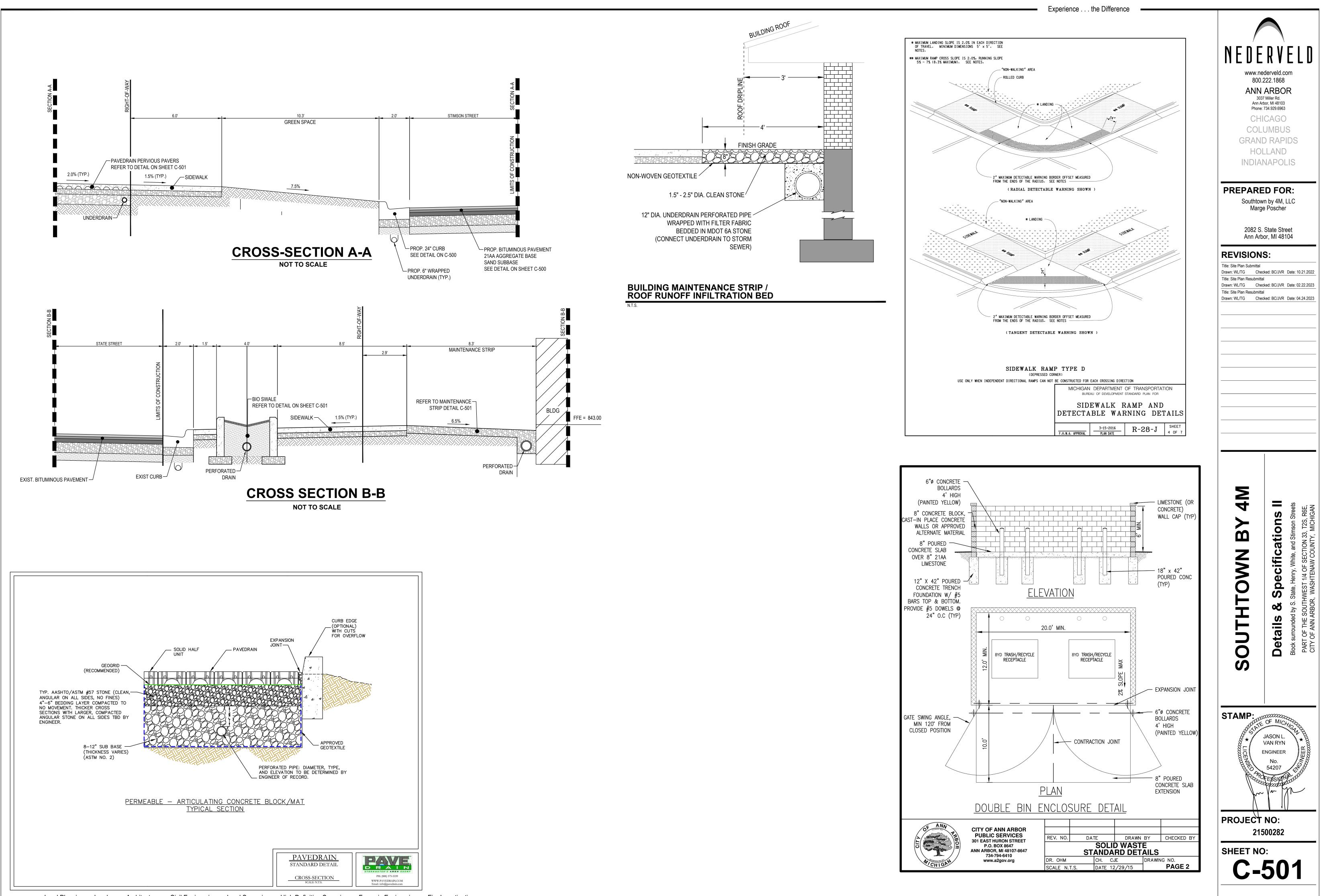

1. SEVENTY FIVE PERCENT (75%) OF THE PROPOSED PROJECT IS BUILDING. RUNOFF FROM THE PROPOSED BUILDING WILL BE ROUTED INTERNALLY THROUGH THE BUILDING STRUCTURE TO THE UNDERGROUND DETENTION VAULT LOCATED BENEATH THE PARKING AREA ON THE FIRST FLOOR LEVEL. APPROXIMATELY 9,350 SF OF GREEN ROOF (APPROX. 17% OF TOTAL ROOF AREA) WILL BE PROVIDED ON THE ROOF OF LEVELS 2, 6, 7 AND 8. THE EXCESS RUNOFF GENERATED FROM THE BUILDING ROOF WILL BE FREE OF OILS, FERTILIZERS, DEBRIS AND SEDIMENT AND THEREFORE NO PRE-TREATMENT IS PROPOSED PRIOR TO THE ROOF RUNOFF ENTERING THE DETENTION SYSTEM. THE PROPOSED UNDERGROUND DETENTION SYSTEM IS SIZED IN ACCORDANCE WITH THE WASHTENAW COUNTY WATER RESOURCE COMMISSIONER'S OFFICE RULES. IT WILL BE DESIGNED TO DETAIN THE FIRST FLUSH, BANKFULL, AND FLOOD CONTROL VOLUMES OF RUNOFF USING A RESTRICTED OUTLET. THE DETENTION SYSTEM WILL BE CONSTRUCTED BELOW THE SURFACE PARKING LOT AND WILL BE INTEGRATED INTO THE PROPOSED BUILDING FOUNDATION DESIGN. ACCESS TO THE PROPOSED UNDERGROUND SYSTEM WILL BE PROVIDED THROUGH MANHOLES LOCATED IN THE NORTHWEST AND SOUTHEAST CORNERS OF THE SYSTEM. DUE TO THE LOCATION OF THE SYSTEM (UNDER THE PROPOSED BUILDING) AND DUE TO HIGH GROUND WATER LEVELS AT THE SITE, NO INFILTRATION IS ACCOUNTED FOR IN THE UNDERGROUND DETENTION BASIN DESIGN CALCULATIONS.

THE REMAINING TWENTY FIVE PERCENT (25%) OF THE SITE CONSISTS OF LANDSCAPE AREAS, POROUS PAVERS, & CONCRETE SIDEWALKS. RUNOFF GENERATED FROM THESE AREAS OF THE SITE WILL BE ROUTED TO SEVERAL PERMEABLE PAVER SYSTEMS AROUND THE EXTERIOR OF THE BUILDING. THIS SYSTEM, IN COMBINATION WITH THE EXISTING SITE INFILTRATION RATE OF 5 INCH PER HOUR, WILL PROVIDE STORM WATER QUALITY IMPROVEMENTS, REDUCE THE QUANTITY OF RUNOFF LEAVING THE SITE, AND PROVIDE THE REQUIRED INFILTRATION VOLUME NEEDED TO AVOID THE 20% PENALTY PER COUNTY REGULATIONS. A PERFORATED UNDERDRAIN WILL BE INSTALLED AROUND THE PERIMETER OF THE SITE TO PROVIDE OVERFLOW PROTECTION IN THE CASE OF MAJOR RAIN EVENTS AND WILL DISCHARGE TO THE PROPOSED STORM STRUCTURE IN THE NORTHEAST CORNER OF THE SITE. ACCESS TO THE PROPOSED UNDERDRAIN WILL BE PROVIDED THROUGH A SERIES OF CLEANOUTS SPACED EVENLY THROUGHOUT THE SYSTEM. PER THE







EDGE OF DISTURBED AREA



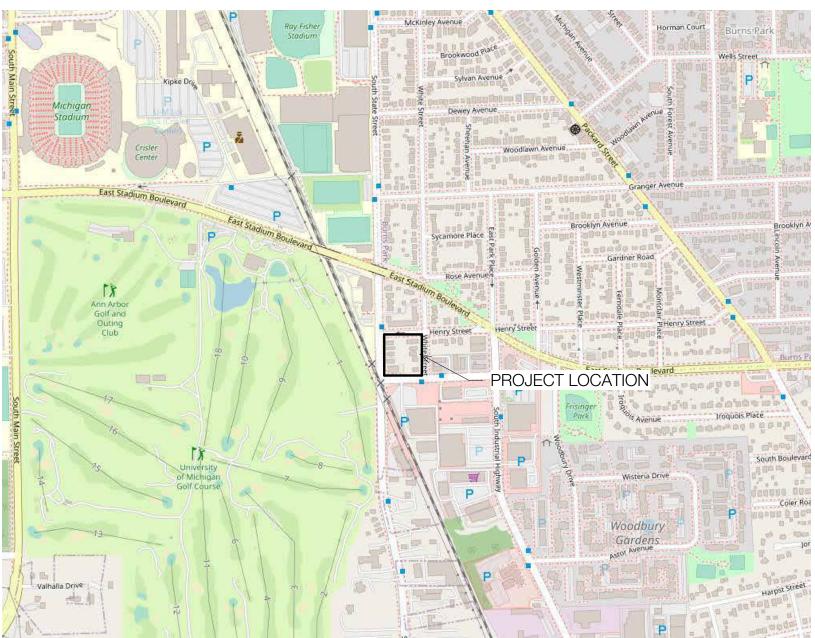

- Land Planning - Landscape Architecture - Civil Engineering - Land Surveying - High Definition Scanning - Forensic Engineering - Fire Investigation -










-Land Planning -Landscape Architecture -Civil Engineering -Land Surveying -High Definition Scanning -Forensic Engineering -Fire Investigation -

# SOUTHTOWN BY 4M

 $\square$ 

# **PROJECT LOCATION**

# ANN ARBOR, MI 48104



## Architect

SYNECDOCHE ADAM SMITH, AIA 1342 N. MAIN ST #11 ANN ARBOR, MI 48104 P: 734.926.5593 E: ADAM@SYNECDOCHE.DESIGN

#### Owner

SOUTHTOWN BY 4M, LLC MARGARET POSCHER 2082 S STATE STREET ANN ARBOR, MI 48104



# **APPLICABLE CODES**

THE PROPOSED CONSTRUCTION IS IN COMPLIANCE WITH APPLICABLE FEDERAL, STATE, AND LOCAL ORDINANCES.

THE CONSTRUCTION SHOWN ON THIS DOCUMENT DOES NOT INFRINGE ON THE EXISTING LIFE SAFETY FOR THIS BUILDING. PERFORM ALL WORK IN ACCORDANCE WITH BUILDING CODES, LAWS AND ORDINANCES HAVING JURISDICTION ON THE PROJECT. ORDINANCES HAVING JURISDICTION ON THE PROJECT INCLUDE BUT ARE NOT LIMITED TO:

2021 INTERNATIONAL BUILDING CODE 2015 MICHIGAN MECHANICAL CODE 2018 MICHIGAN PLUMBING CODE 2017 MICHIGAN ELECTRICAL CODE 2015 INTERNATIONAL ENERGY CODE 2009 ICC/ANSI + MICHIGAN BARRIER FREE CODE 2015 INTERNATIONAL FIRE CODE

2013 NFPA FIRE ALARM CODE

UNIFIED DEVELOPMENT CODE ANN ARBOR (JANUARY 30 2022 AMENDMENTS)

# **ZONING COMPLIANCE**

CITY ZONING: C1/AR

**REFERENCE SITE PLAN: SP22-2017** 

REQUIRED SETBACKS

FRONT MIN: 10'-0" - EXCEPTION 5.183c "MIXED USE DISTRICTS (C1AR) MINIMUM MAY BE DECREASED UP TO 50% WHEN ANOTHER SETBACK IS INCREASED " - SEE SHEET CIVIL FOR DIAGRAM

REQUIRED BUILDING HEIGHT: 100'-0" AND 8 STORIES 85'-0" AND 8 STORIES PROPOSED BUILDING HEIGHT:

FOR VEHICLE AND BICYCLE PARKING - REFER TO CIVIL

FAR CALCULATIONS REFER TO TABLE BELOW + SHEETS A006 + A007

# FAR CALCULATIONS

SITE AREA	72,148 SF
MAX FAR AREA (300% PER C1/AR)	216,444 SF
TOTAL MAX FAR AREA - W/ 8000 SF	224,444 SF
PREMIUM	

# FAR BUILDING AREA

LEVEL 1	23,997 SF
LEVEL 2	32,486 SF
LEVEL 3	31,422 SF
LEVEL 4	36,314 SF
LEVEL 5	36,526 SF
LEVEL 6	26,218 SF
LEVEL 7	18,402 SF
LEVEL 8	16,680 SF
Building Area Total	222,044 SF

Building Area Total

222,044 51





SYNECDOCHE

# **SCOPE OF WORK**

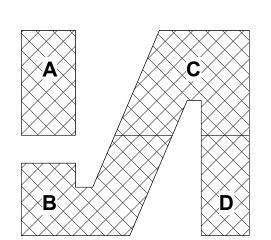
NEW CONSTRUCTION OF FULL BLOCK BOUND BY S. STATE STREET, WHITE STREET, STIMSON STREET, AND HENRY STREET. THREE FIRE-SEPARATED BUILDINGS. CONCRETE PODIUM AT LEVEL 1 HORIZONTALLY SEPARATED FROM SEVEN LEVELS ABOVE OF MASS TIMBER TYPE IV-C CONSTRUCTION TYPE. 216 RESIDENTIAL UNITS AND 20,000 SF BUSINESS AREA. ACTIVE OPEN SPACE COVERING 54 VEHICLE PARKING SPACES. FULLY ELECTRIFIED MECHANICAL + PLUMBING SYSTEMS THROUGHOUT.

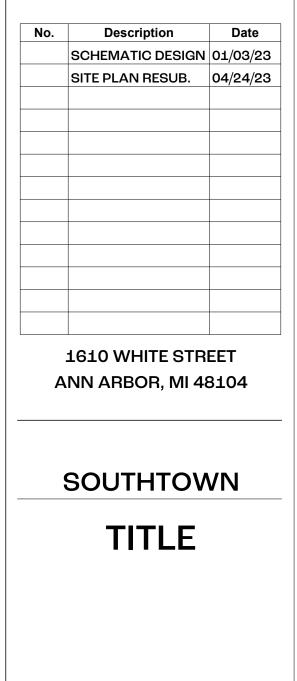
SOUTHTOWN BY 4M



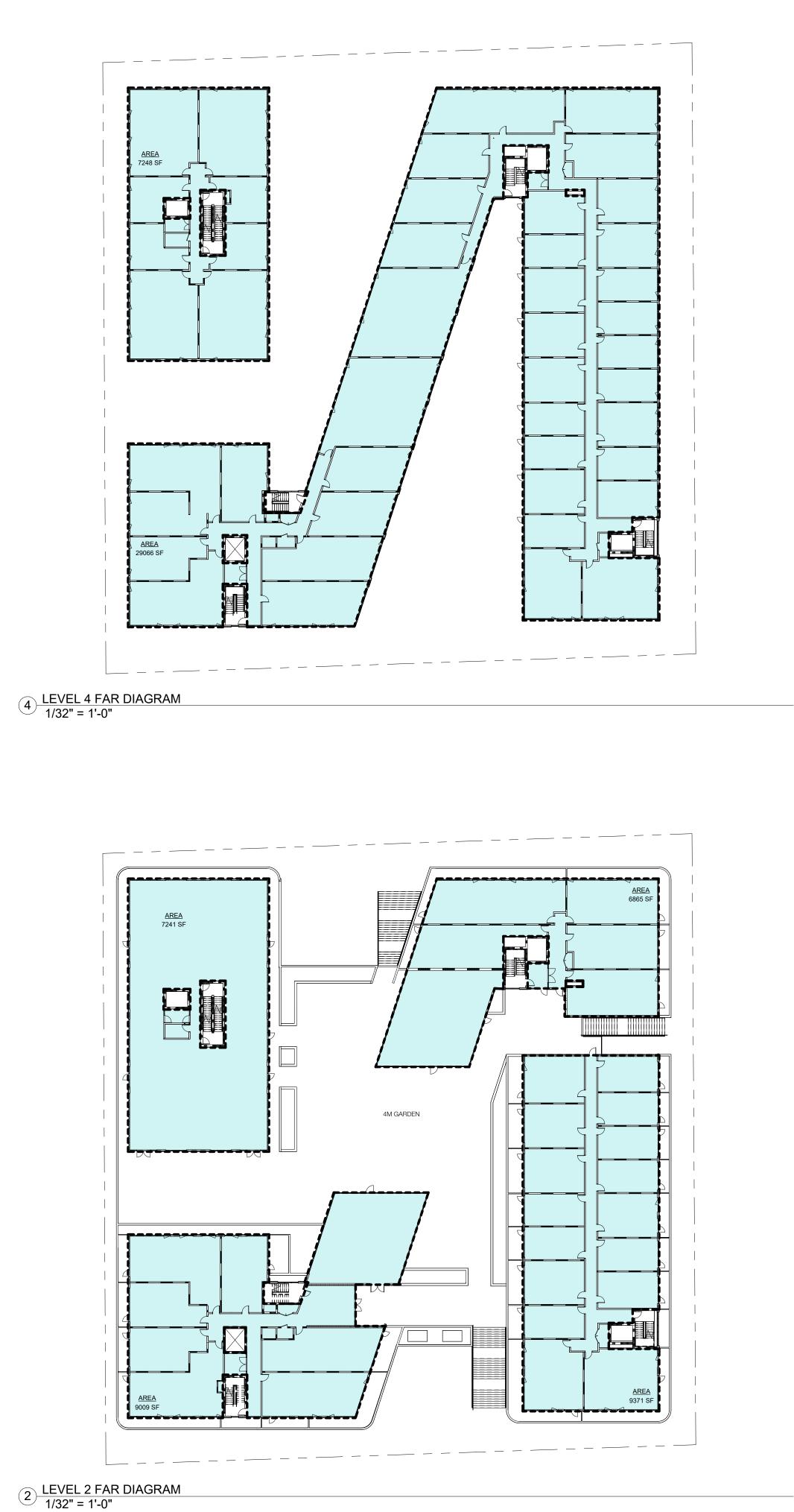
SYNECDOCHE

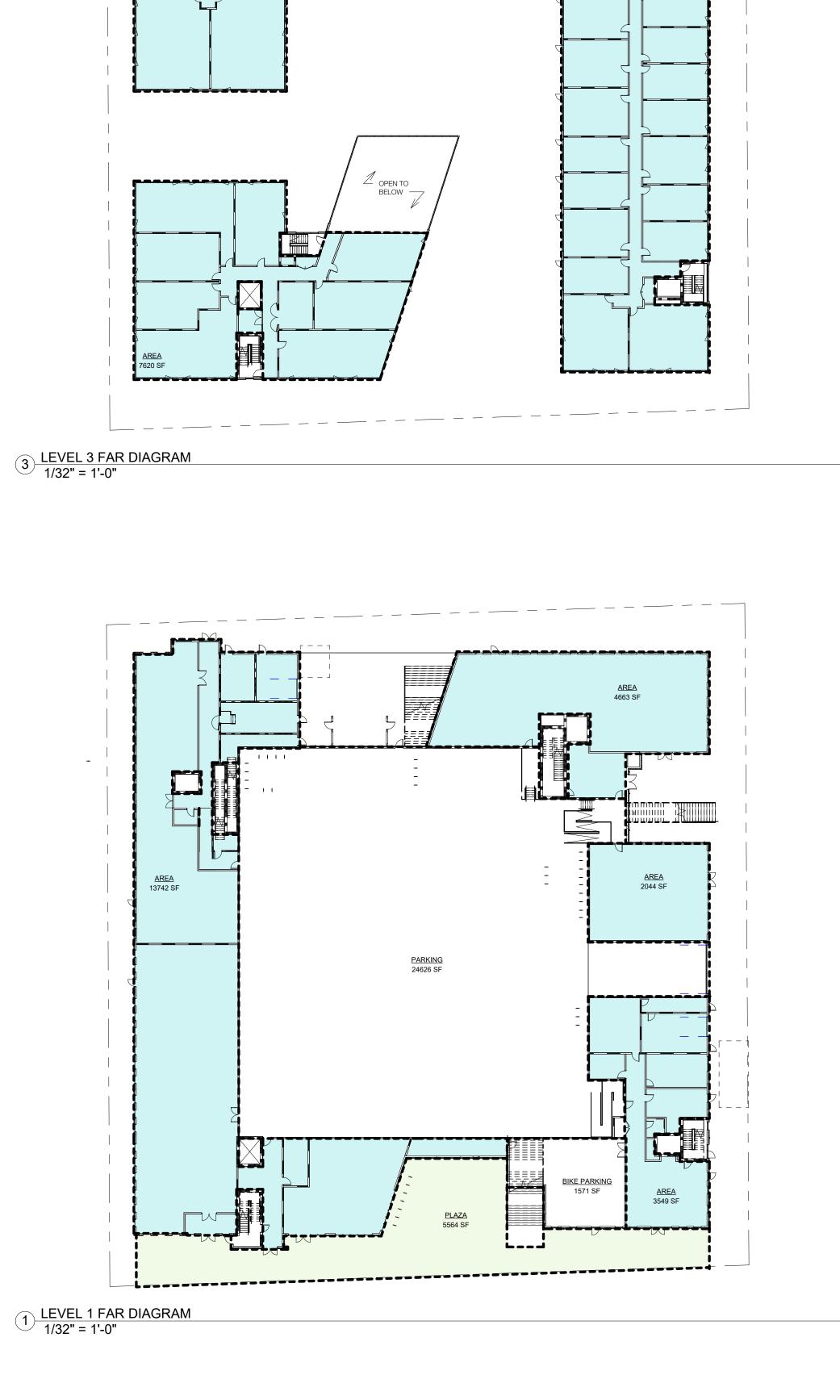
1342 N MAIN ST. #11 ANN ARBOR, MI 48104 HELLO@SYNECDOCHE.DESIGN


NOT FOR CONSTRUCTION FOR REVIEW ONLY


#### NEDERVELD 3037 MILLER RD ANN ARBOR, MI 48103 734.929.6963

ASPECT STRUCTURAL ENGINEERS 101-190 W 3RD AVE VANCOUVER, BC V5Y 1E9 HELLO@ASPECTENGINEERS.COM 604.762.78444


GREENPATH DESIGN 139 W LIBERTY STREET PLYMOUTH, MI 48170 INFO@GREENPATH.DESIGN 734.926.5593


ETS ENGINEERING, INC. P.O. BOX 1116 ROYAL OAK, MI 48068 248.744.0360











OPEN TO BELOW

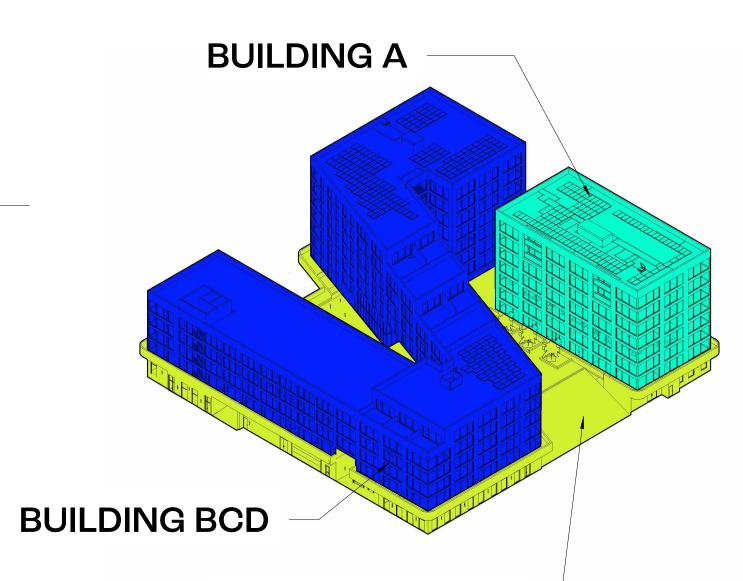
_ _ _ _ _ _ _ _ _ _ _ _ _

7247 SF



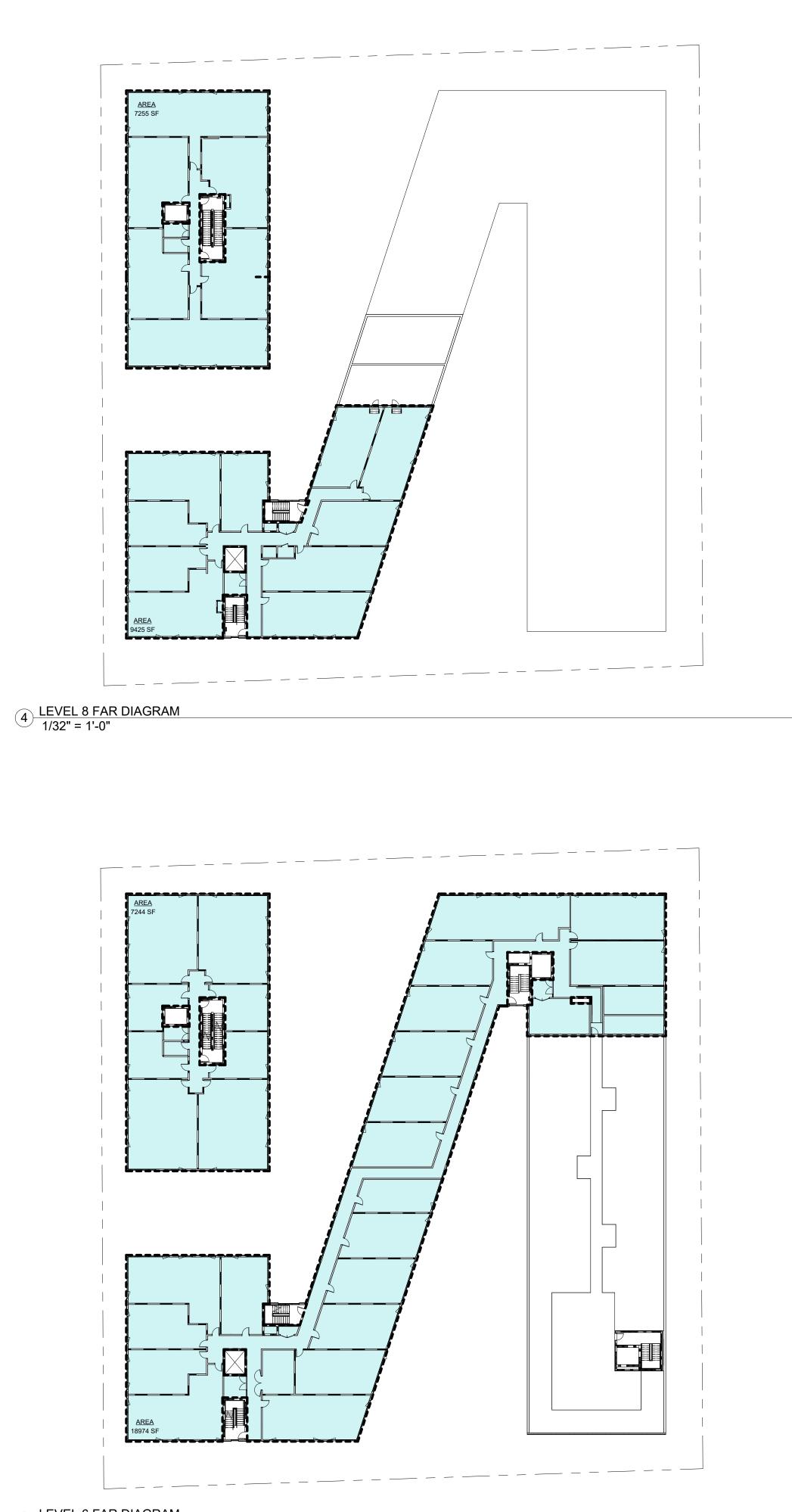
AREA

# FAR BUILDING AREA

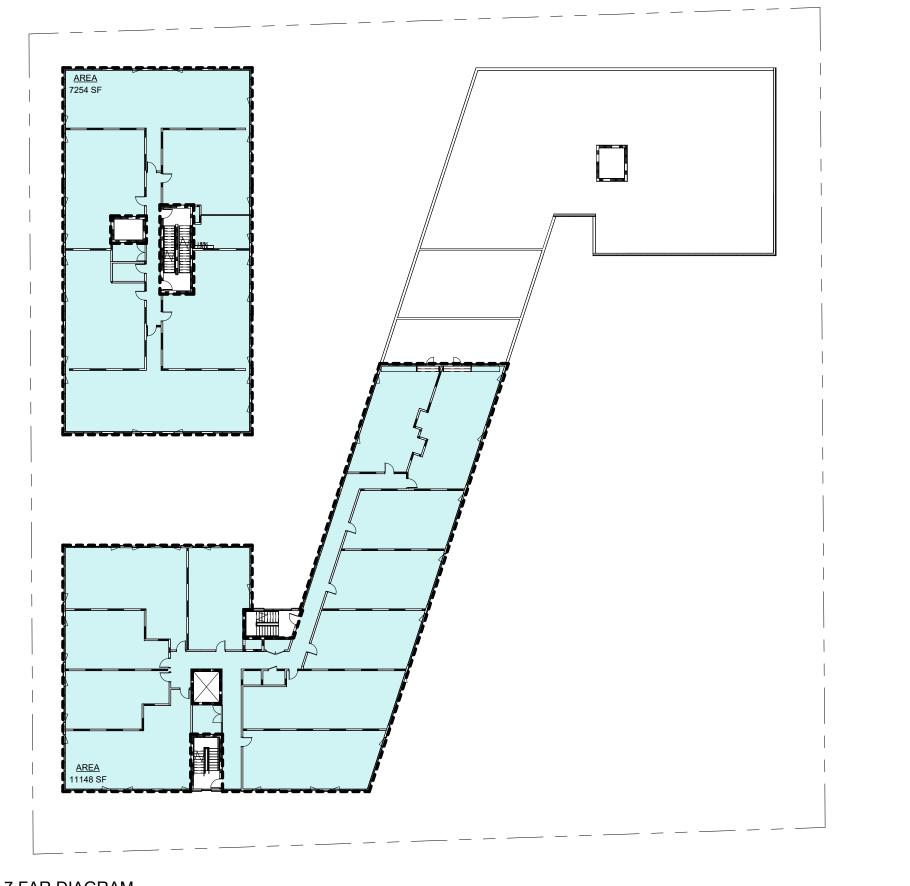

LEVEL 1	23,997 SF
LEVEL 2	32,486 SF
LEVEL 3	31,422 SF
LEVEL 4	36,314 SF
LEVEL 5	36,526 SF
LEVEL 6	26,218 SF
LEVEL 7	18,402 SF
LEVEL 8	16,680 SF
Building Area Total	222,044 SF

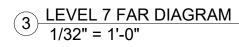
# FAR CALCULATIONS

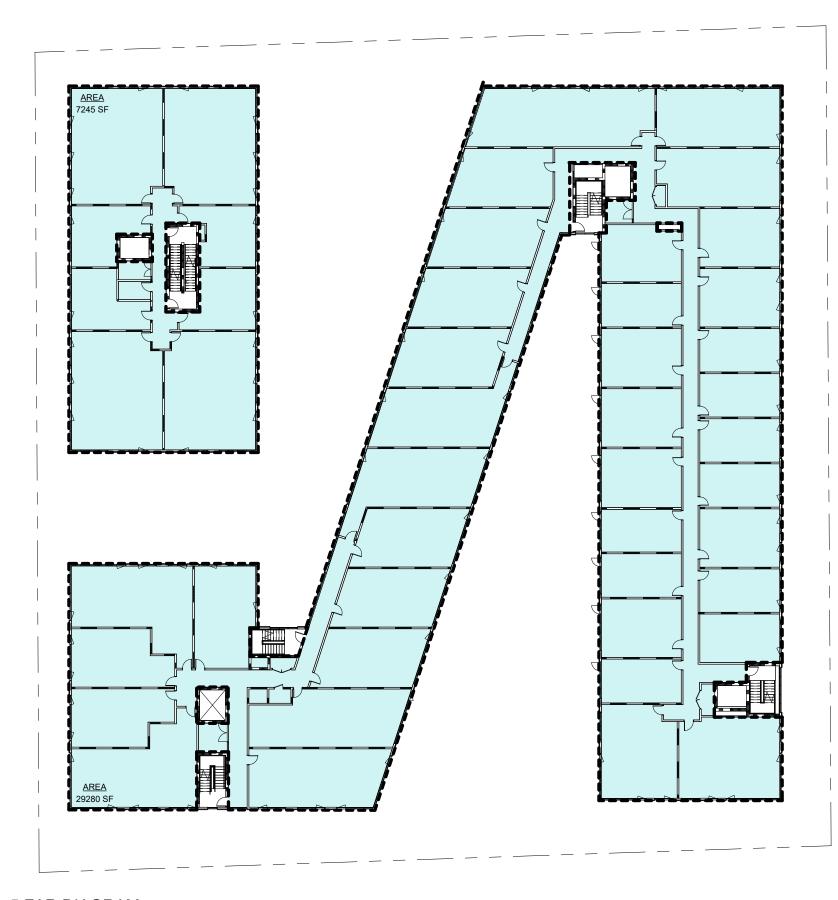
٦F


SITE AREA	72,148 SF
MAX FAR AREA (300% PER C1/AR)	216,444 S
TOTAL MAX FAR AREA - W/ 8000 SF PREMIUM	224,444 S
* GROSS FAR EXCLUDES FLOOR AREA USED FOR REQUIRED PREMIUM VE	

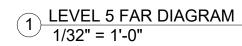
GINGES FAM EXCLUDES FLOOR AREA USED FOR REQUIRED PREMIUM VEHICULAR PARKING AND REQUIRED BICYCLE PARKING, STAIRWELLS (INCLUDING LANDINGS), ELEVATOR SHAFTS, RAMPS, AND VERTICAL CHASES OR CHUTES. ** COVERED VEHICULAR PARKING NOT INCLUDED - ZBA VARIANCE REQUIRED





# **BUILDING PODIUM** –

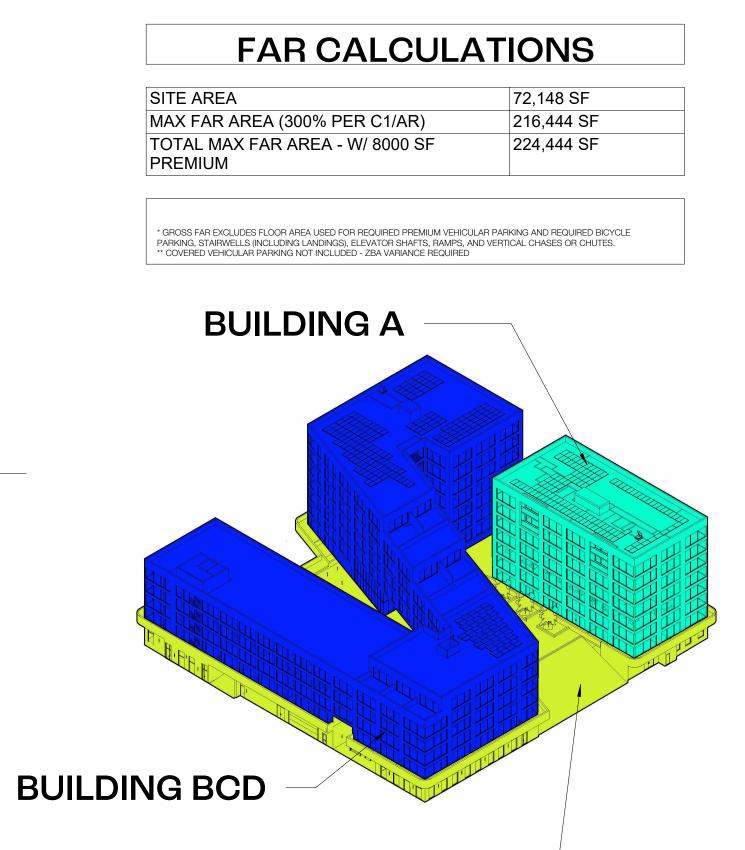

SYNECDOCHE 1342 N MAIN ST. #11 ANN ARBOR, MI 48104 HELLO@SYNECDOCHE.DESIGN
NOT FOR CONSTRUCTION FOR REVIEW ONLY
NEDERVELD 3037 MILLER RD ANN ARBOR, MI 48103 734.929.6963 ASPECT STRUCTURAL ENGINEERS 101-190 W 3RD AVE VANCOUVER, BC V5Y 1E9 HELLO@ASPECTENGINEERS.COM 604.762.78444
GREENPATH DESIGN 139 W LIBERTY STREET PLYMOUTH, MI 48170 INFO@GREENPATH.DESIGN 734.926.5593
ETS ENGINEERING, INC. P.O. BOX 1116 ROYAL OAK, MI 48068 248.744.0360
No.     Description     Date       SITE PLAN RESUB.     04/24/23
1610 WHITE STREET ANN ARBOR, MI 48104
SOUTHTOWN FAR CALCULATIONS
PROJECT NUMBER         202121           DATE         04/24/2023
<b>A006</b> SCALE 1/32" = 1'-0"




2 LEVEL 6 FAR DIAGRAM 1/32" = 1'-0"





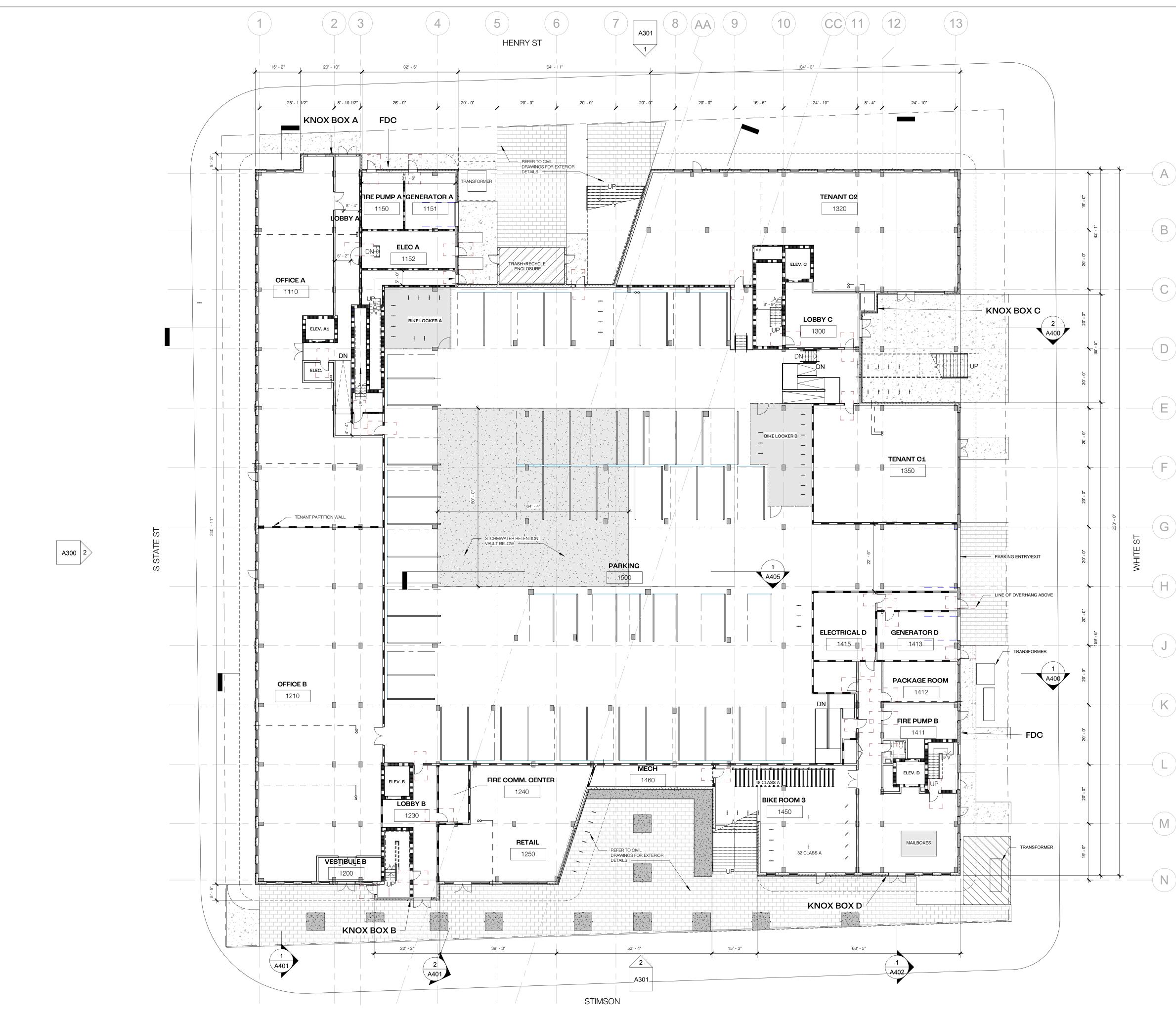







# FAR BUILDING AREA

LEVEL 1	23,997 SF
LEVEL 2	32,486 SF
LEVEL 3	31,422 SF
LEVEL 4	36,314 SF
LEVEL 5	36,526 SF
LEVEL 6	26,218 SF
LEVEL 7	18,402 SF
LEVEL 8	16,680 SF
Building Area Total	222,044 SF




# **BUILDING PODIUM** –

SYNECDOC 1342 N MAIN ST. #11 ANN ARBOR, MI 48104 HELLO@SYNECDOCHE.DE	4
NOT FOR CONSTRUCT FOR REVIEW ONLY	ION
NEDERVELD 3037 MILLER RD ANN ARBOR, MI 48103 734.929.6963 ASPECT STRUCTURAL ENGI 101-190 W 3RD AVE VANCOUVER, BC V5Y 1 HELLO@ASPECTENGINEER	NEERS E9
604.762.78444 GREENPATH DESIGN 139 W LIBERTY STREE PLYMOUTH, MI 48170 INFO@GREENPATH.DESI 734.926.5593 ETS ENGINEERING, INO P.O. BOX 1116 ROYAL OAK, MI 48068 248.744.0360	T ) IGN C.
No.       Description         SITE PLAN RESUB.	Date 04/24/23
1610 WHITE STR ANN ARBOR, MI 48	
SOUTHTOW FAR CALCULATI	
PROJECT NUMBER DATE A007 SCALE	202121 04/24/2023

1/32" = 1'-0"

SCALE



1 FIRST FLOOR PLAN 1/16" = 1'-0" ( + )

# **PLAN NOTES**

2X MTL STUD @ 16" O.C. NON LOAD BEARING PARTITION WALL W/ SAFE'N'SOUND 3"

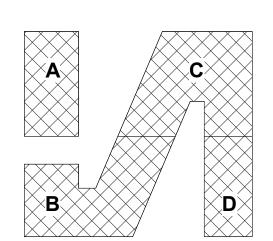
1-HR FIRE RATED WALL - SEE DETAIL 06/A600 FOR ASSEMBLY

2-HR FIRE RATED WALL - 12" REINFORCED CONCRETE WALLS, REFER TO STRUCTURAL - HAT CHANNEL AND 5/8" GYP @ 1 SIDE



# SYNECDOCHE

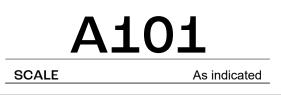
1342 N MAIN ST. #11 ANN ARBOR, MI 48104 HELLO@SYNECDOCHE.DESIGN

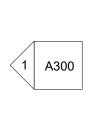

#### NOT FOR CONSTRUCTION FOR REVIEW ONLY

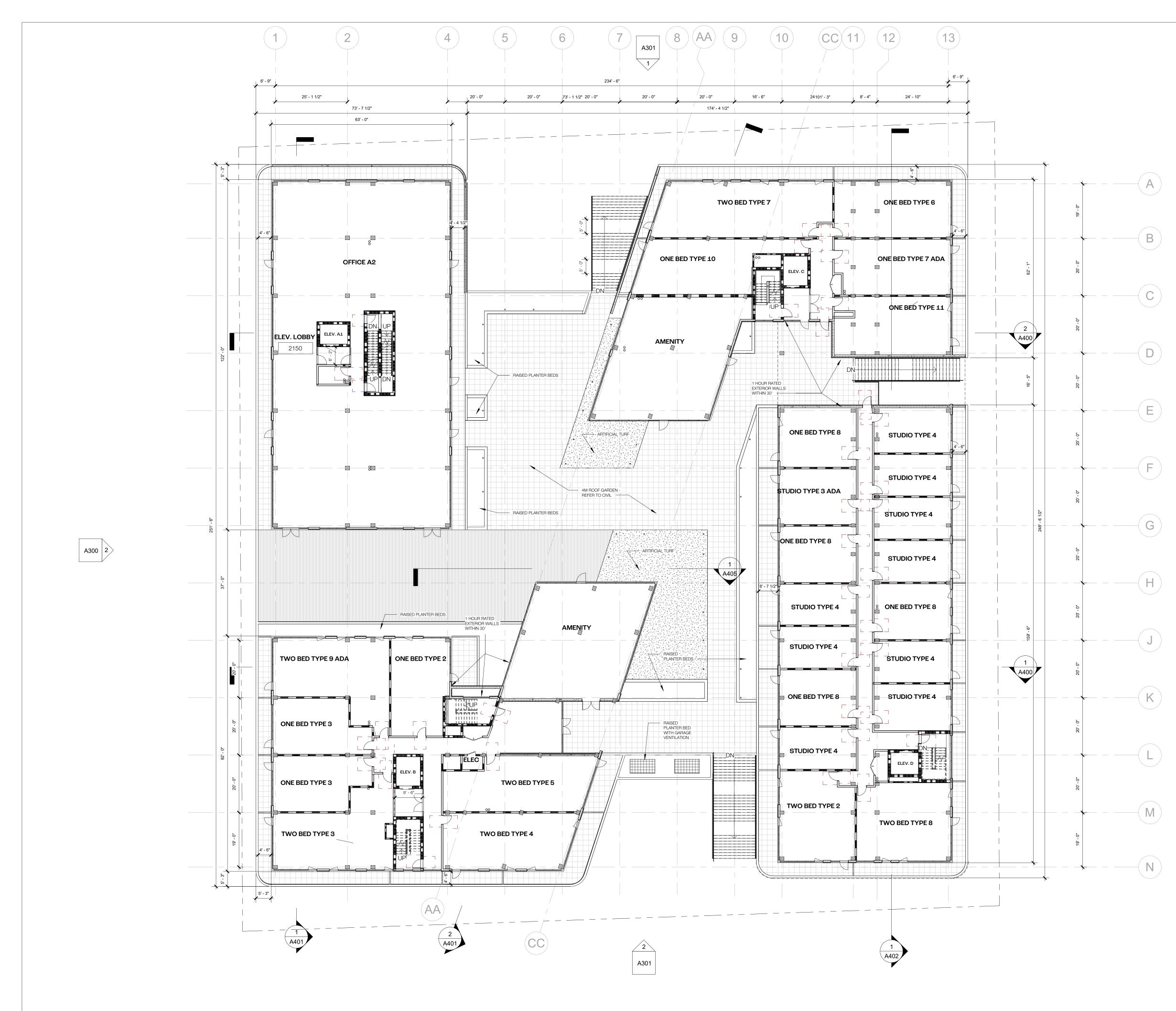
NEDERVELD 3037 MILLER RD ANN ARBOR, MI 48103 734.929.6963

ASPECT STRUCTURAL ENGINEERS 101-190 W 3RD AVE VANCOUVER, BC V5Y 1E9 HELLO@ASPECTENGINEERS.COM 604.762.78444

GREENPATH DESIGN 139 W LIBERTY STREET PLYMOUTH, MI 48170 INFO@GREENPATH.DESIGN 734.926.5593


ETS ENGINEERING, INC. P.O. BOX 1116 ROYAL OAK, MI 48068 248.744.0360





No.	Description	Date
	SCHEMATIC DESIGN	01/03/23
	SITE PLAN RESUB.	04/24/23
	1610 WHITE STR	EET
Δ	NN ARBOR, MI 48	3104
-	,	
	SOUTHTOV	VN



202121
04/24/2023







1 <u>LEVEL 2</u> 1/16" = 1'-0"

# **PLAN NOTES**

2X MTL STUD @ 16" O.C. NON LOAD BEARING PARTITION WALL W/ SAFE'N'SOUND 3"

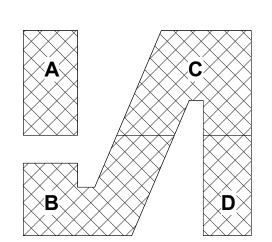
1-HR FIRE RATED WALL - SEE DETAIL 06/A600 FOR ASSEMBLY

2-HR FIRE RATED WALL - 12" REINFORCED CONCRETE WALLS, REFER TO STRUCTURAL - HAT CHANNEL AND 5/8" GYP @ 1 SIDE



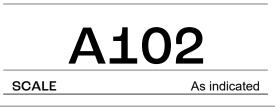
# SYNECDOCHE

1342 N MAIN ST. #11 ANN ARBOR, MI 48104 HELLO@SYNECDOCHE.DESIGN

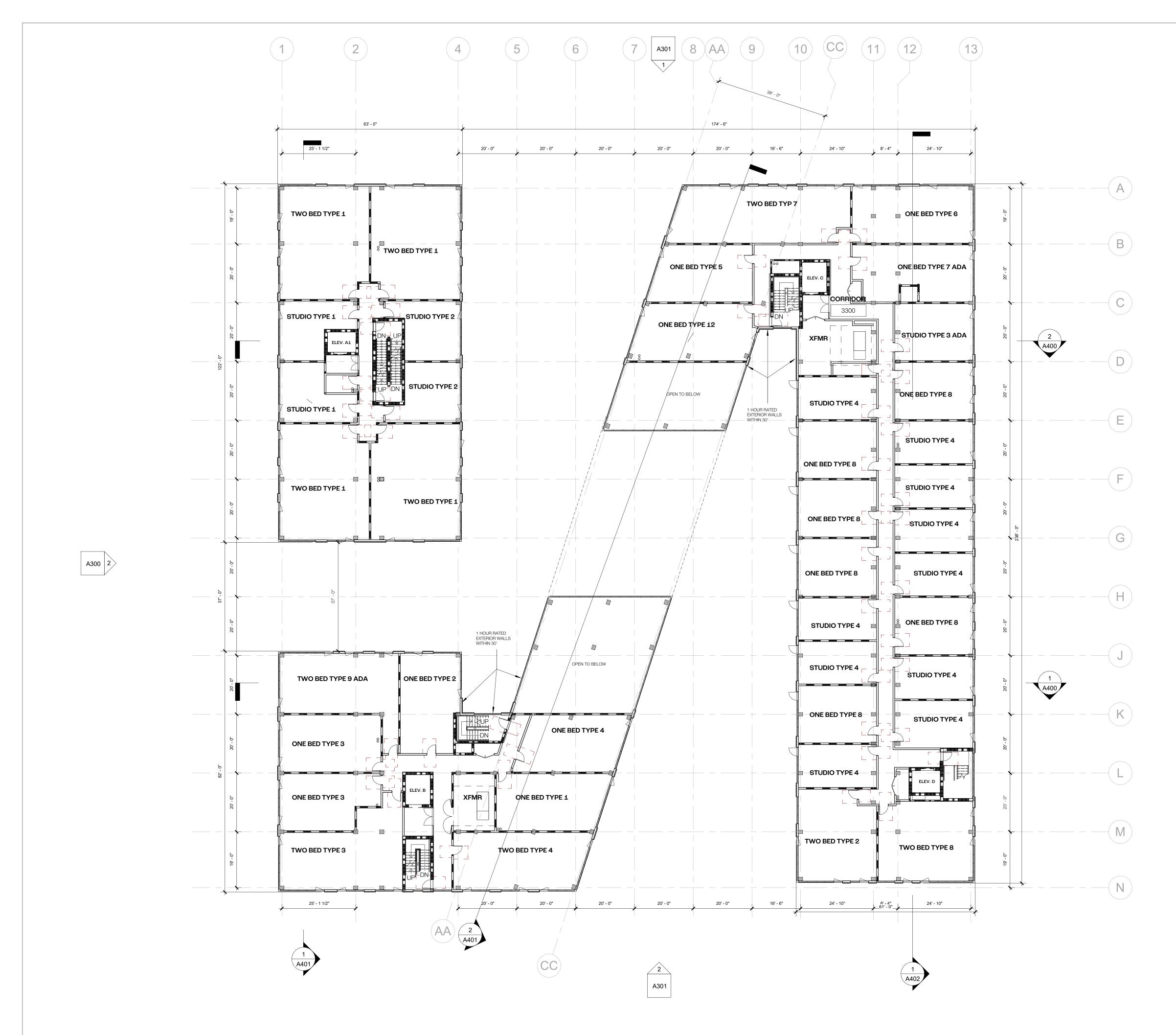

#### NOT FOR CONSTRUCTION FOR REVIEW ONLY

NEDERVELD 3037 MILLER RD ANN ARBOR, MI 48103 734.929.6963

ASPECT STRUCTURAL ENGINEERS 101-190 W 3RD AVE VANCOUVER, BC V5Y 1E9 HELLO@ASPECTENGINEERS.COM 604.762.78444


GREENPATH DESIGN 139 W LIBERTY STREET PLYMOUTH, MI 48170 INFO@GREENPATH.DESIGN 734.926.5593

ETS ENGINEERING, INC. P.O. BOX 1116 ROYAL OAK, MI 48068 248.744.0360




	SCHEMATIC DESIGN SITE PLAN RESUB.	
	SITE PLAN RESUB.	0 4 /0 4 /00
		04/24/23
	1610 WHITE STR	EET
Α	NN ARBOR, MI 48	3104
ļ	SOUTHTOV	VN

LEVEL	_2
ROJECT NUMBER	20212
ATE	04/24/2023



./24/2023 1:43:48 PM



1 <u>LEVEL 3</u> 1/16" = 1'-0"

_____

# **PLAN NOTES**

2X MTL STUD @ 16" O.C. NON LOAD BEARING PARTITION WALL W/ SAFE'N'SOUND 3"

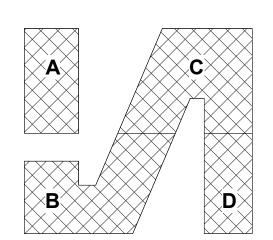
1-HR FIRE RATED WALL - SEE DETAIL 06/A600 FOR ASSEMBLY

2-HR FIRE RATED WALL - 12" REINFORCED CONCRETE WALLS, REFER TO STRUCTURAL - HAT CHANNEL AND 5/8" GYP @ 1 SIDE



SYNECDOCHE

1342 N MAIN ST. #11 ANN ARBOR, MI 48104 HELLO@SYNECDOCHE.DESIGN


NOT FOR CONSTRUCTION FOR REVIEW ONLY

> NEDERVELD 3037 MILLER RD ANN ARBOR, MI 48103 734.929.6963

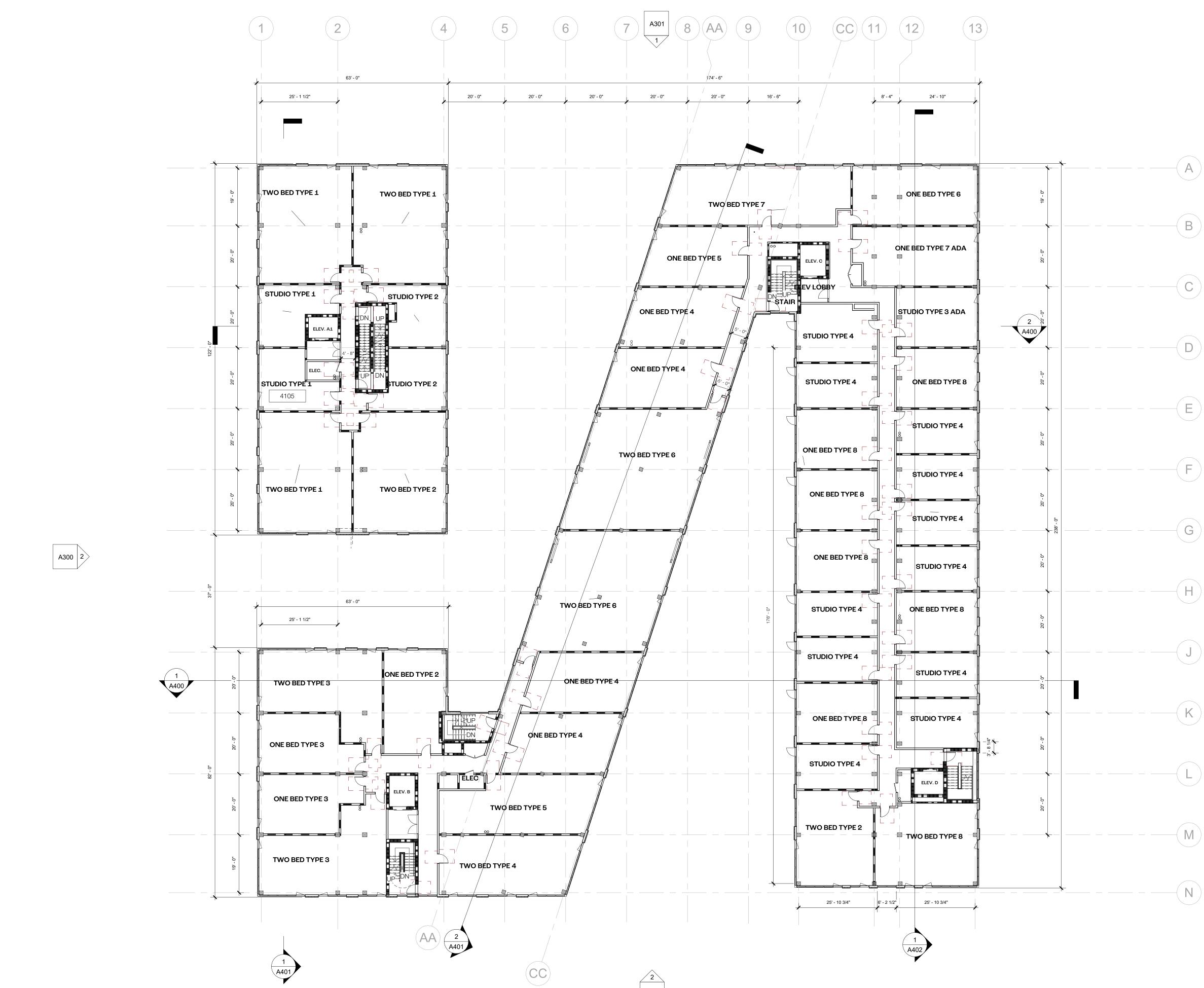
ASPECT STRUCTURAL ENGINEERS 101-190 W 3RD AVE VANCOUVER, BC V5Y 1E9 HELLO@ASPECTENGINEERS.COM 604.762.78444

GREENPATH DESIGN 139 W LIBERTY STREET PLYMOUTH, MI 48170 INFO@GREENPATH.DESIGN 734.926.5593

ETS ENGINEERING, INC. P.O. BOX 1116 ROYAL OAK, MI 48068 248.744.0360



No.	Description	Date
	SCHEMATIC DESIGN	01/03/23
	SITE PLAN RESUB.	04/24/23
	1610 WHITE STR	EET
A	ANN ARBOR, MI 48	3104
	SOUTHTOV	VN
		•
		5


 PROJECT NUMBER
 202121

 DATE
 04/24/2023

SCALE

1 A300

As indicated



1 <u>LEVEL 4</u> 1/16" = 1'-0"

2 A301

# **PLAN NOTES**

2X MTL STUD @ 16" O.C. NON LOAD BEARING PARTITION WALL W/ SAFE'N'SOUND 3"

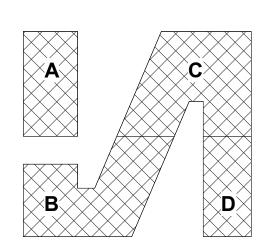
1-HR FIRE RATED WALL - SEE DETAIL 06/A600 FOR ASSEMBLY

2-HR FIRE RATED WALL - 12" REINFORCED CONCRETE WALLS, REFER TO STRUCTURAL - HAT CHANNEL AND 5/8" GYP @ 1 SIDE



## SYNECDOCHE

1342 N MAIN ST. #11 ANN ARBOR, MI 48104 HELLO@SYNECDOCHE.DESIGN


#### NOT FOR CONSTRUCTION FOR REVIEW ONLY

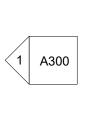
NEDERVELD 3037 MILLER RD ANN ARBOR, MI 48103 734.929.6963

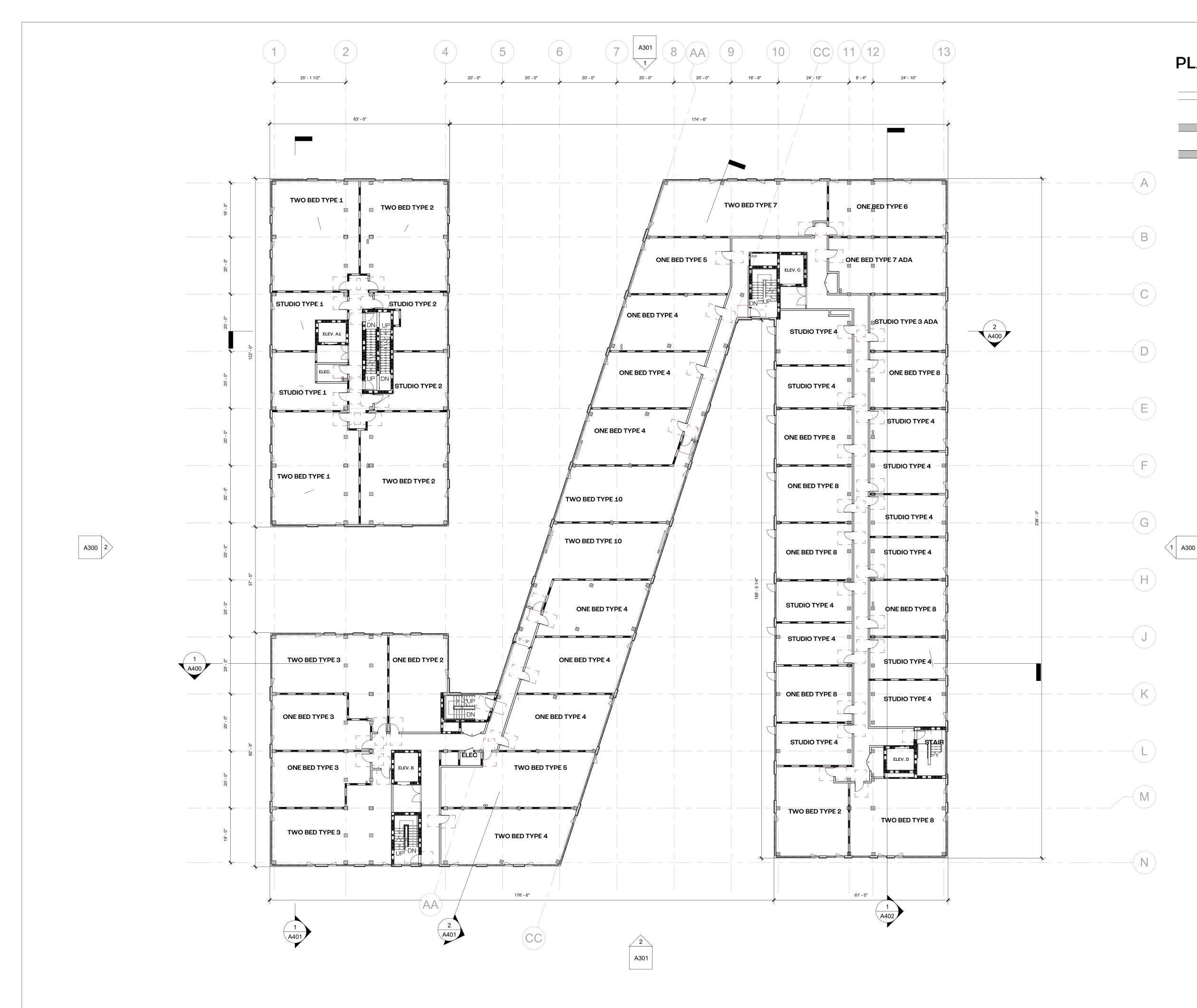
ASPECT STRUCTURAL ENGINEERS 101-190 W 3RD AVE VANCOUVER, BC V5Y 1E9 HELLO@ASPECTENGINEERS.COM 604.762.78444

GREENPATH DESIGN 139 W LIBERTY STREET PLYMOUTH, MI 48170 INFO@GREENPATH.DESIGN 734.926.5593

ETS ENGINEERING, INC. P.O. BOX 1116 ROYAL OAK, MI 48068 248.744.0360




SCHEMATIC DESIGN SITE PLAN RESUB.	01/03/23 04/24/23
SITE PLAN RESUB.	04/24/23
1610 WHITE STRI	EET
NN ARBOR, MI 48	3104
SOUTHTOW	VN


LEVEL	4

 PROJECT NUMBER
 202121

 DATE
 04/24/2023







1 <u>LEVEL 5</u> 1/16" = 1'-0"

# **PLAN NOTES**

2X MTL STUD @ 16" O.C. NON LOAD BEARING PARTITION WALL W/ SAFE'N'SOUND 3"

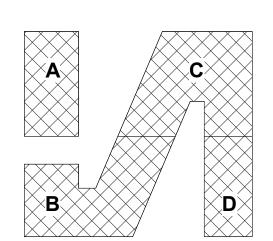
1-HR FIRE RATED WALL - SEE DETAIL 06/A600 FOR ASSEMBLY

2-HR FIRE RATED WALL - 12" REINFORCED CONCRETE WALLS, REFER TO STRUCTURAL - HAT CHANNEL AND 5/8" GYP @ 1 SIDE



SYNECDOCHE

1342 N MAIN ST. #11 ANN ARBOR, MI 48104 HELLO@SYNECDOCHE.DESIGN


NOT FOR CONSTRUCTION FOR REVIEW ONLY

> NEDERVELD 3037 MILLER RD ANN ARBOR, MI 48103 734.929.6963

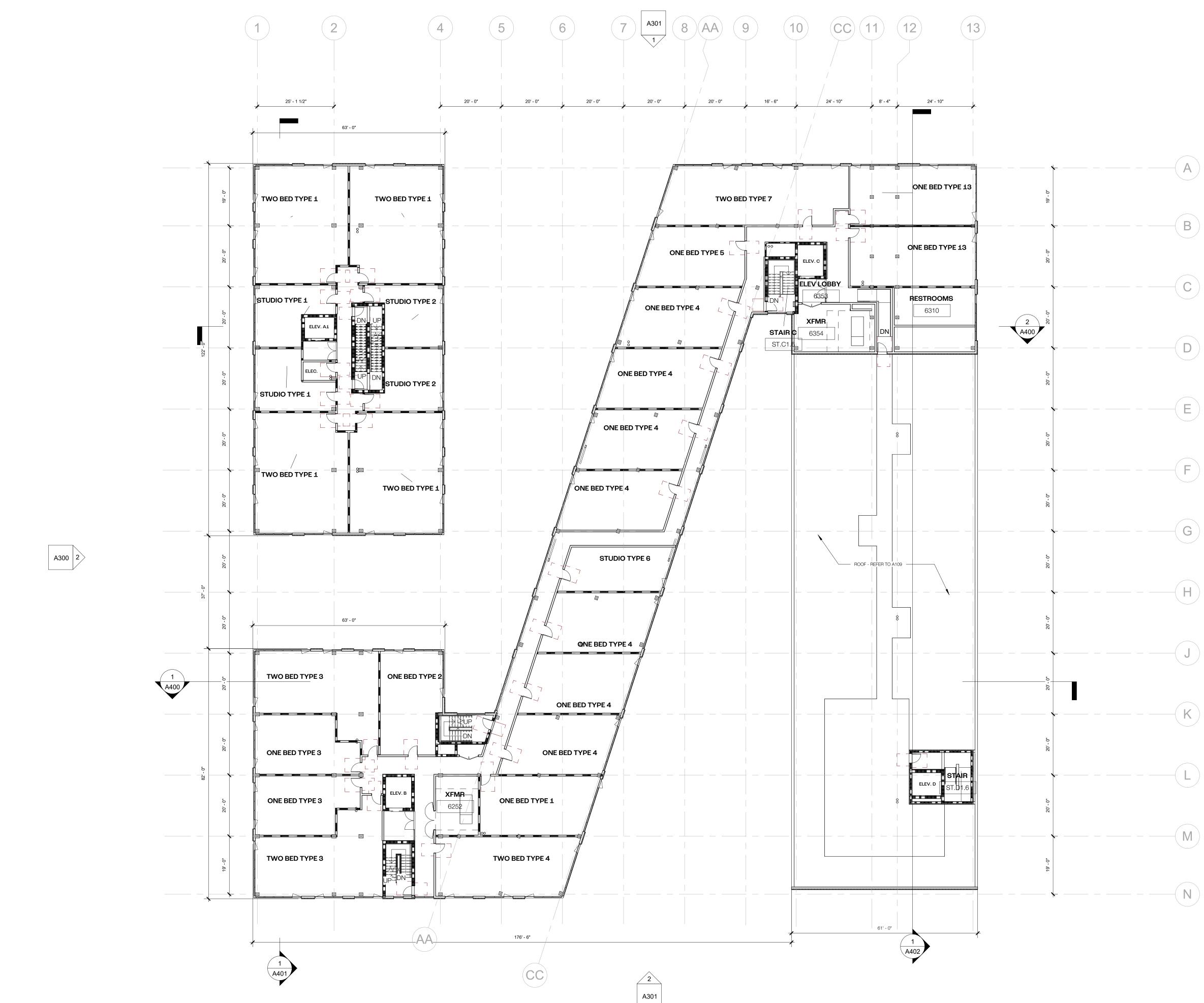
ASPECT STRUCTURAL ENGINEERS 101-190 W 3RD AVE VANCOUVER, BC V5Y 1E9 HELLO@ASPECTENGINEERS.COM 604.762.78444

GREENPATH DESIGN 139 W LIBERTY STREET PLYMOUTH, MI 48170 INFO@GREENPATH.DESIGN 734.926.5593

ETS ENGINEERING, INC. P.O. BOX 1116 ROYAL OAK, MI 48068 248.744.0360



	Description	Date
	SCHEMATIC DESIGN	01/03/23
	SITE PLAN RESUB.	04/24/23
	1610 WHITE STR	EET
A	NN ARBOR, MI 48	3104
	- ,	
	SOUTHTOV	




 PROJECT NUMBER
 202121

 DATE
 04/24/2023



/24/2023 1:44:00 PM



1 <u>LEVEL 6</u> 1/16" = 1'-0"

# **PLAN NOTES**

<1 A300

2X MTL STUD @ 16" O.C. NON LOAD BEARING PARTITION WALL W/ SAFE'N'SOUND 3"

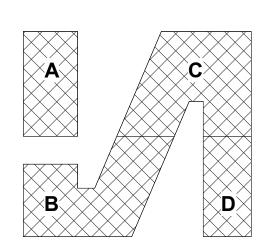
1-HR FIRE RATED WALL - SEE DETAIL 06/A600 FOR ASSEMBLY

2-HR FIRE RATED WALL - 12" REINFORCED CONCRETE WALLS, REFER TO STRUCTURAL - HAT CHANNEL AND 5/8" GYP @ 1 SIDE



# SYNECDOCHE

1342 N MAIN ST. #11 ANN ARBOR, MI 48104 HELLO@SYNECDOCHE.DESIGN

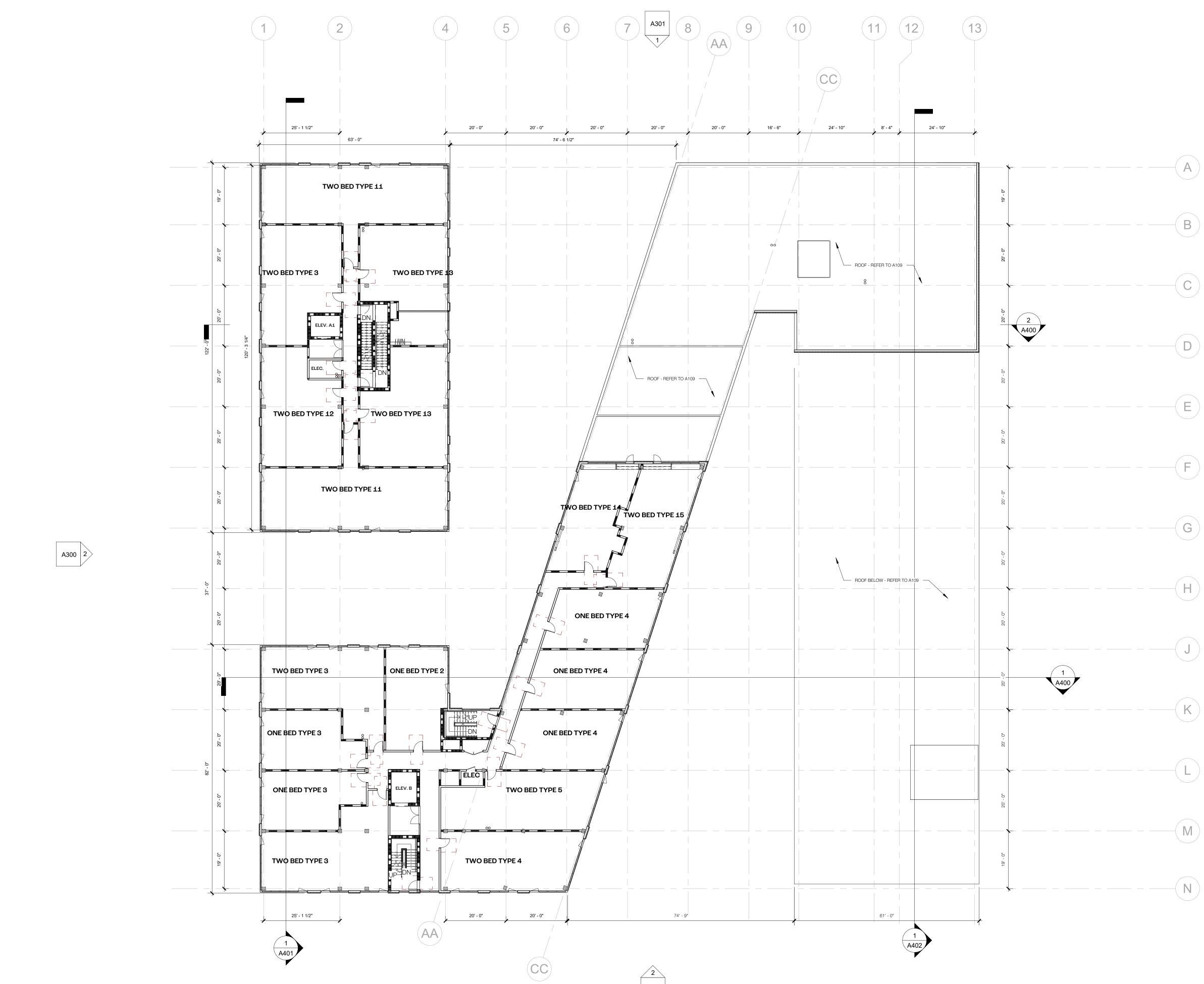

#### NOT FOR CONSTRUCTION FOR REVIEW ONLY

NEDERVELD 3037 MILLER RD ANN ARBOR, MI 48103 734.929.6963

ASPECT STRUCTURAL ENGINEERS 101-190 W 3RD AVE VANCOUVER, BC V5Y 1E9 HELLO@ASPECTENGINEERS.COM 604.762.78444

GREENPATH DESIGN 139 W LIBERTY STREET PLYMOUTH, MI 48170 INFO@GREENPATH.DESIGN 734.926.5593

ETS ENGINEERING, INC. P.O. BOX 1116 ROYAL OAK, MI 48068 248.744.0360




No.	Description	Date
	SCHEMATIC DESIGN	01/03/23
	SITE PLAN RESUB.	04/24/23
	1610 WHITE STR	сст
_		
A	ANN ARBOR, MI 48	3104
	SOUTHTOV	
	00011100	VIN



PROJECT NUMBER 202121 04/24/2023 DATE





1 <u>LEVEL 7</u> 1/16" = 1'-0"  $\square$ 



# **PLAN NOTES**

<1 A300

2X MTL STUD @ 16" O.C. NON LOAD BEARING PARTITION WALL W/ SAFE'N'SOUND 3"

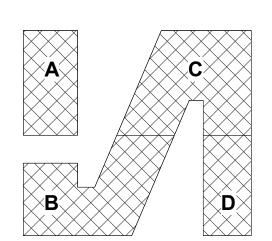
1-HR FIRE RATED WALL - SEE DETAIL 06/A600 FOR ASSEMBLY

2-HR FIRE RATED WALL - 12" REINFORCED CONCRETE WALLS, REFER TO STRUCTURAL - HAT CHANNEL AND 5/8" GYP @ 1 SIDE



# SYNECDOCHE

1342 N MAIN ST. #11 ANN ARBOR, MI 48104 HELLO@SYNECDOCHE.DESIGN

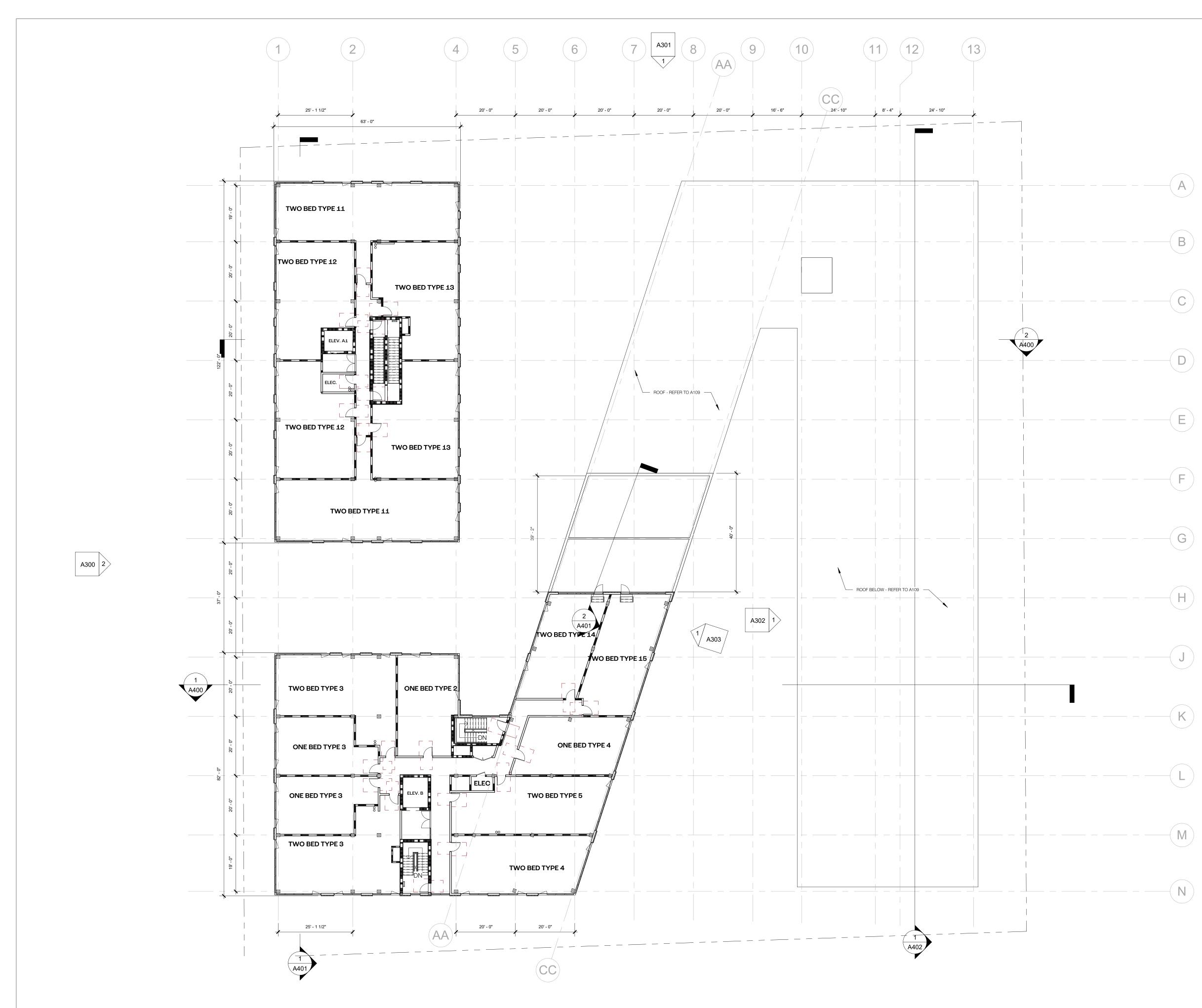

#### NOT FOR CONSTRUCTION FOR REVIEW ONLY

NEDERVELD 3037 MILLER RD ANN ARBOR, MI 48103 734.929.6963

ASPECT STRUCTURAL ENGINEERS 101-190 W 3RD AVE VANCOUVER, BC V5Y 1E9 HELLO@ASPECTENGINEERS.COM 604.762.78444

GREENPATH DESIGN 139 W LIBERTY STREET PLYMOUTH, MI 48170 INFO@GREENPATH.DESIGN 734.926.5593

ETS ENGINEERING, INC. P.O. BOX 1116 ROYAL OAK, MI 48068 248.744.0360




No.	Description	Date
	SCHEMATIC DESIGN	01/03/23
	SITE PLAN RESUB.	04/24/23
	1610 WHITE STR	EET
Λ	NN ARBOR, MI 48	
	SOUTHTOV	VN



202121 PROJECT NUMBER 04/24/2023 DATE





1 <u>LEVEL 8</u> 1/16" = 1'-0"

# **PLAN NOTES**

2X MTL STUD @ 16" O.C. NON LOAD BEARING PARTITION WALL W/ SAFE'N'SOUND 3"

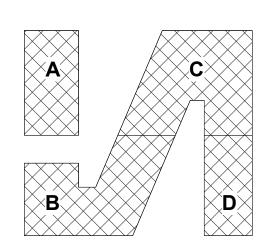
1-HR FIRE RATED WALL - SEE DETAIL 06/A600 FOR ASSEMBLY

2-HR FIRE RATED WALL - 12" REINFORCED CONCRETE WALLS, REFER TO STRUCTURAL - HAT CHANNEL AND 5/8" GYP @ 1 SIDE



# SYNECDOCHE

1342 N MAIN ST. #11 ANN ARBOR, MI 48104 HELLO@SYNECDOCHE.DESIGN


#### NOT FOR CONSTRUCTION FOR REVIEW ONLY

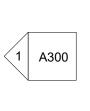
NEDERVELD 3037 MILLER RD ANN ARBOR, MI 48103 734.929.6963

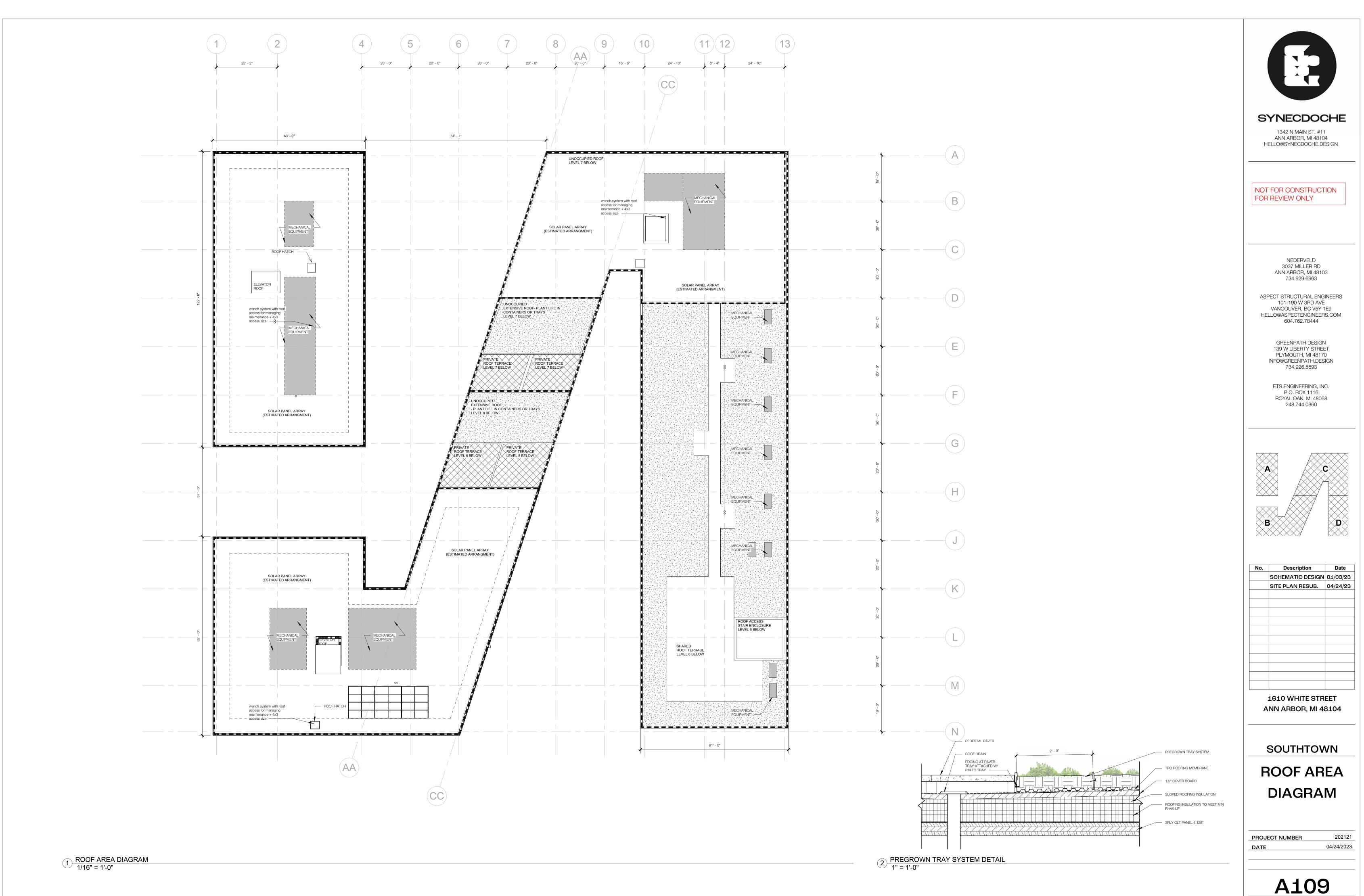
ASPECT STRUCTURAL ENGINEERS 101-190 W 3RD AVE VANCOUVER, BC V5Y 1E9 HELLO@ASPECTENGINEERS.COM 604.762.78444

GREENPATH DESIGN 139 W LIBERTY STREET PLYMOUTH, MI 48170 INFO@GREENPATH.DESIGN 734.926.5593

ETS ENGINEERING, INC. P.O. BOX 1116 ROYAL OAK, MI 48068 248.744.0360

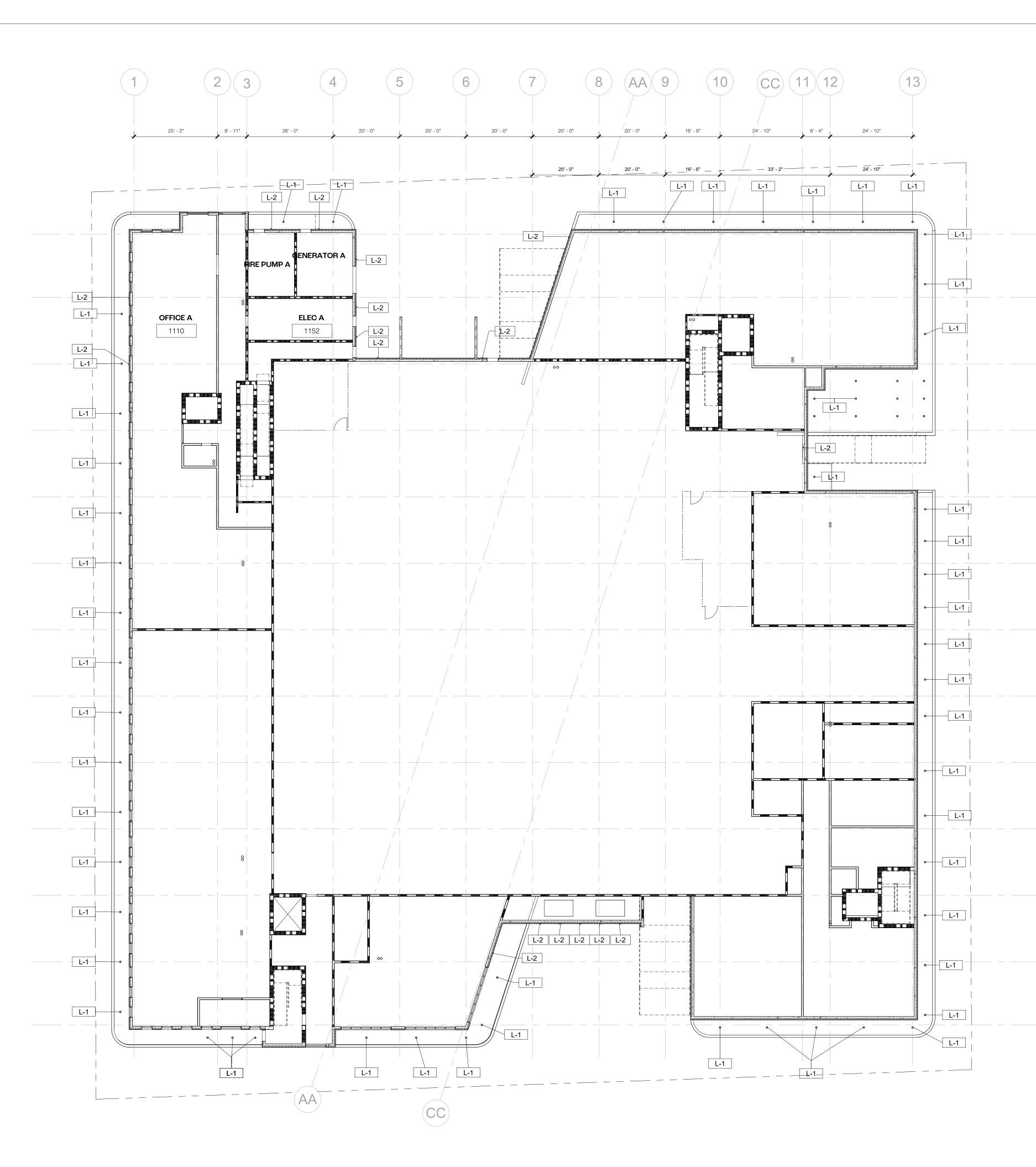



No.	Description	Date
	SCHEMATIC DESIGN	
	SITE PLAN RESUB.	04/24/23
	ONE PLANTLOOD.	04/24/20
	1610 WHITE STR	FFT
P	NN ARBOR, MI 48	3104
	SOUTHTOV	VN

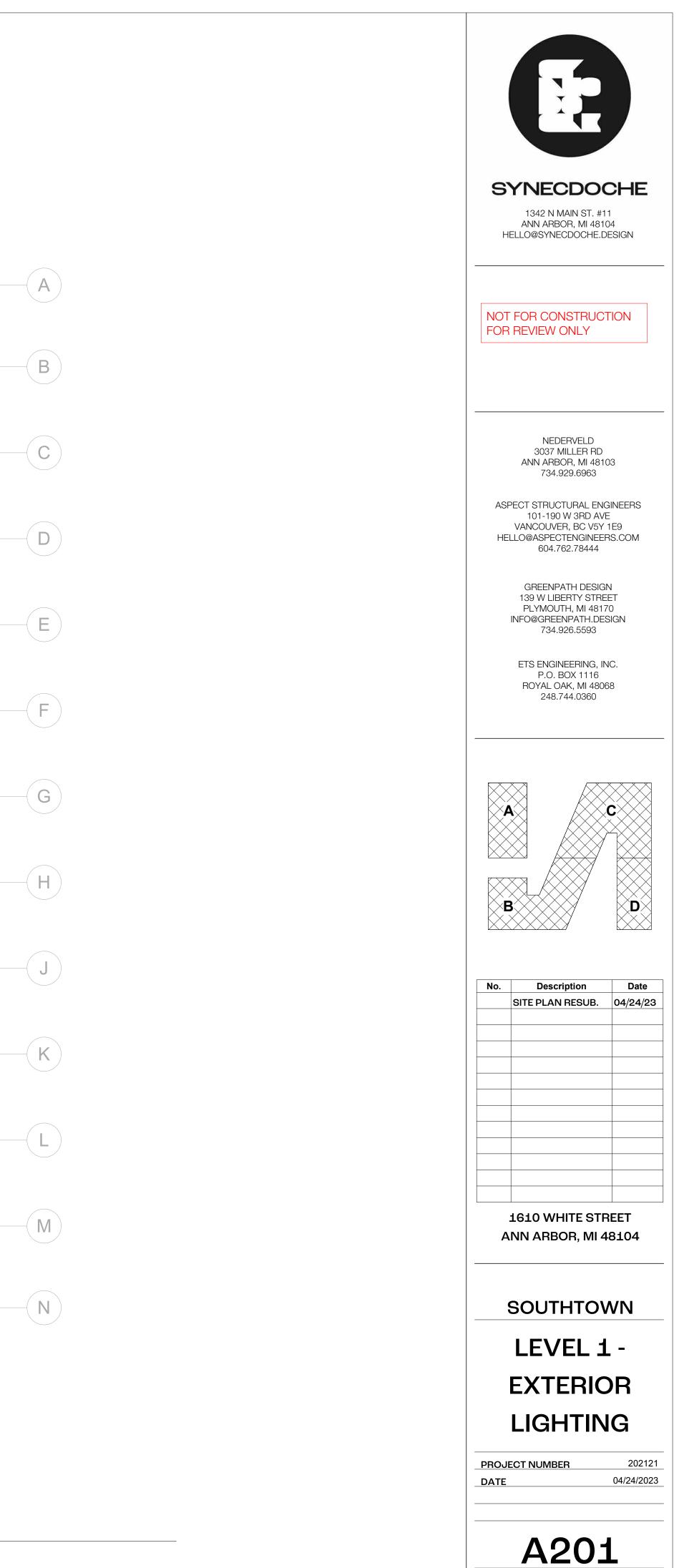



 PROJECT NUMBER
 202121

 DATE
 04/24/2023



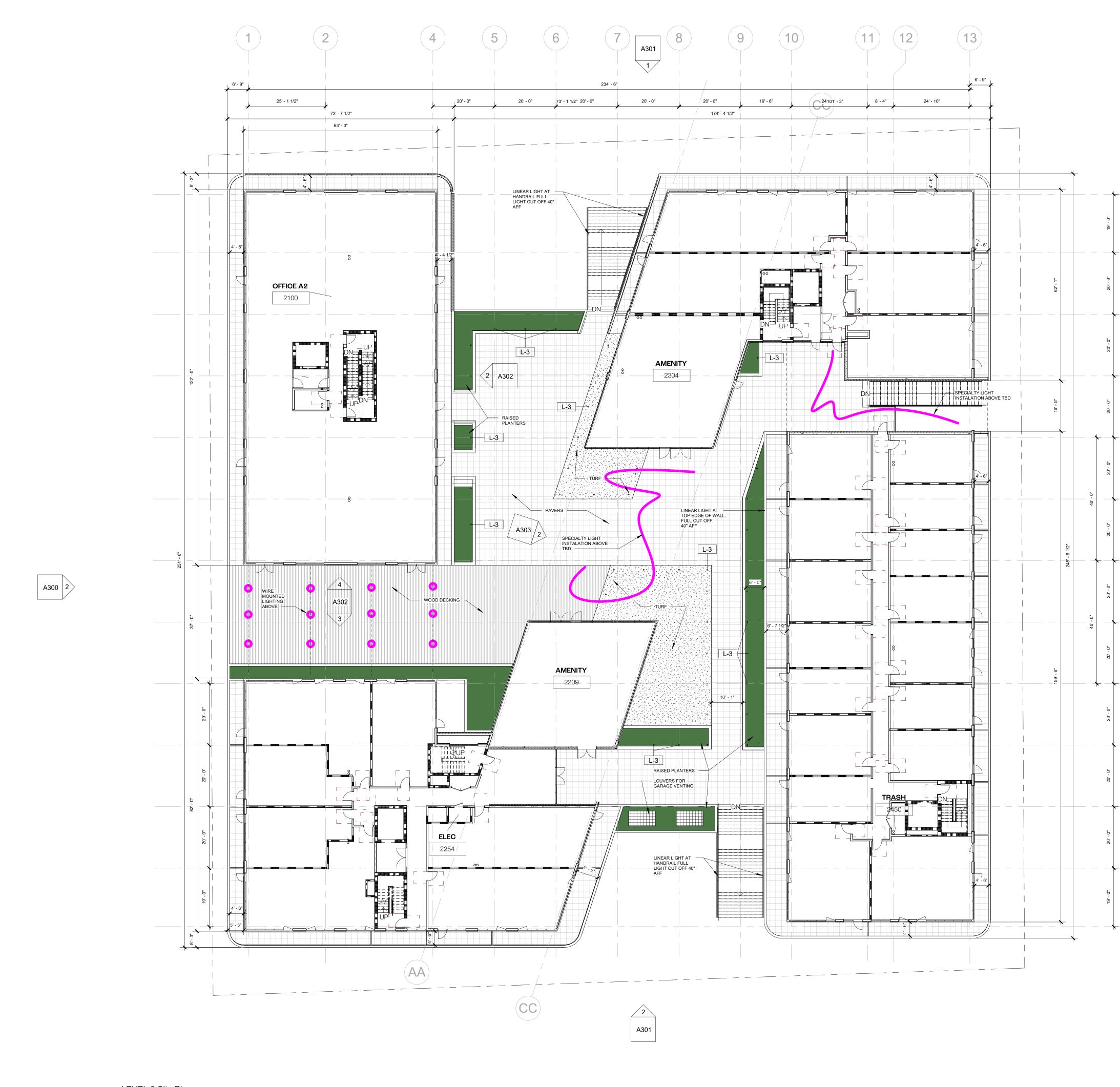


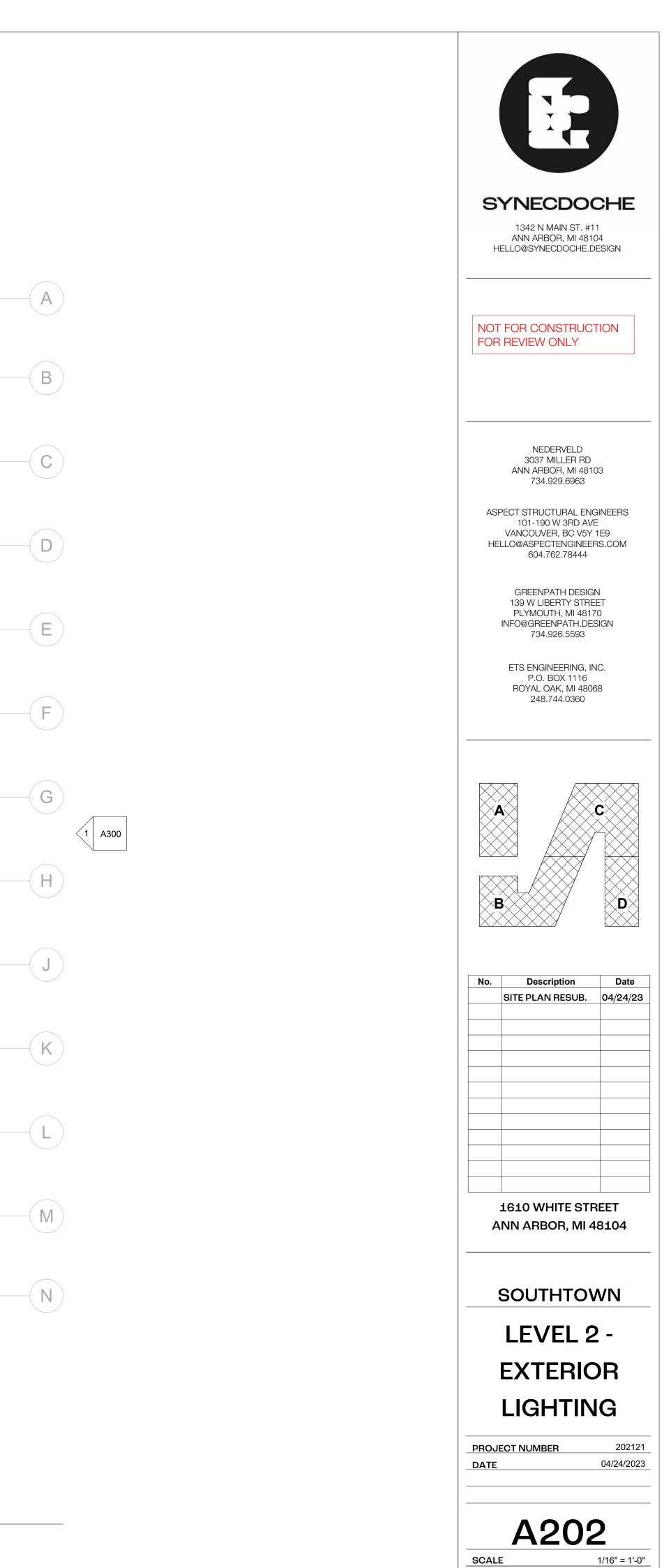

As indicated

SCALE

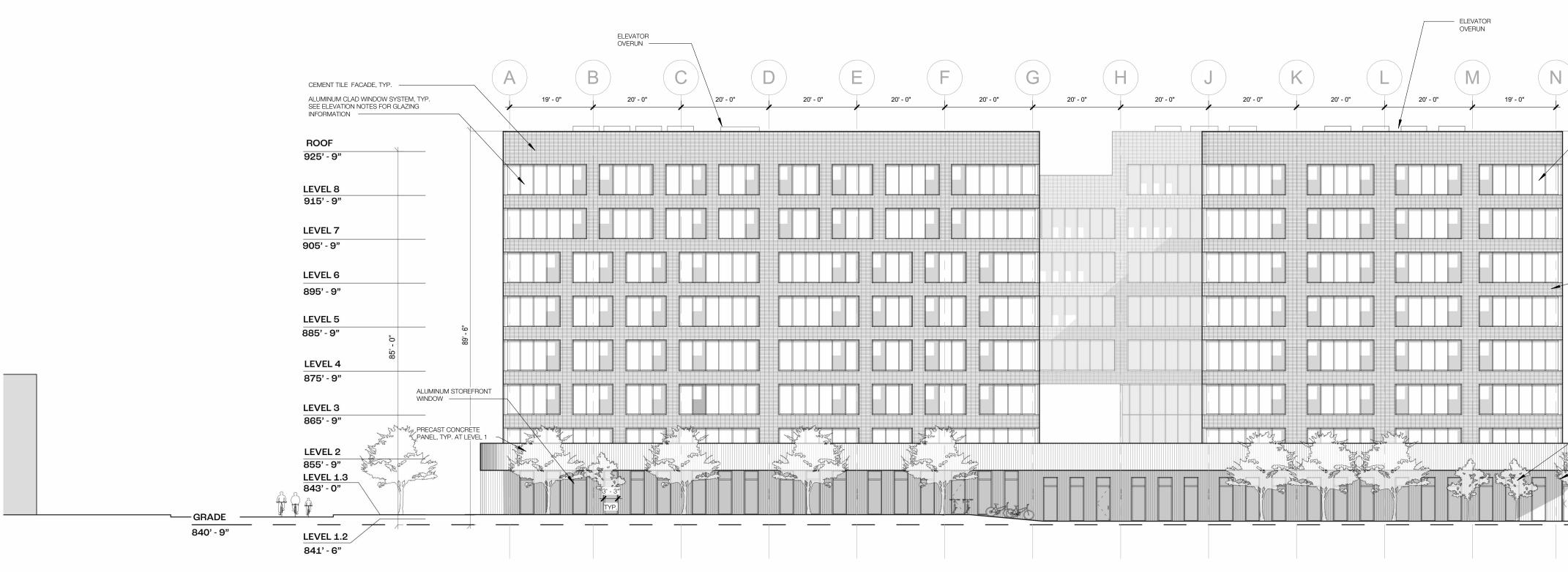



1 <u>LEVEL 1 RCP</u> 1/16" = 1'-0"




01/2023 1-44-10 DM

1/16" = 1'-0"


SCALE




1 <u>LEVEL 2 Site Plan</u> 1/16" = 1'-0"



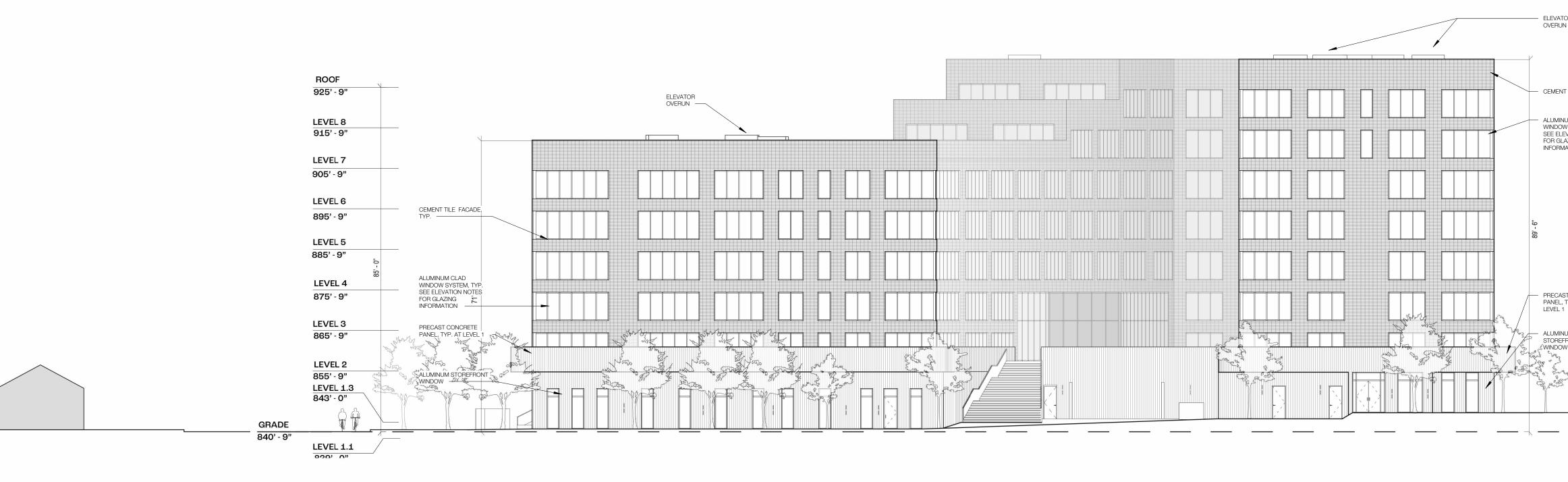
#### 2 WEST ELEVATION 1/16" = 1'-0"

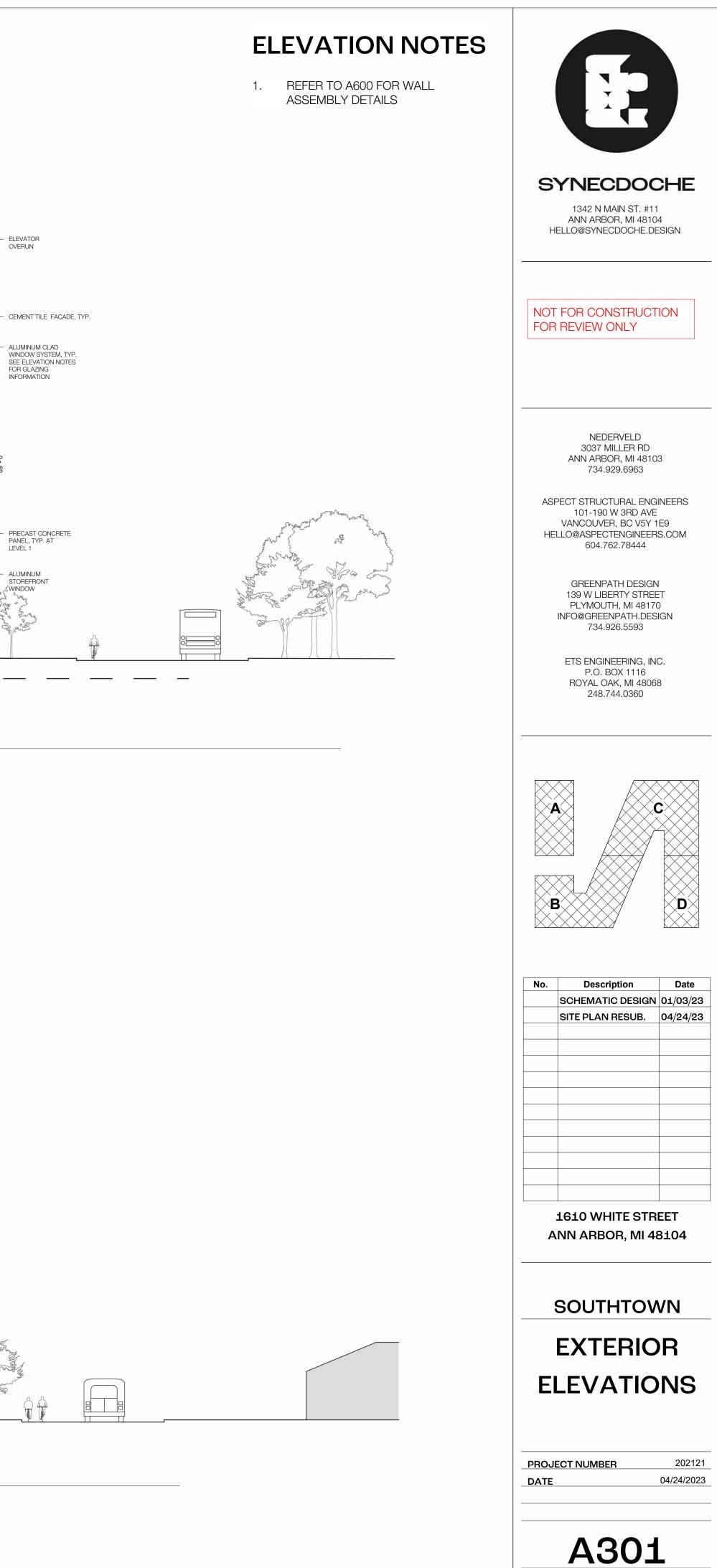






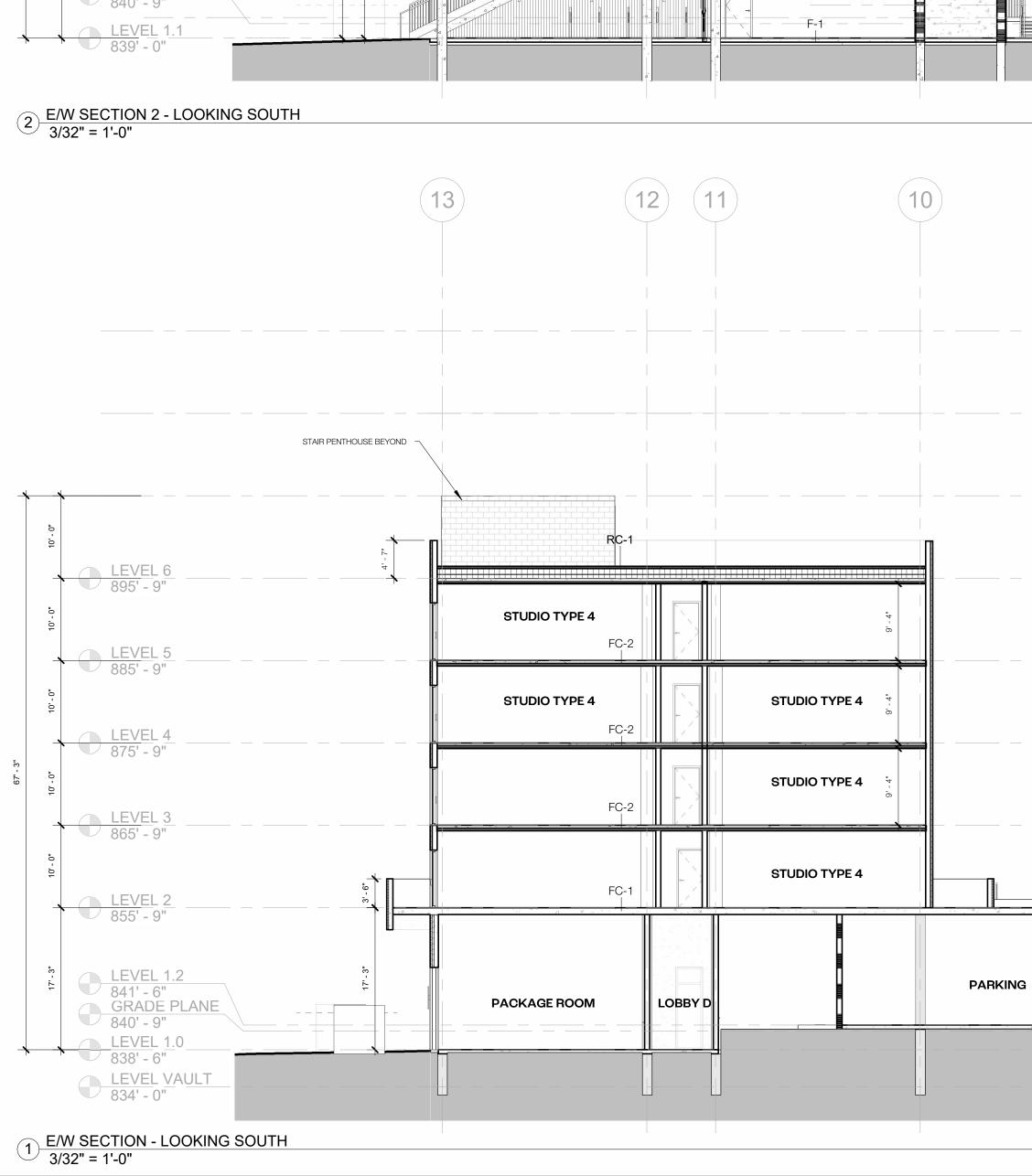
	ELEVATION NOTES 1. REFER TO A600 FOR WALL ASSEMBLY DETAILS	
		SYNECDOCHE 1342 N MAIN ST. #11 ANN ARBOR, MI 48104 HELLO@SYNECDOCHE.DESIGN
		NOT FOR CONSTRUCTION FOR REVIEW ONLY
CEMENT TILE FACADE, TYP. ALUMINUM CLAD WINDOW SYSTEM, TYP.		NEDERVELD 3037 MILLER RD ANN ARBOR, MI 48103 734.929.6963 ASPECT STRUCTURAL ENGINEERS
PRECAST CONCRETE PANEL, TYP. AT LEVEL 1 ALUMINUM STOREFRONT WINDOW		101-190 W 3RD AVE VANCOUVER, BC V5Y 1E9 HELLO@ASPECTENGINEERS.COM 604.762.78444 GREENPATH DESIGN 139 W LIBERTY STREET PLYMOUTH, MI 48170 INFO@GREENPATH.DESIGN 734.926.5593 ETS ENGINEERING, INC. P.O. BOX 1116 ROYAL OAK, MI 48068
		248.744.0360
ALUMINUM CLAD WINDOW SYSTEM, TYP. SEE ELEVATION NOTES FOR GLAZING INFORMATION CEMENT TILE FACADE, TYP.		No.DescriptionDateSCHEMATIC DESIGN01/03/23SITE PLAN RESUB.04/24/23Image: Stress of the stres
96. 97.		1610 WHITE STREET ANN ARBOR, MI 48104
ALUMINUM STOREFRONT WINDOW PRECAST CONCRETE PANEL, TYP. AT LEVEL 1		SOUTHTOWN
		EXTERIOR ELEVATIONS
		PROJECT NUMBER 202121 DATE 04/24/2023


As indicated


SCALE

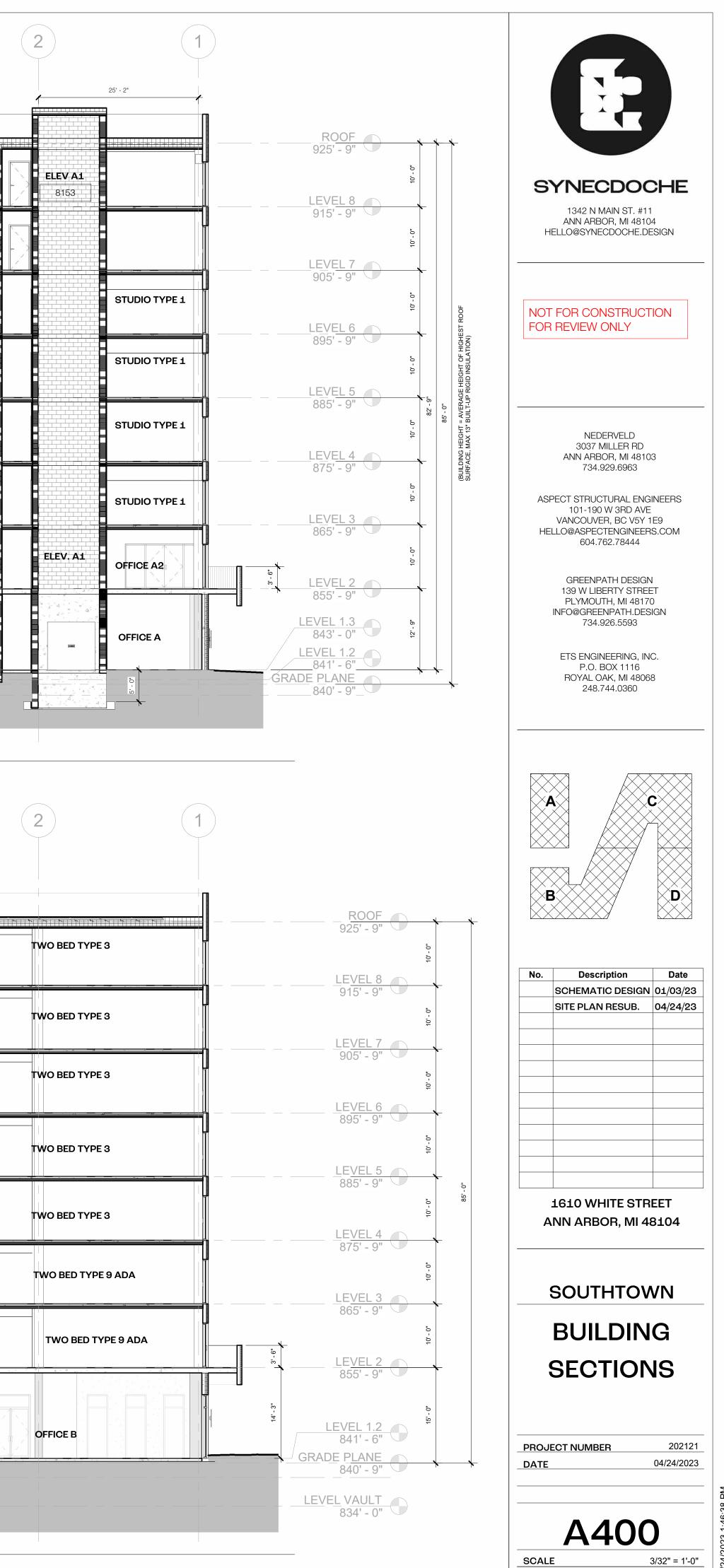
#### 2 SOUTH ELEVATION 1/16" = 1'-0"




#### 1 NORTH ELEVATION 1/16" = 1'-0"



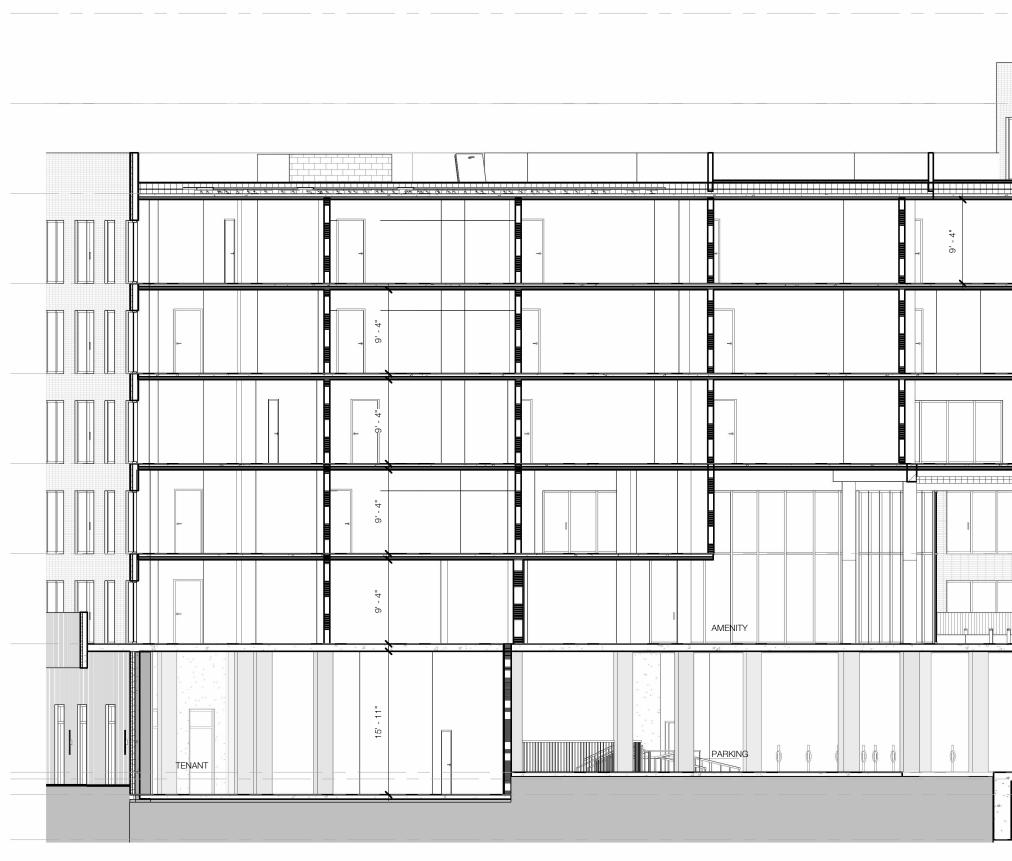




As indicated

SCALE

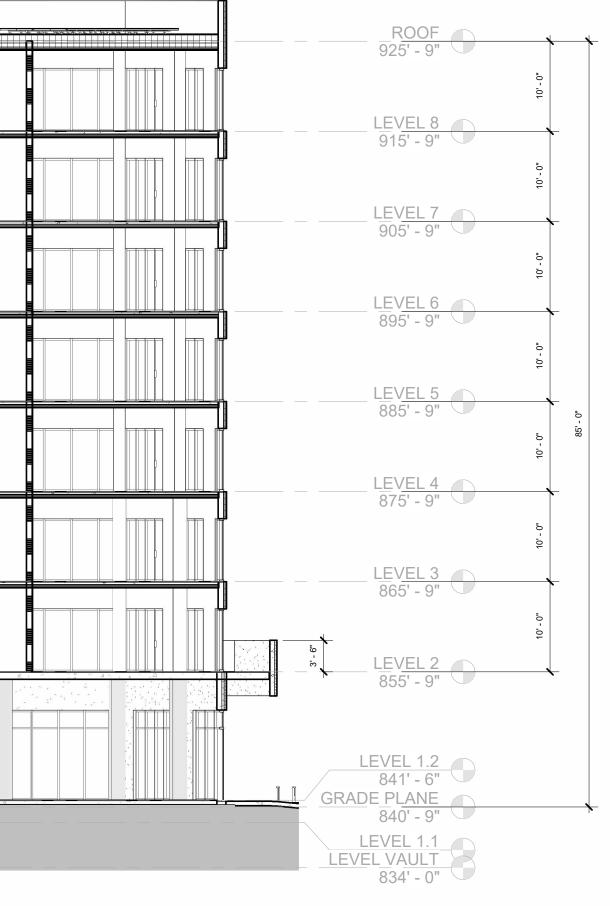


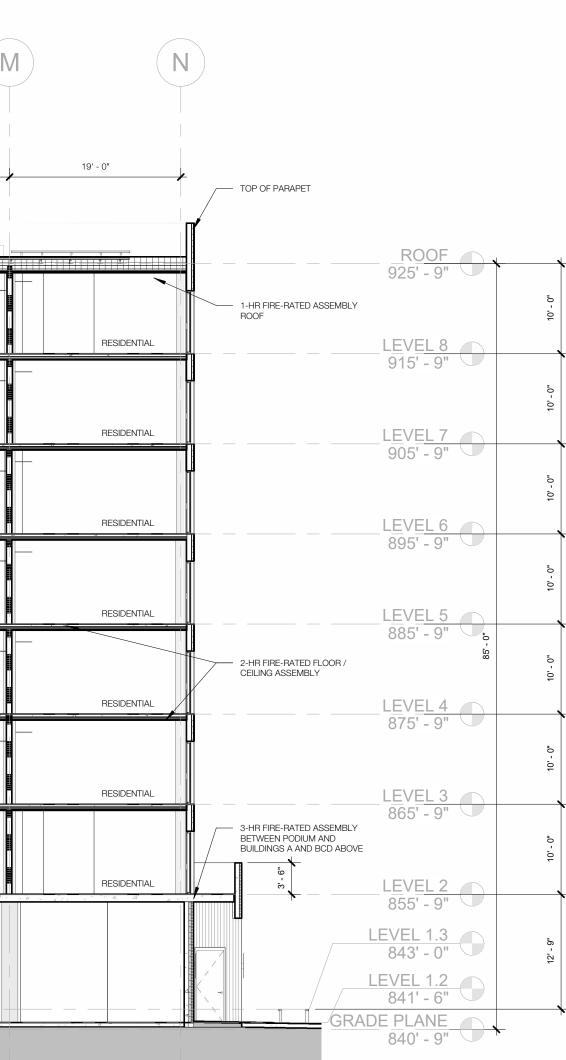



9	8	7	6		5	1	
			TWO BED TYPE 15	O BED TYP			
     			ONE BED TYPE 4	ō		ONE BED TYPE 2	
			ONE BED TYPE 4			ONE BED TYPE 2	
     				9 4"		ONE BED TYPE 2	
			AMENITY	19 - 4"		ONE BED TYPE 2	
3							



─ N/S SE	CTION - LOOKING FAST
1 3/32" =	ECTION - LOOKING EAST = 1'-0"


										- <b>*</b> . 
N/S S	SECTION T KING EAS	THROUGH D	IAGONAL							
2 3/32	2" = 1'-0"	-								
			Δ	D						
			A	B						
			19' - 0"		20' - 0"	2	0' - 0"	20' - 0	)"	
		г				T				
			RESIDENTIAL							
			RESIDENTIAL							
			RESIDENTIAL		,	-		1-HR FIRE RA WALL ASSEM BETWEEN UN	TED 7	
			RESIDENTIAL							
			RESIDENTIAL							
			RESIDENTIAL				·			
	3 0.		OFFICE							
	12' - 9"									

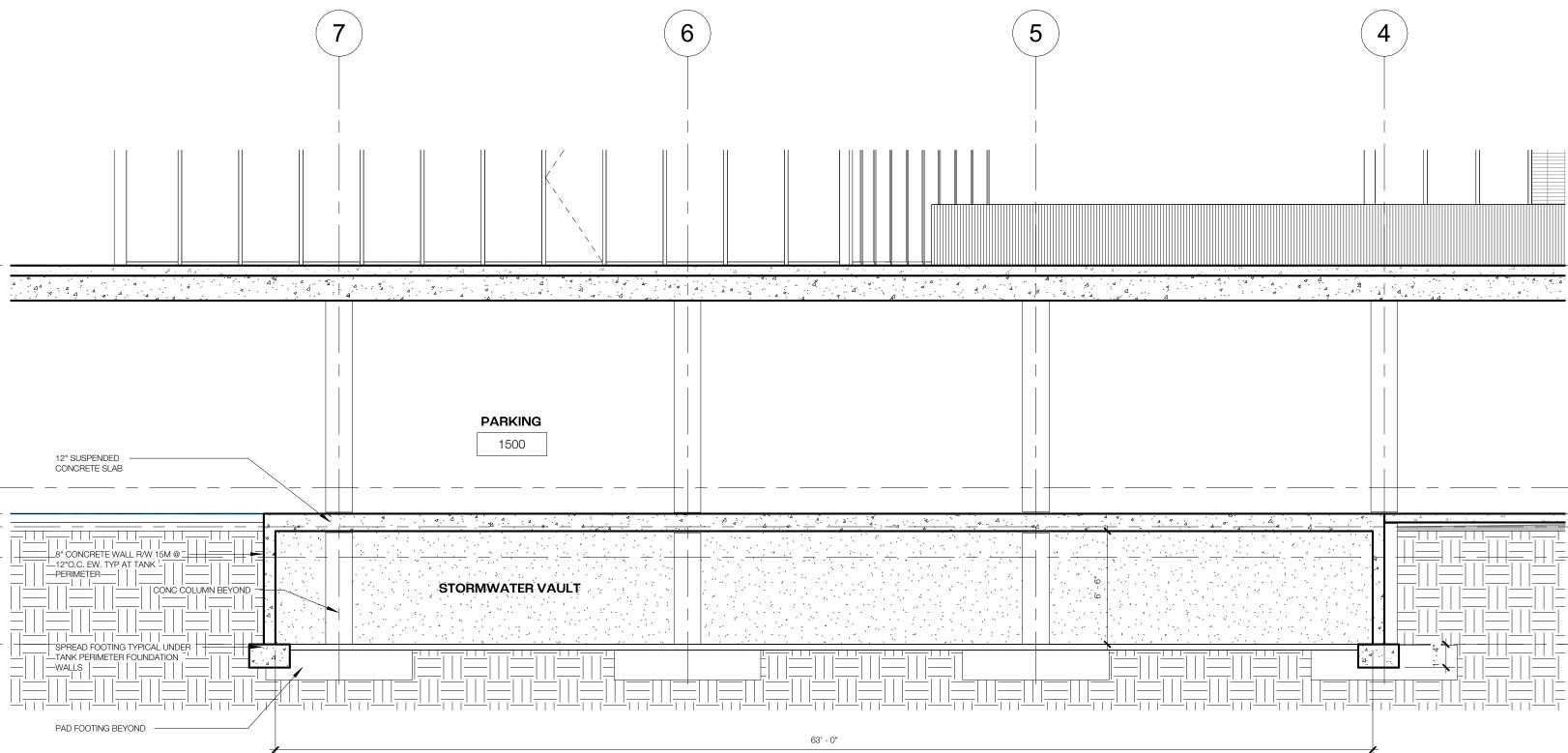


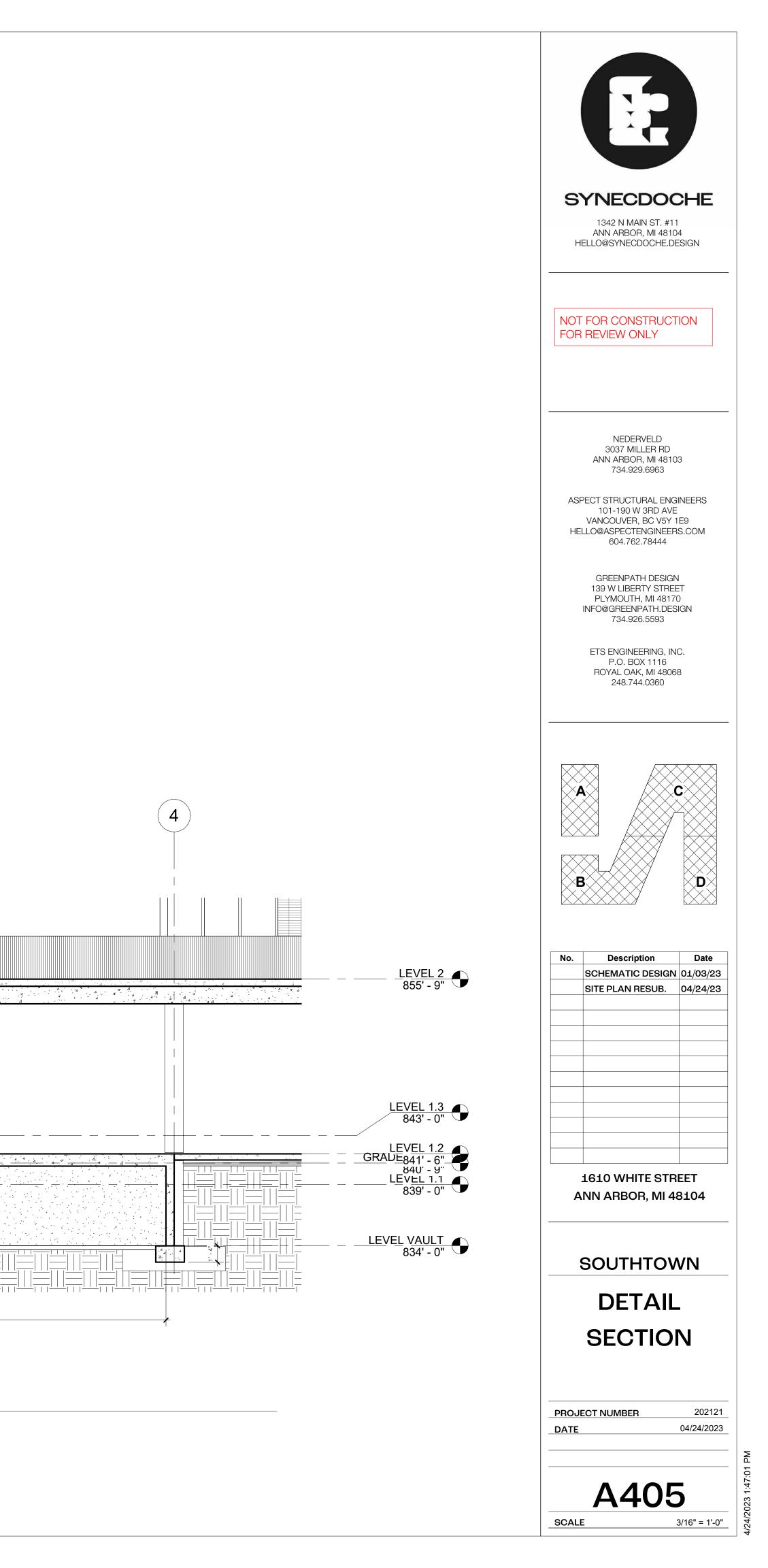


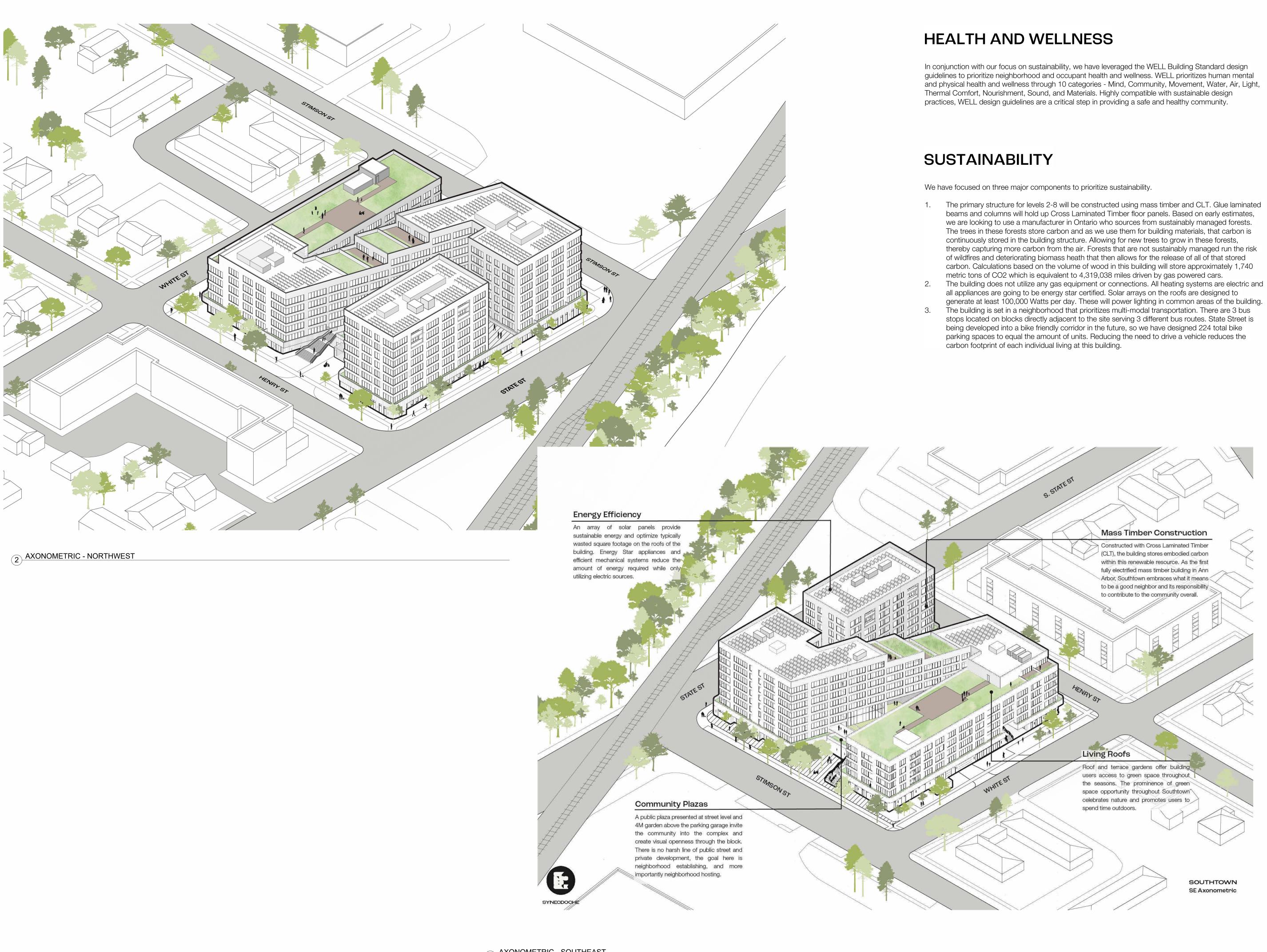

	- 0 - 5		
	0 		
	AMENITY		

	F	G			K		Λ
20' - 0"	20' - 0"	20' - 0"	20' - 0"	20' - 0"	20' - 0"	20' - 0"	
P       P       P         P							
	THE RESIDENTIAL			9 - 4 - 4			
	۴ ۵ RESIDENTIAL			9 4. -			
	RESIDENTIAL						
	RESIDENTIAL						
	۲ 6 RESIDENTIAL			0 			
	OFFICE	PUBLIC ROOF GARDEN					
	OFFICE	OFFICE					

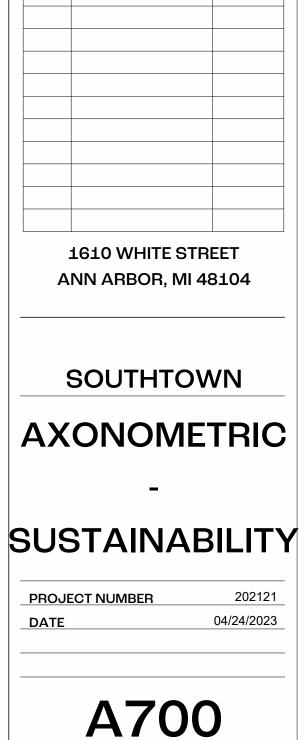






Image: Constraint of the second state of the second sta
NOT FOR CONSTRUCTION FOR REVIEW ONLY
<text><text><text><text></text></text></text></text>
No.DescriptionDateSCHEMATIC DESIGN01/03/23SITE PLAN RESUB.04/24/23IndextIndext
1610 WHITE STREET ANN ARBOR, MI 48104
SOUTHTOWN BUILDING SECTIONS
PROJECT NUMBER       202121         DATE       04/24/2023         A401       3/32" = 1'-0"


GRADE PLANE 840' - 9"

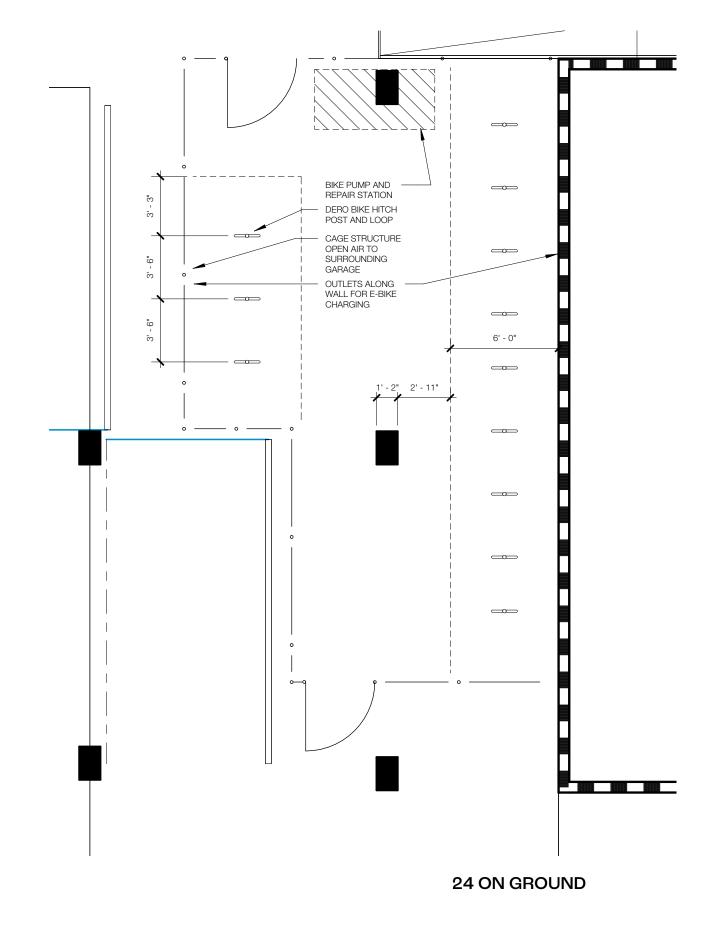
_____

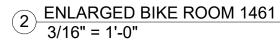

1 Section 24 VAULT 3/16" = 1'-0"

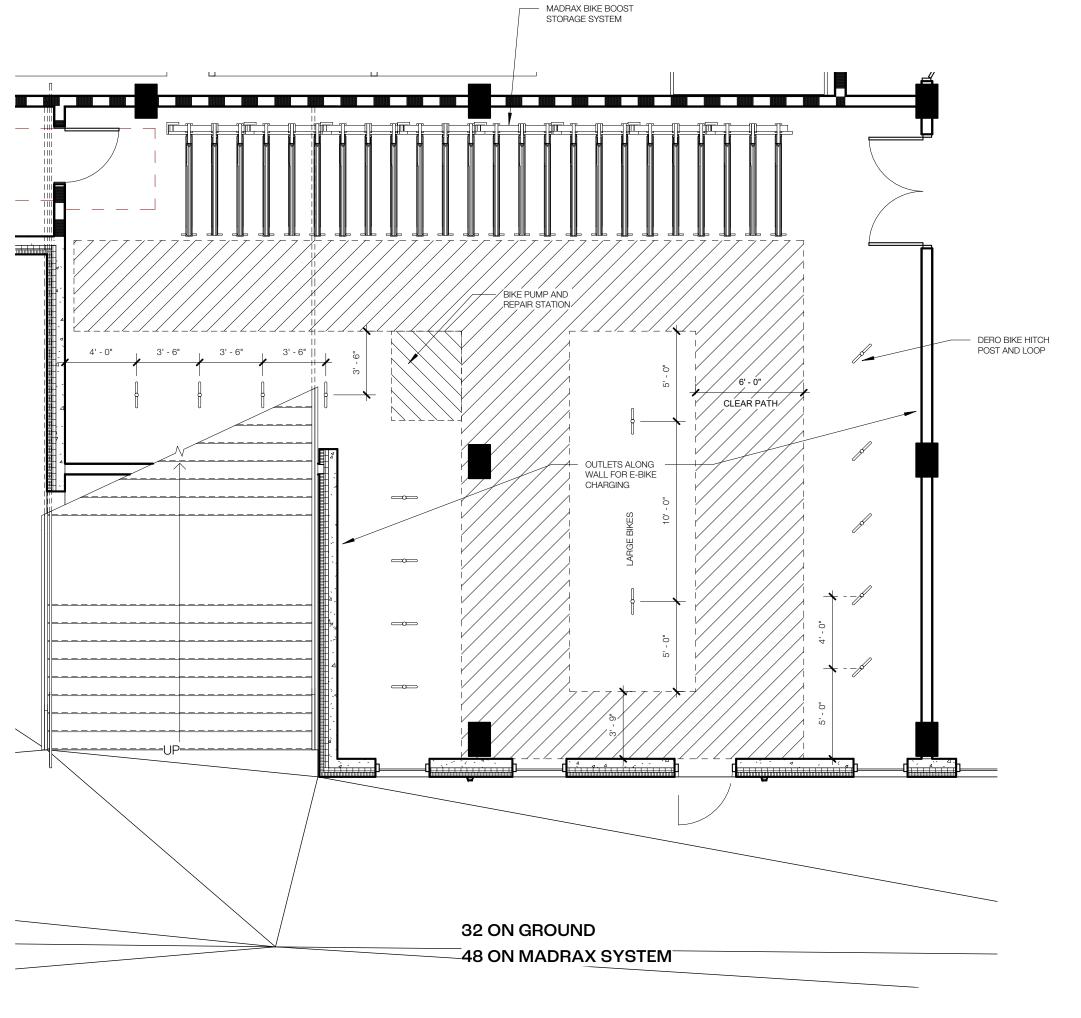


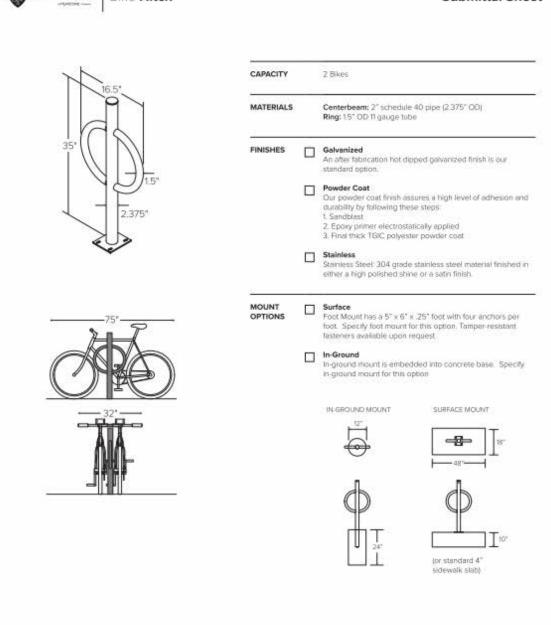






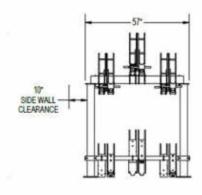


1/4" = 1'-0"


SCALE












Bike Hitch*

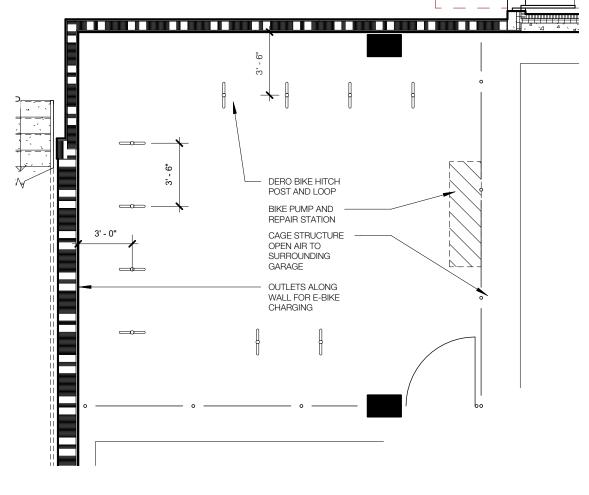
Submittal Sheet

# Bike Boost Storage™



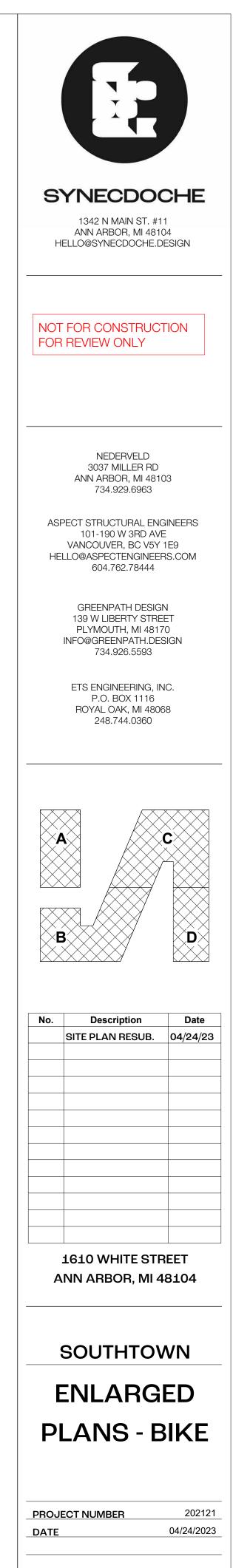


#### Galvanized


Withstanding the elements with little to no maintenance, our galvanized products are durable and weather to a battleship grey. For this finish, the product will have vent holes that will allow draining after a hot-dip in the molten zinc tank. A galvanized product is an economical choice that resists rust. This finish comes wiht a 5-year warranty.

## Super TGIC Powder Coat

Available in 18 vibrant shades, super TGIC coated products will stain significantly less from UV light than other finishes. This finish has a 1-year warranty. Standard e-Steele¹⁴ colors are shown. Contact Madrax for a complete color chart.

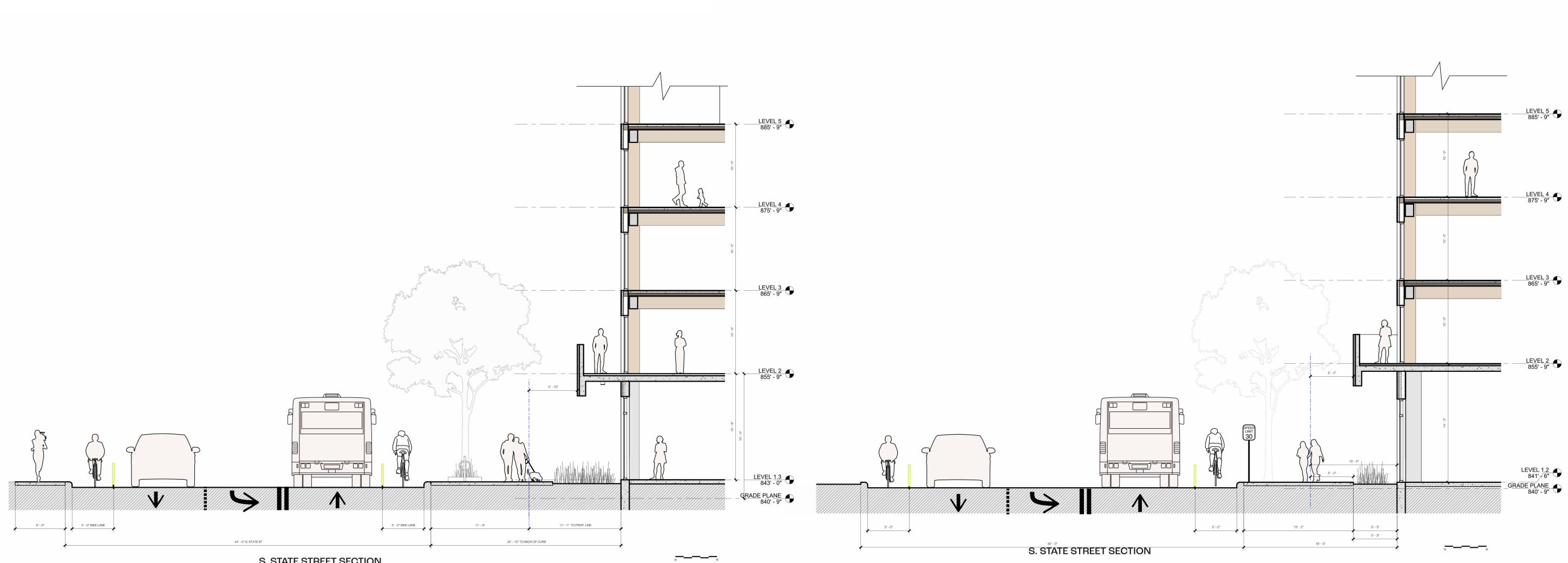


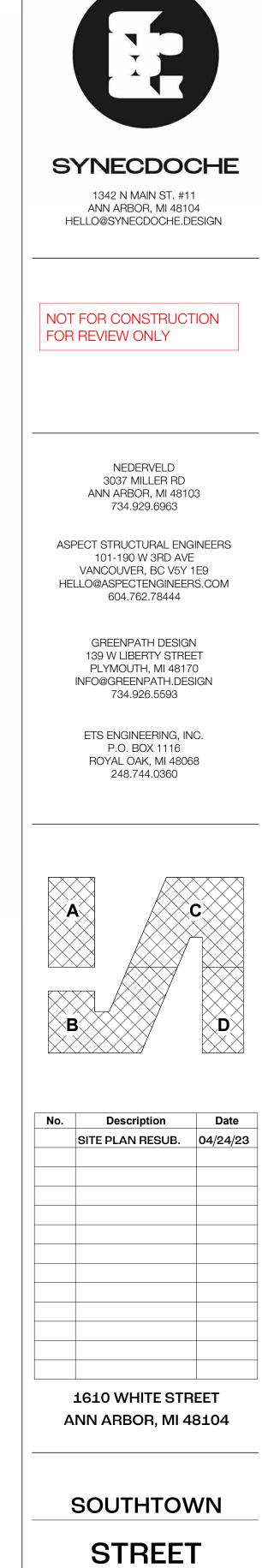





20 ON GROUND

1 ENLARGED BIKE AREA A 3/16" = 1'-0"




24/2023 1:49:28 PM



S. STATE STREET SECTION





SECTIONS

202121 PROJECT NUMBER 04/24/2023 DATE

