REDEEMER ANN ARBOR
 Historic Preservation \& Adaptive Reuse of the Former Treasure Mart Building
 521 - 529 Detroit Street
 Traffic Impact Study

City of Ann Arbor, Washtenaw County, Michigan

Prepared By:
Deborah S. McAvoy, PE, PTOE
Washtenaw Engineering Company 3526 West Liberty Road, Suite 400 Ann Arbor, MI 48106

January 2022

TABLE OF CONTENTS

1. ANALYSIS SUMMARY 3
2. INTRODUCTION
2.1 Study Purpose and Traffic Analysis Area 5
3. SITE CHARACTERISTICS
3.1 Field Observations 6
3.2 Adjacent Land Uses 7
3.3 Existing Transportation System 7
3.4 Proposed Development Entrances 9
4. ANALYSIS METHODOLOGIES
4.1 Existing Conditions 10
4.2 Background Conditions 10
4.3 Proposed Development Trip Generation 12
4.4 Traffic Assignments 13
4.5 Capacity and Level of Service Definitions 16
5. ANALYSIS \& FINDINGS
5.1 Broadway Street \& Summit Street 18
5.2 Division Street \& Detroit Street 19
5.3 Beakes Street \& $5^{\text {th }}$ Avenue 20
5.4 Kingsley Street \& $5^{\text {th }}$ Avenue 21
5.3 Kingsley Street \& Detroit Street 22
6. REFERENCES 23
APPENDICIES
A. SITE PLAN
B. TRAFFIC COUNTS
C. ITE DIAGRAM
D. LOCAL PARKING SURVEY
E. EXISTING PEAK HOUR DIAGRAMS
F. BACKGROUND PEAK HOUR DIAGRAMS
G. SITE GENERATED PEAK HOUR DIAGRAMS
H. FUTURE PEAK HOUR DIAGRAMS
I. CAPACITY ANALYSIS OUTPUT

1. ANALYSIS SUMMARY

Redeemer Ann Arbor is the proposed re-development and adaptive reuse of the former Treasure Mart building into a house of worship. Located on Detroit Street between North Division Street and Kingsley Street, the proposed reuse will not generate significant vehicular trips on weekdays during either the AM and PM peak hour as the church does not schedule worship services these times. Worship services will be limited to mid-morning on Sundays, which will place a very low burden on the surrounding roadway systems.

As part of the study, existing traffic volumes were collected on a typical Sunday in December 2021 to evaluate the existing and background conditions on the roadway network. As observed traffic counts in the area have varied up and down significantly over the past ten years, and in particular over the past two years due to the impact of COVID-19, determining a consistent trend of background growth for the area is challenging. As it is not suitable to assume a flat or negative rate of growth for traffic on the existing roadway network, for the purposes of this study a background growth factor of one percent has been assumed.

A trip generation analysis for the proposed reuse was performed based on the rates/equations included in the ITE Trip Generation report (10th Edition) for Church Land Use 560. The predicted number of trips for Sunday services are as follows:

- Sunday Peak Hour of Generator - 94 trip ends

As the property for the proposed re-use has limited parking, it is assumed for the purposes of the study that the on-site parking will be fully utilized by church staff and other visitors who arrive to the facility significantly prior to the start of Sunday worship services. Additionally, it is assumed that on Sunday mornings the local on-street parking will be fully utilized by local residents on Detroit Street and the immediate surrounding streets. As a result, visitors to the church for Sunday services will be required to utilize nearby public parking lots, including the Farmers Market lots and Community High lot in the vicinity of Kingsley Street and Detroit Street. For the purposes of the study, these lots, and not the church property, have been assumed to be the primary destination for visitors in the hour prior to Sunday services as well as the primary point of departure in the hour after Sunday services, with trips being distributed along the roadway network based on proportional traffic movements at the nearby intersections.

Highway capacity analyses were performed for the following locations:

- Broadway Street and Summit Street
- Division Street and Detroit Street
- Beakes Street and $5^{\text {th }}$ Avenue
- Kingsley Street and $5^{\text {th }}$ Avenue
- Kingsley Street and Detroit Street

Based on the approach geometries, traffic patterns, and traffic volumes for the above intersections, it is observed that each intersection in the existing and background condition performs very well in the hour prior to Sunday worship services as well as the hour after. Given the relatively light traffic volumes in this area of Ann Arbor on Sunday morning, Level of Service values of A and B are predominant, and the introduction of additional traffic related to the future condition of the proposed site reuse does not degrade levels of service at any of the intersections. Level of Service values remain predominantly at A and B for the approaches, and each intersection performs very well even with the additional traffic, indicating the additional volumes do not negatively impact the roadway network.

2. INTRODUCTION

The Redeemer Ann Arbor project involves the adaptive reuse of the former Treasure Mart building at 521-529 Detroit Street for use as a house of worship by the Redeemer Church of Ann Arbor Ministry. The Redeemer Church proposed to move their worship services from their present location in the renovated and restored former DKE Shant Building at $611 \frac{1}{2}$ Williams Street to the Detroit Street location in middle to late 2022. The proposed adaptive reuse will result in a building with approximately 9,300 gross square feet of floor area. The general location of the proposed project is shown below.

Figure 1. Redeemer Ann Arbor Location Map.

2.1 STUDY PURPOSE \& TRAFFIC ANALYSIS AREA

The Washtenaw Engineering Company (WECO) has been retained to evaluate the traffic impacts of the proposed development as well as develop traffic mitigation strategies, as necessary. In preparation of this traffic impact analysis, the manual prepared by McKenna Associates and the WBDC Group, Evaluating Traffic Impact Studies - A Recommended Practice for Michigan Communities, as well as other traffic engineering resources have been consulted to ensure a thorough and complete evaluation of the proposed site
development. Additionally, the following objectives for the proposed development have been established for this study.

- Perform a field review of the roadway characteristics in the immediate vicinity of the development.
- Gather turning movement counts for the hour prior and hour after proposed Sunday morning worship services at the nearest major intersection(s).
- Make a reasonable assumption for background traffic growth.
- Establish the Sunday peak period future trip generation for the proposed development using the Institute of Transportation Engineers (ITE) Trip Generation report.
- Perform a trip distribution and traffic assignment analysis to forecast future traffic on the existing roadways.
- Analyze the existing traffic and proposed conditions utilizing methodologies from the Highway Capacity Manual, as published by the Transportation Research Board of the National Academies, as well as Synchro10 and SimTraffic software.
- Develop recommendations, including any mitigation measures as necessary, based on the results of the above analysis.

3. SITE CHARACTERISTICS

3.1 FIELD OBSERVATIONS

WECO staff performed field observations and traffic movement counts at the following intersections on December 5, 2021, from the period of 9:30 AM until 12:30 PM while locale schools and the University of Michigan were still in session.

- Broadway Street and Summit Street
- Division Street and Detroit Street
- Beakes Street and $5^{\text {th }}$ Avenue
- Kingsley Street and $5^{\text {th }}$ Avenue
- Kingsley Street and Detroit Street

3.2 ADJACENT LAND USES

The proposed redevelopment project is situated among a mixture of singlefamily and multi-family residential dwellings, including on adjacent streets to the west and east. To the immediate south beyond Kingsley Street, land uses become more commercial and retail, with a mixture of boutique shops, restaurants, small professional offices, and a community high school. To the immediate north is Depot Street, which runs parallel to the Huron River.

3.3 EXISTING TRANSPORATION SYSTEM

Within the vicinity of the proposed redevelopment, the study area includes a mixture of one-way and two-way local roads, the majority of which are two lane and controlled by stop sign, with the one exception being the intersection of Kingsley Street and $5^{\text {th }}$ Avenue, which is signalized. The intersection in this study have been analyzed during the hour prior to Sunday worship services as well as the hour after services end to establish existing levels of services, background traffic conditions assuming the development is not constructed, and future traffic conditions assuming the development is fully constructed.

Figure 2. Road network north of the proposed redevelopment.

Figure 3. Road network south of the proposed redevelopment.

In addition to the road network, there are also several banks of public and private parking that are identified in the immediate vicinity of the proposed redevelopment. On Figure 3, the Community High School and Farmers Market public lots are shown. Characteristics of these lots and their impact on trip distribution are discussed in Section 4.4, Traffic Assignments.

3.4 PROPOSED DEVELOPMENT ENTRANCES

The proposed resevelopment is located on Detroit Street approximately halfway between the intersections of Kingsley Street and Division Street. The existing two-way gravel entrance to the site will be replaced with a one-way circulation driveway that provides access into the site through the existing driveway and exits on the northeast corner of the building as shown below. Traffic will be able to enter the site from either direction on Detroit Street, and traffic will also be able to exit on Detroit Street in either direction as well.

Figure 4. Redeemer Ann Arbor access to/from Detroit Street.
As part of the redevelopment, the site will have seventeen parking spaces, which includes two ADA accessible spaces. For the purposes of the study, these spaces will be assumed to be fully occupied by Redeemer AA staff and other visitors who arrive significantly earlier than regular worshipers for Sunday services.

The site plan for Redeemer AA is provided in Appendix A of this study.

4. ANALYSIS METHODOLOGIES

A traffic impact analysis attempts to quantify the volume of additional traffic a proposed development will generate and assess the impacts of that additional traffic on adjacent roadways. WECO utilizes several accepted methodologies to compile existing traffic volumes and patterns, estimate background traffic volumes, and generate future traffic volumes from the proposed development. A brief description of each methodology follows below.

4.1 EXISTING CONDITIONS

The analysis of existing conditions provides a baseline of operations for the transportation network. This analysis provides an understanding of how the network is currently operating and assists in determining if there are any existing conditions that may be adversely affected by additional vehicles or changes in traffic patterns. Existing conditions are determined through field observations and traffic counts in the vicinity of the proposed development area, which WECO has performed. The existing traffic counts are provided in Appendix B of this study, while volume diagrams illustrating conditions an hour prior to and an hour after Sunday worship services are provided in Appendix E of this study.

4.2 BACKGROUND CONDITIONS

Developing future and proposed traffic volumes requires knowledge of the area growth patterns, regional attractions and proposed projects in the area. The purpose of including background traffic in the future traffic condition is to account for the increase in traffic volumes from the time of the study to the time of actual development. It is assumed that the proposed redevelopment will be constructed within one (1) year from the time the traffic counts were taken, which corresponds to mid to late 2022.

Historic traffic count data for the immediate vicinity of the proposed site development is utilized to determine and assess the growth patterns at the local and county levels. The data is used to illustrate changes in the annual growth rate of traffic volumes prior to construction of the proposed development and estimate a growth rate of background traffic.

At the time of this study, historic traffic data in the immediate vicinity of the proposed site development was not available due to the inaccessibility of SEMCOG online traffic count data. However, from other recent traffic impact studies Ann Arbor and the surrounding area in the past year, a decline in traffic volumes has been observed, particularly due to the impacts of the COVID pandemic. However, it is not reasonable to assume a negative or zero growth in background traffic volume for the purposes of this study.

For the purposes of comparison, the Washtenaw Area Transportation Study 2040 Long Range Plan has projections for Washtenaw County based on its modeling, as shown below.

YEAR	PROJECTED AVG DAILY VEHICLE MILES TRAVELED	ANNUAL RATE OF CHANGE
$\mathbf{2 0 2 0}$	$13,750,000$	0.5%
$\mathbf{2 0 1 5}$	$13,400,000$	

Table 1. Washtenaw County Annual Average Daily VMT.
(Source: Washtenaw Area Transportation Study, 2040 Long Range Plan, accessed December 19, 2021).

While the WATS model suggests an annual county-wide increase of approximately 0.5%, the model does not account for the impacts to vehicle miles traveled by the recent COVID-19 pandemic. The short-term impact has been a significant decrease in traffic volumes, and currently there is no reliable projection to foresee the impacts to traffic in 2022. In spite of this uncertainty, for the purposes of this study, a one percent growth rate has been used to account for the increase in background traffic from the time of the study to the time of the proposed development's operation in late 2022.

The background hour traffic diagrams with an annual one percent growth rate applied to existing traffic volumes are provided in Appendix F of this study.

4.3 PROPOSED DEVELOPMENT TRIP GENERATION

A trip generation analysis to estimate future traffic demand from the proposed development has been performed utilizing the ITE methodology. This methodology utilizes empirical graphs based on models derived from data collected for specific types of land uses across the United States. These graphs provide a means to estimate the peak period traffic generated by developments. For the purposes of this analysis, the Church Land Use (LU 560) has been chosen to represent future traffic demand projects from the proposed development.

The Redeemer Ann Arbor church in its current location has limited, small gatherings on weekdays between the hours of 6:30 AM and 7:30AM as well as between 6:30 PM and 9:00 PM, neither of which have impact on the typical AM and PM peak hour periods. No services are provided on Saturdays, but Sundays reflect the church's main worship services, which occur between 10:30 AM and 11:30 AM. As these meeting times are anticipated to continue at the church's new location on Detroit Street, the Sunday worship services has been selected as the focus of this traffic study.

The empirical calculations for Sunday peak hour of generator traffic are shown below.

Sunday Peak Hour of Generator

$$
\begin{array}{ll}
\mathrm{T}=9.99 * X \quad \mathrm{~T}=\text { trip ends per hour } \quad \mathrm{X}=1,000 \mathrm{SF} \text { of floor area } \\
\mathrm{T}=9.99{ }^{*}(9.3 \mathrm{ksf}) \approx 94 \text { trip ends per hour } &
\end{array}
$$

The above trip generation will be utilized to evaluate the intersection in the study for the hour prior to Sunday services as well as the hour after Sunday services.

The ITE diagrams for Land Use 560 is provided in Appendix C of this study, while the site generated traffic volume diagrams are provided in Appendix G.

4.4 TRAFFIC ASSIGNMENTS

The directional distribution of generated traffic from a small development is a function of several factors, including the population and employment distribution within the area of influence, the operational characteristics of the street system, and the ease with which drivers can travel over various sections of the roadway network without encountering congestion. The future trip distribution and traffic assignment modeling is generally performed based on the existing travel characteristics.

Traffic distribution and traffic assignment analyses use future roadway improvement plans, and the determination of the existing trip distribution is often proportional to the directional traffic movements at nearby major intersections. This occurs as models are based on existing population and employment characteristics as well as the shortest travel time pathway to the proposed destination.

For the purposes of this analysis, all trip distribution models are calibrated using observed directional traffic volumes utilizing the observed December 2021 traffic counts approaching the redevelopment site on Detroit Street. All of the vehicle trips are considered to be newly generated and primary trips. As inbound and outbound trips arrive at the major intersections examined in this study, those trips are further distributed proportional to the turning movements in each lane of the intersections.

As part of the redevelopment, the site will have seventeen parking spaces, which includes two ADA accessible spaces. For the purposes of the study, these spaces will be assumed to be fully occupied by Redeemer AA staff and other visitors who arrive significantly earlier than regular worshipers for Sunday services.

Given the lack of on-site parking at the proposed redevelopment site, and given that the majority of on-street parking on Detroit Street is occupied by local residents on Sunday mornings, it is anticipated that the majority of Sunday morning worship service attendees will utilize the Farmers Market parking lots and the Community High parking lot in the vicinity of the $5^{\text {th }}$ Avenue and Detroit Street intersection. These parking lots will provide the shortest walk to the proposed church. A survey of the lots has been performed to verify sufficient open spaces existing to accommodate churchgoers, which is provided in Appendix D.

The following assumptions have been made with regards to the proportional traffic distribution as shown in the figures below with the observed traffic counts in the hour prior to Sunday services.

Figure 5. Existing traffic distribution in the vicinity of the proposed Redeemer Church one hour prior to Sunday Services.

December 2021 Sunday Peak Hour of Generator Hour Directional Distribution of Site Generated Trips Prior to Services

From the North - utilizing Summit St \& Broadway St
Total Peak Hour Trips = 94
From the North $=(345 / 441) \times 94=73$ trips

From the South - utilizing Kingsley Street
Total Peak Hour Trips = 94
From the South $=(96 / 441) \times 94=21$ trips

After Sunday services have concluded, vehicles will leave the Farmers Market and Community High lots and depart the area based on the proportional traffic distribution as shown in the figures below with the observed traffic counts in the hour after Sunday services.

Figure 6. Existing traffic distribution in the vicinity of the proposed Redeemer Church one hour after Sunday Services.

December 2021 Sunday Peak Hour of Generator Hour Directional Distribution of Site Generated Trips After Services

To the North - utilizing Summit St \& Division St
Total Peak Hour Trips = 94
To the North $=(421 / 821) \times 94=48$ trips

To the South - utilizing Kingsley Street \& 5 ${ }^{\text {th }}$ Avenue
Total Peak Hour Trips = 94
From the South $=(400 / 821) \times 94=46$ trips

The above vehicle trips are considered to be newly generated and primary trips. As inbound and outbound trips arrive and the major intersections examined in this study, those trips are further distributed proportional to the turning movements in each lane of the intersections.

The future AM and PM peak hour traffic diagrams are provided in Appendix H of this study.

4.5 CAPACITY AND LEVEL OF SERVICE DEFINITIONS

A capacity analysis is a quantitative comparison of the supply and demand characteristics of a traffic facility. The available supply refers to the physical characteristics of a roadway (i.e., number of lanes, configuration and lane width), and the demand refers to the traffic volume that is using, or expected to use, the roadway facility. A capacity analysis is typically performed for peak period traffic to evaluate the expected impact on the traffic operation utilizing the future traffic volume data. If a roadway facility has an acceptable level of service during peak traffic conditions, it certainly will operate at a very high level of service during off-peak periods. As a part of this study, a highway capacity analysis has been performed at the following locations.

- Broadway Street and Summit Street (unsignalized)
- Division Street and Detroit Street (unsignalized)
- Beakes Street and $5^{\text {th }}$ Avenue (unsignalized)
- Kingsley Street and $5^{\text {th }}$ Avenue (signalized)
- Kingsley Street and Detroit Street (unsignalized)

The study locations have been evaluated for their capacity based on six levels of service (LOS) ranging from LOS A to LOS F. LOS A describes an intersection that experiences minimal delay and is the best level an intersection or approach can achieve. LOS F, on the other hand, is the lowest level of operation. During peak periods, LOS C and LOS D are typically acceptable in suburban areas.

The capacity analysis of the intersections includes identifying the lane geometry, traffic volumes, heavy vehicle percentages, and peak hour factors. The percentage of heavy vehicles along the roadway has been determined as less than the industry standard assumption of two percent. Therefore, for the purposes of this analysis, a conservative two percent heavy vehicle volume has been applied at the two locations.

Analysis results for existing conditions, background conditions, and future conditions are presented in the terms seconds of delay and levels of service for signalized intersections as shown below.

LOS	Description	Average Control Delay (sec/veh)
A	Very little or no delay experienced.	≤ 10.0
B	Short delay experienced.	>10.1 and ≤ 15.0
C	Average delay experienced.	>15.0 and ≤ 25.0
D	Long delay experienced.	>25.0 and ≤ 35.0
E	Very long delay experienced.	>35.0 and ≤ 50.0
F	Excessive delay experienced. Occurs as a result of limited gaps in major street traffic for minor street traffic to enter main street traffic.	>50.0

Table 2. Level of service criteria for signalized intersections
(Source: Highway Capacity Manual)

LOS	Description	Average Control Delay (sec/veh)
A	Free Flow.	≤ 10
B	Stable Flow (slight delays)	>10 and ≤ 20
C	Stable Flow (acceptable delays)	>20 and ≤ 35
D	Approaching Unstable Flow (tolerable delay, occasionally waiting through more than one cycle before proceeding)	>35 and ≤ 355
E	Unstable Flow (intolerable delay)	>55 and ≤ 80
F	Forced Flow (congested and queues fail to clear)	>80.0

Table 3. Level of service criteria for signalized intersections.
(Source: Highway Capacity Manual)

ANALYSIS RESULTS AND FINDINGS

5.1 BROADWAY STREET \& SUMMIT STREET INTERSECTION

At this intersection, Broadway Street is one way and free flow, with the intersecting approaches of Summit Street and Detroit Street controlled with stop signs. Based on the capacity analysis of the existing and background traffic volumes, traffic in all directions at this intersection operates with free to stable flow.

PEAK	APPROACH	EXISTING VOLUMES 2021		BACKGROUND VOLUMES 2022		FUTURE VOLUMES 2022	
		DELAY (SEC/VEH)	LOS	$\begin{gathered} \hline \text { DELAY } \\ \text { (SEC/VEH) } \end{gathered}$	LOS	DELAY (SEC/VEH)	LOS
1-HR BEFORE SERVICES	WB BROADWAY	0.0	A	0.0	A	0.0	A
	$\begin{gathered} \text { NB } \\ \text { DETROIT } \end{gathered}$	10.6	B	10.7	B	11.3	B
	$\begin{gathered} \text { SB } \\ \text { SUMMIT } \end{gathered}$	10.6	B	10.6	B	11.2	B
$\begin{gathered} \text { 1-HR } \\ \text { AFTER } \\ \text { SERVICES } \end{gathered}$	WB BROADWAY	0.0	A	0.0	A	0.0	A
	$\begin{gathered} \hline \text { NB } \\ \text { DETROIT } \end{gathered}$	12.8	B	12.9	B	13.2	B
	$\begin{gathered} \text { SB } \\ \text { SUMMIT } \end{gathered}$	10.1	B	10.2	B	10.2	B

Table 4. Delay / Level of Service for the peak hour of generator one hour before and after services at the intersection of Broadway Street and Summit Street / Detroit Street.

With the projected one percent increase in background volumes for 2021, the AM and PM peak traffic continues to operate almost unchanged. As shown above in the future volumes, the addition of traffic volume from the proposed development has little to no additional impact on the roadway system.

5.2 DIVISION STREET \& DETROIT STREET INTERSECTION

At this intersection, Division Street is one way and free flow, with the intersecting approach of Detroit Street controlled with a stop sign. Based on the capacity analysis of the existing and background traffic volumes, traffic in all directions at this intersection operates with free to stable flow.

PEAK	APPROACH	EXISTING VOLUMES 2021		BACKGROUND VOLUMES 2022		FUTURE VOLUMES 2022	
		$\begin{gathered} \hline \text { DELAY } \\ \text { (SEC/VEH) } \end{gathered}$	LOS	$\begin{gathered} \hline \text { DELAY } \\ \text { (SEC/VEH) } \end{gathered}$	LOS	$\begin{gathered} \text { DELAY } \\ \text { (SEC/VEH) } \end{gathered}$	LOS
1-HR	$\begin{gathered} \text { EB } \\ \text { DETROIT } \end{gathered}$	9.3	A	9.3	A	9.3	A
SERVICES	NB DIVISION	0.0	A	0.0	A	0.0	A
1-HR	$\begin{gathered} \text { EB } \\ \text { DETROIT } \end{gathered}$	10.5	A	10.6	A	11.1	B
AFTER SERVICES	$\begin{gathered} \hline \text { NB } \\ \text { DIVISION } \end{gathered}$	0.0	A	0.0	A	0.0	A

Table 5. Delay / Level of Service for the peak hour of generator one hour before and after services at the intersection of North Division Street and Detroit Street.

With the projected one percent increase in background volumes for 2021, the AM and PM peak traffic continues to operate almost unchanged. As shown above in the future volumes, the addition of traffic volume from the proposed development has little to no additional impact on the roadway system.

5.3 BEAKES STREET \& $5^{\text {TH }}$ AVENUE INTERSECTION

At this intersection, Beakes Street is one way and free flow, with the intersecting approach of $5^{\text {th }}$ Avenue is one way and controlled with a stop sign. Based on the capacity analysis of the existing and background traffic volumes, traffic in all directions at this intersection operates with free flow.

PEAK	APPROACH	EXISTING VOLUMES 2021		BACKGROUND VOLUMES 2022		FUTURE VOLUMES 2022	
		$\begin{gathered} \hline \text { DELAY } \\ \text { (SEC/VEH) } \\ \hline \end{gathered}$	LOS	$\begin{gathered} \text { DELAY } \\ \text { (SEC/VEH) } \\ \hline \end{gathered}$	LOS	$\begin{gathered} \text { DELAY } \\ \text { (SEC/VEH) } \end{gathered}$	LOS
1-HR	WB BEAKES	0.0	A	0.0	A	0.0	A
BEFORE SERVICES	$\begin{aligned} & \frac{\text { DEAnEO }}{\text { SB }} \\ & 5^{\text {TH }} \text { AVE } \end{aligned}$	9.0	A	9.0	A	9.0	A
1-HR	WB BEAKES	0.0	A	0.0	A	0.0	A
SERVICES	$\begin{gathered} \text { SB } \\ 5^{\text {TH }} \text { AVE } \end{gathered}$	9.4	A	9.4	A	9.4	A

Table 6. Delay / Level of Service for the peak hour of generator one hour before and after services at the intersection of Beakes Street and $5^{\text {th }}$ Avenue.

With the projected one percent increase in background volumes for 2021, the AM and PM peak traffic continues to operate almost unchanged. As shown above in the future volumes, the addition of traffic volume from the proposed development has little to no additional impact on the roadway system.

5.4 KINGSLEY STREET \& $5^{\text {TH }}$ AVENUE INTERSECTION

At this signalized intersection, $5^{\text {th }}$ Avenue is one way, with the intersecting Kingsley Street being two way in the eastbound and westbound approaches. Based on the capacity analysis of the existing and background traffic volumes, traffic in all directions at this intersection operates with very little to average delay.

PEAK	APPROACH	EXISTING VOLUMES 2021		BACKGROUND VOLUMES 2022		FUTURE VOLUMES 2022	
		$\begin{gathered} \text { DELAY } \\ \text { (SEC/VEH) } \end{gathered}$	LOS	$\begin{gathered} \text { DELAY } \\ \text { (SEC/VEH) } \end{gathered}$	LOS	$\begin{gathered} \text { DELAY } \\ \text { (SEC/VEH) } \end{gathered}$	LOS
1-HR BEFORE SERVICES	EB KINGSLEY	2.8	A	2.8	A	3.3	A
	WB KINGSLEY	2.7	A	2.7	A	3.2	A
	$\begin{gathered} \text { SB } \\ 5^{\text {TH }} \text { AVE } \end{gathered}$	27.4	C	27.4	C	27.4	C
1-HR AFTER SERVICES	EB KINGSLEY	3.8	A	3.8	A	3.8	A
	WB KINGSLEY	3.7	A	3.8	A	4.0	A
	$\begin{gathered} \text { SB } \\ 5^{\text {TH }} \text { AVE } \end{gathered}$	26.8	C	26.8	C	26.8	C

Table 7. Delay / Level of Service for the peak hour of generator one hour before and after services at the intersection of Kingsley Street and $5^{\text {th }}$ Avenue.

With the projected one percent increase in background volumes for 2021, the AM and PM peak traffic continues to operate almost unchanged. As shown above in the future volumes, the addition of traffic volume from the proposed development has little to no additional impact on the roadway system.

5.5 KINGSLEY STREET \& $5^{\text {TH }}$ AVENUE INTERSECTION

This intersection is controlled in all directions with stop signs. The north approach of Detroit Street is two way, while the south approach is one way, and the intersecting Kingsley Street is two way in the eastbound and westbound approaches. Based on the capacity analysis of the existing and background traffic volumes, traffic in all directions at this intersection operates with free flow.

PEAK	APPROACH	EXISTING VOLUMES 2021		BACKGROUND VOLUMES 2022		FUTURE VOLUMES 2022	
		$\begin{gathered} \text { DELAY } \\ \text { (SEC/VEH) } \end{gathered}$	LOS	$\begin{gathered} \text { DELAY } \\ \text { (SEC/VEH) } \end{gathered}$	LOS	$\begin{gathered} \text { DELAY } \\ \text { (SEC/VEH) } \end{gathered}$	LOS
1-HR BEFORE SERVICES	$\begin{gathered} \hline \text { EB } \\ \text { KINGSLEY } \end{gathered}$	7.5	A	7.5	A	7.6	A
	WB KINGSLEY	7.2	A	7.2	A	7.3	A
	$\begin{gathered} \text { NB } \\ \text { DETROIT } \end{gathered}$	7.5	A	7.5	A	7.5	A
	$\begin{gathered} \hline \text { SB } \\ \text { DETROIT } \end{gathered}$	7.3	A	7.4	A	7.4	A
1-HR AFTER SERVICES	EB KINGSLEY	8.0	A	8.0	A	8.5	A
	WB KINGSLEY	7.7	A	7.7	A	8.1	A
	$\begin{gathered} \text { NB } \\ \text { DETROIT } \end{gathered}$	7.8	A	7.9	A	9.0	A
	$\begin{gathered} \text { SB } \\ \text { DETROIT } \end{gathered}$	7.5	A	7.5	A	7.7	A

Table 8. Delay / Level of Service for the peak hour of generator one hour before and after services at the intersection of Kingsley Street and Detroit Street.

With the projected one percent increase in background volumes for 2021, the AM and PM peak traffic continues to operate almost unchanged. As shown above in the future volumes, the addition of traffic volume from the proposed development has little to no additional impact on the roadway system.

6. REFERENCES

Highway Capacity Manual. Transportation Research Board, 2014

Trip Generation, 10th Edition. Institute of Transportation Engineers, 2017

Trip Generation Handbook. Institute of Transportation Engineers, 2017

A Policy on Geometric Design of Highways and Streets. American Association of State Highway and Transportation Officials, 2001

Recommended Guidelines for Subdivision Streets. Institute of Transportation Engineers, ITE Journal, August 1981, pg. 27-28.

A Recommended Practice: Guidelines for Residential Street Design, Technical Council Report.

Institute of Transportation Engineers, ITE Technical Council Committee 5A25A, September 1993.

Residential Streets: Objectives, Principles and Design Considerations, 2nd Edition. The Urban Land Institute, the American Society of Civil Engineers and the National Association of Home Builders, 1990.

Appendix A

Site Plan

Appendix B

Traffic Counts

Post－Services Peak Traffic Count

	烒 苞 音			\sim	－	n	筞	\bigcirc
	${\underset{\sim}{0}}_{n}^{n}$		－	－	－	－	－	
		気		∞	0	\％	－	
$\left\|\begin{array}{l} a \\ 0 \\ 0 \\ \infty \end{array}\right\|$	$\begin{aligned} & \frac{1}{9} \\ & \frac{0}{2} \end{aligned}$		－	$-$	\rightarrow	\sim	n	∞
			앙	\because	O	\％	2	
		:	\sim	m	－	－	\bigcirc	

Post－Services Peak Traffic Count

Appendix C

ITE LAND USE DIAGRAM

Church

 (560)
Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Sunday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 18
1000 Sq. Ft. GFA: 35
Directional Distribution: 48% entering, 52% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
9.99	$2.05-51.31$	7.77

Data Plot and Equation

Appendix D

Local Parking Survey

		Open / Available Spots between 9:50 AM - 10:00 AM Parking Lot Location		Total Available Spots	Oct 10th
			Oct 17th	Oct 24th	
Human Element (two lots)	22	22	22	22	
Community High School	78	64	55	57	
Farmers Market Lot \#10	22	16	15	11	
Farmers Market Office Lot	28	16	16	18	
4th \& Caterine	43	36	37	42	
Total Open Parking Spots	193	154	145	150	

Note 1: Neither Handicapped or EV charging spots are included in the "Total Available Spots" above
Note 2: Street parking was not surveyed for these dates, however, it appeared approximately 50% to 60% of street spots were open and available on N4th Ave, N5th Ave and E. Kingsley near the Treasure Mart each Sunday morning

WASHTENAW ENGINEERING

Appendix E

2021 Existing Sunday 1-Hour Prior to Service Volume Diagram 2021 Existing Sunday 1-Hour After Services Volume Diagram

Appendix F

2022 Bakground Sunday 1-Hour Prior to Service Volume Diagram 2022 Backgroun Sunday 1-Hour After Services Volume Diagram

Appendix G

Site Generated 1-Hour Prior to Service Volume Diagram Site Generated 1-Hour After Services Volume Diagram

Appendix H

2022 Future Sunday 1-Hour Prior to Service Volume Diagram 2022 Future Sunday 1-Hour After Services Volume Diagram

Future Conditions 2022

Future Conditions 2022

Appendix I

Capacity Analysis Output

BROADWAY STREET \& SUMMIT STREET

Capacity Analysis Output

Intersection													
Int Delay, s/veh	0.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations					$\uparrow \uparrow$			\uparrow			F		
Traffic Vol, veh/h	0	0	0	18	399	0	9	4	0	0	2	2	
Future Vol, veh/h	0	0	0	18	399	0	9	4	0	0	2	2	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	-	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	88	88	88	92	92	92	50	50	50	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	0	0	20	453	0	10	4	0	0	4	4	

DIVISION STREET \& DETROIT STREET

Capacity Analysis Output

Major/Minor	Minor2	Major1		
Conflicting Flow All	88	-	0	0
Stage 1	0	-	-	-
Stage 2	88	-	-	-
Critical Hdwy	6.84	-	4.14	-
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-
Follow-up Hdwy	3.52	-	2.22	-
Pot Cap-1 Maneuver	903	0	-	-
Stage 1	-	0	-	-
Stage 2	925	0	-	-
Platoon blocked, \%				-
Mov Cap-1 Maneuver	903	-	-	-
Mov Cap-2 Maneuver	903	-	-	-
Stage 1	-	-	-	-
Stage 2	925	-	-	-
Approach	EB		NB	
HCM Control Delay, s	9.3			
HCM LOS	A			
Minor Lane/Major Mvm		BL	NBT	
Capacity (veh/h)		-	-	03
HCM Lane V/C Ratio		-	-	
HCM Control Delay (s)		-	-	9.3
HCM Lane LOS		-	-	A
HCM 95th \%tile Q(veh)		-	-	0.2

Major/Minor	Minor2	Major1		
Conflicting Flow All	239	-	0	0
Stage 1	0	-	-	-
Stage 2	239	-	-	-
Critical Hdwy	6.84	-	4.14	-
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-
Follow-up Hdwy	3.52	-	2.22	-
Pot Cap-1 Maneuver	728	0	-	-
Stage 1	-	0	-	-
Stage 2	778	0	-	-
Platoon blocked, \%				-
Mov Cap-1 Maneuver	728	-	-	-
Mov Cap-2 Maneuver	728	-	-	-
Stage 1	-	-	-	-
Stage 2	778	-	-	-
Approach	EB		NB	
HCM Control Delay, s	10.5			
HCM LOS	B			
Minor Lane/Major Mvm		BL	NBT	
Capacity (veh/h)			-	
HCM Lane V/C Ratio		-	-	
HCM Control Delay (s)		-	-	
HCM Lane LOS		-	-	B
HCM 95th \%tile Q(veh)		-	-	0. 3

Intersection						

Major/Minor	Minor2	Major1		
Conflicting Flow All	91	-	0	0
Stage 1	0	-	-	-
Stage 2	91	-	-	-
Critical Hdwy	6.84	-	4.14	-
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-
Follow-up Hdwy	3.52	-	2.22	-
Pot Cap-1 Maneuver	899	0	-	-
Stage 1	-	0	-	-
Stage 2	922	0	-	-
Platoon blocked, \%				-
Mov Cap-1 Maneuver	899	-	-	-
Mov Cap-2 Maneuver	899	-	-	-
Stage 1	-	-	-	-
Stage 2	922	-	-	-
Approach	EB		NB	
HCM Control Delay, s	9.3			
HCM LOS	A			
Minor Lane/Major Mvmt			NBT	
Capacity (veh/h)			-	99
HCM Lane V/C Ratio		-	-	
HCM Control Delay (s)		-	-	9 3
HCM Lane LOS		-	-	A
HCM 95th \%tile Q(veh)		-	-	. 2

Major/Minor	Minor2	Major1		
Conflicting Flow All	246	-	0	0
Stage 1	0	-	-	-
Stage 2	246	-	-	-
Critical Hdwy	6.84	-	4.14	-
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-
Follow-up Hdwy	3.52	-	2.22	-
Pot Cap-1 Maneuver	721	0	-	-
Stage 1	-	0	-	-
Stage 2	772	0	-	-
Platoon blocked, \%				-
Mov Cap-1 Maneuver	721	-	-	-
Mov Cap-2 Maneuver	721	-	-	-
Stage 1	-	-	-	-
Stage 2	772	-	-	-
Approach	EB		NB	
HCM Control Delay, s	10.6			
HCM LOS	B			
Minor Lane/Major Mvm		BL	NBT	
Capacity (veh/h)			-	21
HCM Lane V/C Ratio			-	
HCM Control Delay (s)		-	-	
HCM Lane LOS		-	-	B
HCM 95th \%tile Q(veh)		-	-	0. 3

Major/Minor	Minor2		Major1	
Conflicting Flow All	91	-	0	0
Stage 1	0	-	-	-
Stage 2	91	-	-	-
Critical Hdwy	6.84	-	4.14	-
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-
Follow-up Hdwy	3.52	-	2.22	-
Pot Cap-1 Maneuver	899	0	-	-
Stage 1	-	0	-	-
Stage 2	922	0	-	-
Platoon blocked, \%				-
Mov Cap-1 Maneuver	899	-	-	-
Mov Cap-2 Maneuver	899	-	-	-
Stage 1	-	-	-	-
Stage 2	922	-	-	-
Approach	EB		NB	
HCM Control Delay, s	9.3			
HCM LOS	A			
Minor Lane/Major Mvm		BL	NBT	
Capacity (veh/h)		-	-	99
HCM Lane V/C Ratio		-	-	
HCM Control Delay (s)		-	-	9.3
HCM Lane LOS		-	-	A
HCM 95th \%tile Q(veh)		-	-	0.2

Major/Minor	Minor2	Major1		
Conflicting Flow All	246	-	0	0
\quad Stage 1	0	-	-	-
\quad Stage 2	246	-	-	-
Critical Hdwy	6.84	-	4.14	-
Critical Hdwy Stg 1	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-
Follow-up Hdwy	3.52	-	2.22	-
Pot Cap-1 Maneuver	721	0	-	-
\quad Stage 1	7	0	-	-
\quad Stage 2	772	0	-	-
Platoon blocked, \%				-
Mov Cap-1 Maneuver	721	-	-	-
Mov Cap-2 Maneuver	721	-	-	-
\quad Stage 1	-	-	-	-
Stage 2	772	-	-	-

Approach	EB \quad NB	
HCM Control Delay, s	11.1	
HCM LOS	B	

Minor Lane/Major Mvmt	NBL	NBT EBLn1
Capacity (veh/h)	-	-721
HCM Lane V/C Ratio	-	-0.182
HCM Control Delay (s)	-	-11.1
HCM Lane LOS	-	-
HCM 95th \%tile Q(veh)	-	$-\quad 0.7$

BEAKES STREET \& $5^{\text {TH }}$ AVENUE

Capacity Analysis Output

Intersection													
Int Delay, s/veh	0.9												
Movement EBL	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations					* \uparrow						\uparrow		
Trafic Vol, veh/h	0	0	0	171	153	0	0	0	0	0	31	2	
Future Vol, veh/h	0	0	0	171	153	0	0	0	0	0	31	2	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control Stor	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized		-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	-	-	-	0	-	-	-	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	86	86	86	92	92	92	75	75	75	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	0	0	199	178	0	0	0	0	0	41	3	

Intersection													
Int Delay, s/veh	1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations					* ${ }^{\text {¢ }}$						\uparrow		
Traffic Vol, veh/h	0	0	0	173	155	0	0	0	0	0	32	3	
Future Vol, veh/h	0	0	0	173	155	0	0	0	0	0	32	3	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized		-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	-	-	-	0	-	-	-	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	86	86	86	92	92	92	75	75	75	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	0	0	201	180	0	0	0	0	0	43	4	

KINGSLEY STREET \& $5^{\text {TH }}$ AVENUE
Capacity Analysis Output

c Critical Lane Group

c Critical Lane Group

c Critical Lane Group

c Critical Lane Group

C Critical Lane Group

c Critical Lane Group

KINGSLEY STREET \& DETROIT STREET

Capacity Analysis Output

Intersection	
Intersection Delay, s/veh $\quad 7.4$	
Intersection LOS	A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow			\hat{F}			\$		7		「
Traffic Vol, veh/h	31	26	0	0	25	3	7	11	1	4	0	5
Future Vol, veh/h	31	26	0	0	25	3	7	11	1	4	0	5
Peak Hour Factor	0.89	0.89	0.89	0.86	0.86	0.86	0.68	0.68	0.68	0.56	0.56	0.56
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	35	29	0	0	29	3	10	16	1	7	0	9
Number of Lanes	0	1	0	0	1	0	0	1	0	1	0	1
Approach	EB				WB		NE			SW		
Opposing Approach	WB				EB		SW			NE		
Opposing Lanes	1				1		2			1		
Conflicting Approach Left	SW				NE		EB			WB		
Conflicting Lanes Left	2				1		1			1		
Conflicting Approach Right	NE				SW		WB			EB		
Conflicting Lanes Right	1				2		1			1		
HCM Control Delay	7.5				7.2		7.5			7.3		
HCM LOS	A				A		A			A		

Lane	NELn1	EBLn1	WBLn1	SWLn1	SWLn2
Vol Left, \%	37%	54%	0%	100%	0%
Vol Thru, \%	58%	46%	89%	0%	0%
Vol Right, \%	5%	0%	11%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	19	57	28	4	5
LT Vol	7	31	0	4	0
Through Vol	11	26	25	0	0
RT Vol	1	0	3	0	5
Lane Flow Rate	28	64	33	7	9
Geometry Grp	5	2	2	7	7
Degree of Util (X)	0.033	0.074	0.036	0.01	0.01
Departure Headway (Hd)	4.257	4.143	3.993	5.218	4.016
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	836	863	893	683	885
Service Time	2.309	2.176	2.035	2.97	1.768
HCM Lane V/C Ratio	0.033	0.074	0.037	0.01	0.01
HCM Control Delay	7.5	7.5	7.2	8	6.8
HCM Lane LOS	A	A	A	A	A
HCM 95th-tile Q	0.1	0.2	0.1	0	0

Intersection	
Intersection Delay, s/veh $\quad 7.8$	
Intersection LOS	A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow			\hat{F}			¢		7		F
Traffic Vol, veh/h	40	47	0	0	58	4	18	21	9	7	0	17
Future Vol, veh/h	40	47	0	0	58	4	18	21	9	7	0	17
Peak Hour Factor	0.81	0.81	0.81	0.74	0.74	0.74	0.75	0.75	0.75	0.75	0.75	0.75
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	49	58	0	0	78	5	24	28	12	9	0	23
Number of Lanes	0	1	0	0	1	0	0	1	0	1	0	1
Approach	EB				WB		NE			SW		
Opposing Approach	WB				EB		SW			NE		
Opposing Lanes	1				1		2			1		
Conflicting Approach Left	SW				NE		EB			WB		
Conflicting Lanes Left	2				1		1			1		
Conflicting Approach Right	NE				SW		WB			EB		
Conflicting Lanes Right	1				2		1			1		
HCM Control Delay	8				7.7		7.8			7.5		
HCM LOS	A				A		A			A		

Lane	NELn1	EBLn1	WBLL1	SWLn1	SWLn2
Vol Left, \%	38%	46%	0%	100%	0%
Vol Thru, \%	44%	54%	94%	0%	0%
Vol Right, \%	19%	0%	6%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	48	87	62	7	17
LT Vol	18	40	0	7	0
Through Vol	21	47	58	0	0
RT Vol	9	0	4	0	17
Lane Flow Rate	64	107	84	9	23
Geometry Grp	5	2	2	7	7
Degree of Util (X)	0.079	0.127	0.096	0.014	0.027
Departure Headway (Hd)	4.465	4.254	4.141	5.522	4.316
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	807	831	850	652	834
Service Time	2.466	2.341	2.238	3.223	2.017
HCM Lane V/C Ratio	0.079	0.129	0.099	0.014	0.028
HCM Control Delay	7.8	8	7.7	8.3	7.1
HCM Lane LOS	A	A	A	A	A
HCM 95th-tile Q	0.3	0.4	0.3	0	0.1

Intersection	
Intersection Delay, s/veh $\quad 7.4$	
Intersection LOS	A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow			1			\$		7		F
Traffic Vol, veh/h	32	27	0	0	26	4	8	12	2	5	0	6
Future Vol, veh/h	32	27	0	0	26	4	8	12	2	5	0	6
Peak Hour Factor	0.89	0.89	0.89	0.88	0.88	0.88	0.68	0.68	0.68	0.56	0.56	0.56
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	36	30	0	0	30	5	12	18	3	9	0	11
Number of Lanes	0	1	0	0	1	0	0	1	0	1	0	1
Approach	EB				WB		NE			SW		
Opposing Approach	WB				EB		SW			NE		
Opposing Lanes	1				1		2			1		
Conflicting Approach Left	SW				NE		EB			WB		
Conflicting Lanes Left	2				1		1			1		
Conflicting Approach Right	NE				SW		WB			EB		
Conflicting Lanes Right	1				2		1			1		
HCM Control Delay	7.5				7.2		7.5			7.4		
HCM LOS	A				A		A			A		

Lane	NELn1	EBLn1	WBLn1	SWLn1	SWLn2
Vol Left, \%	36%	54%	0%	100%	0%
Vol Thru, \%	55%	46%	87%	0%	0%
Vol Right, \%	9%	0%	13%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	82	59	30	5	6
LT Vol	12	32	0	5	0
Through Vol	27	0	26	0	0
RT Vol	32	66	4	0	6
Lane Flow Rate	5	2	2	9	11
Geometry Grp	0.038	0.077	0.038	0.013	0.012
Degree of Util (X)	4.242	4.159	3.995	5.227	4.024
Departure Headway (Hd)	Yes	Yes	Yes	Yes	Yes
Convergence, Y/N	838	859	891	682	882
Cap	2.299	2.196	2.041	2.983	1.781
Service Time	0.038	0.077	0.038	0.013	0.012
HCM Lane V/C Ratio	7.5	7.5	7.2	8.1	6.8
HCM Control Delay	A	A	A	A	A
HCM Lane LOS	0.1	0.2	0.1	0	0

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 7.8 |
| Intersection LOS | A |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow			\hat{F}			¢		7		F
Traffic Vol, veh/h	41	48	0	0	59	5	19	22	10	8	0	18
Future Vol, veh/h	41	48	0	0	59	5	19	22	10	8	0	18
Peak Hour Factor	0.81	0.81	0.81	0.74	0.74	0.74	0.75	0.75	0.75	0.75	0.75	0.75
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	51	59	0	0	80	7	25	29	13	11	0	24
Number of Lanes	0	1	0	0	1	0	0	1	0	1	0	1
Approach	EB				WB		NE			SW		
Opposing Approach	WB				EB		SW			NE		
Opposing Lanes	1				1		2			1		
Conflicting Approach Left	SW				NE		EB			WB		
Conflicting Lanes Left	2				1		1			1		
Conflicting Approach Right	NE				SW		WB			EB		
Conflicting Lanes Right	1				2		1			1		
HCM Control Delay	8				7.7		7.9			7.5		
HCM LOS	A				A		A			A		

Lane	NELn1	EBLn1	WBLn1	SWLn1	SWLn2
Vol Left, \%	37%	46%	0%	100%	0%
Vol Thru, \%	43%	54%	92%	0%	0%
Vol Right, \%	20%	0%	8%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	51	89	64	8	18
LT Vol	19	41	0	8	0
Through Vol	22	48	59	0	0
RT Vol	10	0	5	0	18
Lane Flow Rate	68	110	86	11	24
Geometry Grp	5	2	2	7	7
Degree of Util (X)	0.085	0.13	0.102	0.016	0.029
Departure Headway (Hd)	4.477	4.266	4.252	5.539	4.333
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	804	826	848	649	830
Service Time	2.482	2.366	2.252	3.245	2.039
HCM Lane V/C Ratio	0.085	0.133	0.101	0.017	0.029
HCM Control Delay	7.9	8	7.7	8.3	7.2
HCM Lane LOS	A	A	A	A	A
HCM 95th-tile Q	0.3	0.4	0.3	0	0.1

Intersection	
Intersection Delay, s/veh $\quad 7.5$	
Intersection LOS	A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow			1			\$		7		F
Traffic Vol, veh/h	32	27	0	0	32	4	8	12	2	5	0	6
Future Vol, veh/h	32	27	0	0	32	4	8	12	2	5	0	6
Peak Hour Factor	0.89	0.89	0.89	0.88	0.88	0.88	0.68	0.68	0.68	0.56	0.56	0.56
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	36	30	0	0	36	5	12	18	3	9	0	11
Number of Lanes	0	1	0	0	1	0	0	1	0	1	0	1
Approach	EB				WB		NE			SW		
Opposing Approach	WB				EB		SW			NE		
Opposing Lanes	1				1		2			1		
Conflicting Approach Left	SW				NE		EB			WB		
Conflicting Lanes Left	2				1		1			1		
Conflicting Approach Right	NE				SW		WB			EB		
Conflicting Lanes Right	1				2		1			1		
HCM Control Delay	7.6				7.3		7.5			7.4		
HCM LOS	A				A		A			A		

Lane	NELn1	EBLn1	WBLn1	SWLn1	SWLn2
Vol Left, \%	36%	54%	0%	100%	0%
Vol Thru, \%	55%	46%	89%	0%	0%
Vol Right, \%	9%	0%	11%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	82	59	36	5	6
LT Vol	12	32	0	5	0
Through Vol	27	0	0	4	0
0	0	6			
RT Vol	32	66	41	9	11
Lane Flow Rate	5	2	2	7	7
Geometry Grp	0.038	0.077	0.046	0.013	0.012
Degree of Util (X)	4.254	4.164	4.008	5.238	4.036
Departure Headway (Hd)	Yes	Yes	Yes	Yes	Yes
Convergence, Y/N	835	858	889	679	879
Cap	2.315	2.203	2.055	2.999	1.796
Service Time	0.038	0.077	0.046	0.013	0.013
HCM Lane V/C Ratio	7.5	7.6	7.3	8.1	6.8
HCM Control Delay	A	A	A	A	A
HCM Lane LOS	0.1	0.2	0.1	0	0

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 8.6 |
| Intersection LOS | A |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow			$\hat{\beta}$			¢		\%		F
Traffic Vol, veh/h	41	48	0	0	59	5	49	70	26	8	0	18
Future Vol, veh/h	41	48	0	0	59	5	49	70	26	8	0	18
Peak Hour Factor	0.81	0.81	0.81	0.74	0.74	0.74	0.75	0.75	0.75	0.75	0.75	0.75
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	51	59	0	0	80	7	65	93	35	11	0	24
Number of Lanes	0	1	0	0	1	0	0	1	0	1	0	1
Approach	EB				WB		NE			SW		
Opposing Approach	WB				EB		SW			NE		
Opposing Lanes	1				1		2			1		
Conflicting Approach Left	SW				NE		EB			WB		
Conflicting Lanes Left	2				1		1			1		
Conflicting Approach Right	NE				SW		WB			EB		
Conflicting Lanes Right	1				2		1			1		
HCM Control Delay	8.5				8.1		9			7.7		
HCMLOS	A				A		A			A		

Lane	NELn1	EBLn1	WBLn1	SWLn1	SWLn2
Vol Left, \%	34%	46%	0%	100%	0%
Vol Thru, \%	48%	54%	92%	0%	0%
Vol Right, \%	18%	0%	8%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	145	89	64	8	18
LT Vol	49	41	0	8	0
Through Vol	70	48	59	0	0
RT Vol	26	0	5	0	18
Lane Flow Rate	193	110	86	11	24
Geometry Grp	5	2	2	7	7
Degree of Util (X)	0.242	0.142	0.109	0.017	0.03
Departure Headway (Hd)	4.504	4.661	4.552	5.673	4.465
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	798	770	788	632	802
Service Time	2.523	2.684	2.577	3.397	2.189
HCM Lane V/C Ratio	0.242	0.143	0.109	0.017	0.03
HCM Control Delay	9	8.5	8.1	8.5	7.3
HCM Lane LOS	A	A	A	A	A
HCM 95th-tile Q	0.9	0.5	0.4	0.1	0.1

