DEVELOPMENT TEAM

<u>APPLICANT</u>

UNITED HOSPITALITY GROUP 555 S. OLD WOOODWARD, STE. 765 BIRMINGHAM, MI 48009 PHONE: (248) 709-9958

BIRMINGHAM, MI 48009 PHONE: (248) 709-9958 ATTN: LAWRENCE MIO ATTN: LAWRENCE MIO EMAIL: LMIO@UNITEDHOSPITALITYGROUP.COM EMAIL: LMIO@UNITEDHOSPITALITYGROUP.COM

ENGINEER

311 NORTH MAIN STREET ANN ARBOR, MICHIGAN 48104 PHONE: 734.994.4000 ATTN: KYLER SHEERIN, PE EMAIL: KSHEERIN@ATWELL-GROUP.COM **ARCHITECT**

2900 S. MAIN, LLC

555 S. OLD WOOODWARD, STE. 765

KRIEGER KLATT ARCHITECTS 2120 E. ELEVEN MILE ROAD ROYAL OAK MI 48067 PHONE: 248.414.9270 ATTN: RAYMOND PHILLIPS EMAIL: RAY@KRIEGERKLATT.COM

LAND DEVELOPMENT REGULATIONS

- a. THE PROPOSED IMPROVEMENTS CONSIST OF THE CONSTRUCTION OF A PROPOSED 45-UNIT. 4-STORY, 36,000± S.F. BUILDING. THIS BUILDING WILL BE ABOVE GROUND.
- b. ALL IMPROVEMENTS WILL BE CONSTRUCTED IN ONE PHASE.
- c. ANTICIPATED SITE DEVELOPMENT COSTS \$7,400,000 (SUBJECT TO VARY).

- a. THE PROPOSED DEVELOPMENT SHOULD NOT HAVE ANY IMPACT ON K-12 SCHOOL. b. NO REZONING IS PROPOSED. THE CURRENT O ZONING IS COMPATIBLE WITH NEIGHBORING ZONING (O AND TC1) AND NEIGHBORING USES.
- c. SIMILAR ADJACENT USES SHOULD HAVE NO SIGNIFICANT IMPACT ON THE PROPOSED
- d. THE PROPOSED DEVELOPMENT SHOULD HAVE NO SIGNIFICANT IMPACT ON AIR AND WATER QUALITY. EXISTING TREES ON-SITE WILL BE PRESERVED WHERE POSSIBLE. TREES THAT MUST BE REMOVED WILL BE REPLACED PER CITY OF ANN ARBOR STANDARDS. IMPROVEMENTS WILL BE MADE TO BRING THE SITE IN COMPLACENCE WITH CURRENT STORM WATER MANAGEMENT
- e. THERE ARE NO KNOWN HISTORIC SITES OR STRUCTURES ON OR NEAR THE SITE. f. SOLID WASTE/GARBAGE HANDLING WILL OCCUR IN A CITY STANDARD (1) 3-CYD DUMPSTER
- LOCATED AT THE END OF THE ENTRANCE DRIVE TO THE LOWER-LEVER PARKING AREA. g. 28 PARKING SPACES WILL BE PROVIDED IN THE LOWER-LEVEL PARKING AREA. THESE PARKING SPACES WILL BE COVERED. 17 UNCOVERED PARKING SPACES WILL BE PROVIDED NORTH OF THE BUILDING AS WELL.

3.SITE ANALYSIS

- a. CURRENT LAND USE IS RESIDENTIAL.
- b. SOILS IN THIS AREA ARE CLASSIFIED AS GLYNWOOD LOAM, 0% TO 6% SLOPES (MoB) AND PEWAMO CLAY LOAM, 0% TO 2% SLOPES (Pe). EXISTING SITE CONDITIONS INCLUDING EXISTING SITE VEGETATION AND CONTOURS ARE SHOWN ON SHEET 02.
- (i) THERE IS NO ENDANGERED SPECIES HABITAT. (ii) THERE IS NO NEAR-BY 100 YEAR FLOODPLAIN, PER FEMA MAP PANEL 26161C0263E.
- (iii) THERE ARE LANDMARK TREES ON OR NEAR THE SITE. TREES BEING REMOVED WILL BE
- (iv) THERE ARE STEEP SLOPES ON-SITE. EXISTING CONTOURS ARE SHOWN ON SHEET 02. (v) THERE ARE WATERCOURSES ON THE SITE - NOT TO BE DISTURBED.
- (vi) THERE ARE WETLANDS ON OR NEAR NOT TO BE DISTURBED.
- (vii) THERE ARE WOODLANDS ON SITE.
- d. THERE ARE THREE EXISTING STRUCTURES ON THE SITE AS SHOWN ON SHEET 02. THE EXISTING BUILDINGS WILL BE DEMOLISHED. e. EXISTING VEHICULAR AND PEDESTRIAN WAYS ARE SHOWN ON SHEET 02.
- f. EXISTING UTILITIES AND RIGHTS-OF-WAY ARE SHOWN ON SHEET 02 AND PROPOSED ARE
- g. DRAINAGE IS COLLECTED INTO A PROPOSED STORM WATER SYSTEM DESIGNED TO DETAIN THE 100-YEAR STORM PLUS A 20% PENALTY IN ACCORDANCE WITH CITY ORDINANCE 5:655.2

4.SCHEMATIC DESIGN

- a. A COMPARISON OF CITY REGULATIONS AND PROPOSED DEVELOPMENT IS SHOWN ON THIS
- b. PROPOSED SPOT ELEVATIONS AND AREAS OF DISTURBANCE ARE SHOWN ON SHEET 08. c. ORIENTATION AND LOCATIONS OF IMPROVEMENTS ARE SHOWN ON SHEET 03.
- d. NO SIGNIFICANT CHANGE IN SLOPES IS PROPOSED.
- e. EXISTING PROPERTY LINES ARE SHOWN ON SHEET 02 AND SHEET 03. SETBACKS ARE SHOWN
- ON SHEET 03. f. EXISTING ZONING IS O. REZONING IS NOT BEING PROPOSED.
- g. THERE ARE NO CONDITIONS RESTRICTING THE PROPOSED DEVELOPMENT.
- h. LEGAL DESCRIPTION WITH TOTAL ACREAGE IS SHOWN ON THIS SHEET. i. NO NEW PUBLIC ROADS ARE PROPOSED.

5. TRAFFIC

a. THERE ARE 45 PRIVATE ON-SITE PARKING SPACES PROPOSED, AND ARE INTENDED FOR RESIDENTS OF THE PROPOSED BUILDING ONLY. IT IS ANTICIPATED THAT THE NEW CONSTRUCTION WILL GENERATE LESS THAN 50 VEHICLE TRIPS PER PEAK HOUR TO THE SITE. THEREFORE, A TRAFFIC IMPACT ANALYSIS WOULD NOT BE REQUIRED.

CONSTRUCTION NOTES

- 1. THE CONSTRUCTION COVERED BY THESE PLANS SHALL CONFORM TO THE CITY OF ANN ARBOR PUBLIC SERVICES STANDARD SPECIFICATIONS.
- 2. THE OMISSION OF ANY STANDARD DETAILS DOES NOT RELIEVE THE CONTRACTORS OF THEIR OBLIGATION TO CONSTRUCT ITEMS IN COMPLETE ACCORDANCE WITH THE PUBLIC SERVICES STANDARD
- 3. PAVEMENT MARKINGS DISTURBED DUE TO PAVEMENT CUTS OR CONSTRUCTION RELATED ACTIVITIES SHALL BE REPLACED AS DIRECTED BY CITY ENGINEERING. REPLACEMENT DURING CONSTRUCTION OF THE PROJECT MAY BE CONSIDERED TEMPORARY, WITH FINAL PAVEMENT MARKING RESTORATION TO
- 4. THE CONTRACTOR SHALL TAKE ALL NECESSARY PRECAUTIONS TO PROTECT THE EXISTING PUBLIC ROAD PAVEMENT. DAMAGE TO THE PUBLIC ROAD PAVEMENT DURING THE COURSE OF CONSTRUCTION MAY NECESSITATE MILLING AND RESURFACING OF THE DAMAGED AREAS PRIOR TO ISSUANCE OF THE
- 5. ALL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PUBLIC SERVICES STANDARD SPECIFICATIONS, APPROVED ON DECEMBER 7, 1992, INCLUDING ALL SUBSEQUENT UPDATES.

SITE PLAN

2900 S. MAIN APARTMENTS

A MULTI-FAMILY RESIDENTIAL DEVELOPMENT CITY OF ANN ARBOR, WASHTENAW COUNTY, MICHIGAN

OVERALL DEVELOPMENT MAP

SCALE: 1" = 50 FEET

LEGAL DESCRIPTION

SCHEDULE C DESCRIPTION PER ALTA COMMITMENT FOR TITLE INSURANCE ISSUED BY WESTCOR LAND TITLE INSURANCE COMPANY, ISSUING AGENT: LIBERTY TITLE AGENCY, COMMITMENT NUMBER: LIB169232, REVISION NUMBER: 1, COMMITMENT DATE: 2/28/2022:

THE LAND REFERRED TO IN THIS COMMITMENT IS LOCATED IN THE CITY OF ANN ARBOR, COUNTY OF WASHTENAW, STATE OF MICHIGAN, AND DESCRIBED AS FOLLOWS:

BEGINNING AT THE SOUTHEAST CORNER OF LOT 4, SOUTH MAIN WOODS, THE SOUTH 10 ACRES OF THE EAST 1/2 OF THE EAST 1/2 OF THE SOUTHWEST 1/4 OF SECTION 5, TOWN 3 SOUTH, RANGE 6 EAST, PITTSFIELD TOWNSHIP, WASHTENAW COUNTY, MICHIGAN AS RECORDED IN LIBER 10 OF PLATS, PAGE 1, WASHTENAW COUNTY RECORDS; THENCE SOUTH 88 DEGREES 02 MINUTES 00 SECONDS WEST 502.02 FEET ALONG THE SOUTH LINE OF SAID LOT (AND THE WESTERLY EXTENSION THEREOF); THENCE NORTH 01 DEGREES 58 MINUTES 00 SECONDS WEST 75.00 FEET; THENCE NORTH 88 DEGREES 02 MINUTES 00 SECONDS EAST 230.04 FEET; THENCE NORTH 02 DEGREES 01 MINUTES 45 SECONDS WEST, 60.07 FEET; THENCE NORTH 86 DEGREES 59 MINUTES 16 SECONDS EAST 276.85 FEET TO THE NORTHEAST CORNER OF LOT 3 OF SAID SOUTH MAIN WOODS; THENCE SOUTH 00 DEGREES 01 MINUTES 20 SECONDS EAST 140.20 FEET ALONG THE WESTERLY RIGHT OF WAY LINE OF SOUTH MAIN STREET TO THE POINT OF BEGINNING. BEING LOT 4 AND PART OF LOTS 3 AND 12 OF SOUTH MAIN WOODS.

SCHEDULE B, PART II EXCEPTIONS PER ALTA COMMITMENT FOR TITLE INSURANCE ISSUED BY WESTCOR LAND TITLE INSURANCE COMPANY, ISSUING AGENT: LIBERTY TITLE AGENCY, COMMITMENT NUMBER: LIB169232, REVISION NUMBER: 1, COMMITMENT DATE: 2/28/2022:

11. RIGHT OF WAY IN FAVOR OF MICHIGAN BELL TELEPHONE COMPANY, AS RECORDED IN LIBER 1204, PAGE 396, WASHTENAW COUNTY RECORDS. RESPONSE: AS SHOWN HEREON.

12. EASEMENT AGREEMENT AND THE TERMS AND PROVISIONS CONTAINED THEREIN, AS RECORDED IN LIBER 3683, PAGE 323, WASHTENAW COUNTY RECORDS. RESPONSE: LOCATED NORTHWEST OF SUBJECT PROPERTY.

13. MATTERS AS DISCLOSED BY SURVEY PREPARED BY ALPINE ENGINEERING, INC. JOB NUMBER 21-139 DATED MARCH 4, 2021 AND DESCRIBED AS:

2) MANHOLES ON SUBJECT PROPERTY 3) WATERCOURSE CROSSING SUBJECT PROPERTY

1) ASPHALT ENCROACHING ONTO ADJACENT LAND

SHEET INDEX

- 01 COVER SHEET
- 02 EXISTING CONDITIONS & DEMOLITION PLAN
- LAYOUT PLAN
- NATURAL FEATURES OVERLAY PLAN NATURAL FEATURES ALTERNATIVE ANALYSIS PLAN
- TREE LIST & SOIL LOGS
- UTILITY PLAN & FIRE PROTECTION PLAN
- GRADING, SESC, & STORMWATER MANAGEMENT PLAN STORMWATER MANAGEMENT DETAILS
- STORMWATER MANAGEMENT CALCULATIONS
- 11 STANDARD DETAIL SHEET

SURVEY PLANS

1 ALTA/NSPS LAND TITLE SURVEY / LEGAL DESCRIPTION

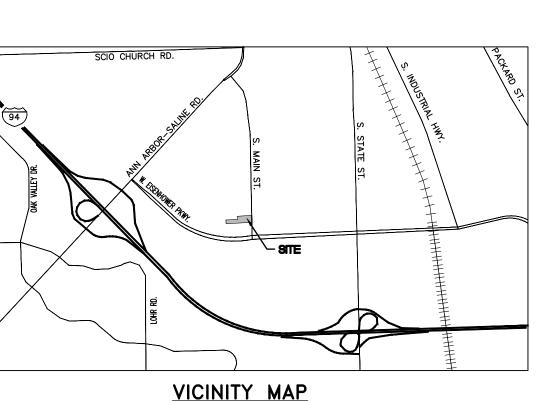
ARCHITECTURAL PLANS

- G.001 COVER SHEET
- A.100 FLOOR PLAN A.101 FLOOR PLAN
- A.200 ELEVATIONS
- A.201 ELEVATIONS A.400 BUILDING SECTIONS
- A.900 RENDERINGS A.901 RENDERINGS

LANDSCAPE PLANS

L-1 LANDSCAPE PLAN L-2 LANDSCAPE DETAILS

PHOTOMETRIC PLANS

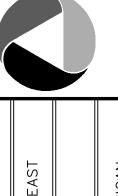

1 of 1 PHOTOMETRIC SITE PLAN

PROJECT DESCRIPTION

THE PETITIONER/APPLICANT IS RESPECTFULLY REQUESTING APPROVALS FOR SITE IMPROVEMENTS INVOLVED IN THE DEVELOPMENT OF THE PROPERTY LOCATED AT 2900 S. MAIN. THE PROPOSED IMPROVEMENTS INCLUDE THE THE CONSTRUCTION OF A 4-STORY FOR-RENT APARTMENT LIVING. A STORM WATER MANAGEMENT SYSTEM IS BEING PROPOSED WITH THE INTENT TO BRING THE SITE IN CURRENT COMPLIANCE WITH THE CITY OF ANN ARBOR REQUIREMENTS. THE PARKING WILL BE PLACED BENEATH THE BUILDING TO ALLOW FOR A REDUCTION IN SURFACE PARKING AND IMPERVIOUS AREAS.

COMPARISON CHART

COMPARISON CHART	1			
	Existing	Required	Proposed	Notes
Zoning	0	0	0	1,10,00
		_		
Lot Area (SF)	54,845	6,000 Min.	51,072	Net area after ROW dedication
FAR		75% Max.	72.2%	75% Maximum usable floor area
Lot Width (Main Street)	139.9'	50' Min.	139.9'	By Definition, Article I, 5:1
Setbacks				
Front (Main Street)		15' min 40' max.	15'	
Side		0	11'	
Rear		55'	246'	Req: 30' + 1' Per Building Height Over 3
 Building				(See architectural Sheets for Breakdow
Area (SF)			36,872	36,969 + 844 Basement
Height (FT)		55' Max.	54.34'	
Stories		4 Stories Max.	4 Stories	
Open Space				
		N/A	50%	(25,314 SF / 51,072 SF = 0.50)
Parking				
Cars (Standard)		0	44	
Cars (ADA Accessible)		0	1	
Cars (Total)		0	45	0.96 Spaces per dwelling unit (45 units)
Total		0	45	
EV Installed (10% of Total)		5	5	
EV Capable (90% of Total)		40	40	
Bike Parking		9	15	1 Space per 5 dwelling units (45 units)
Bike Parking (Class A)		-	48	Minimum 50% of total spaces
Bike Parking (Class C)		-	6	Minimum 50% of total spaces
Total Bikes		9	54	

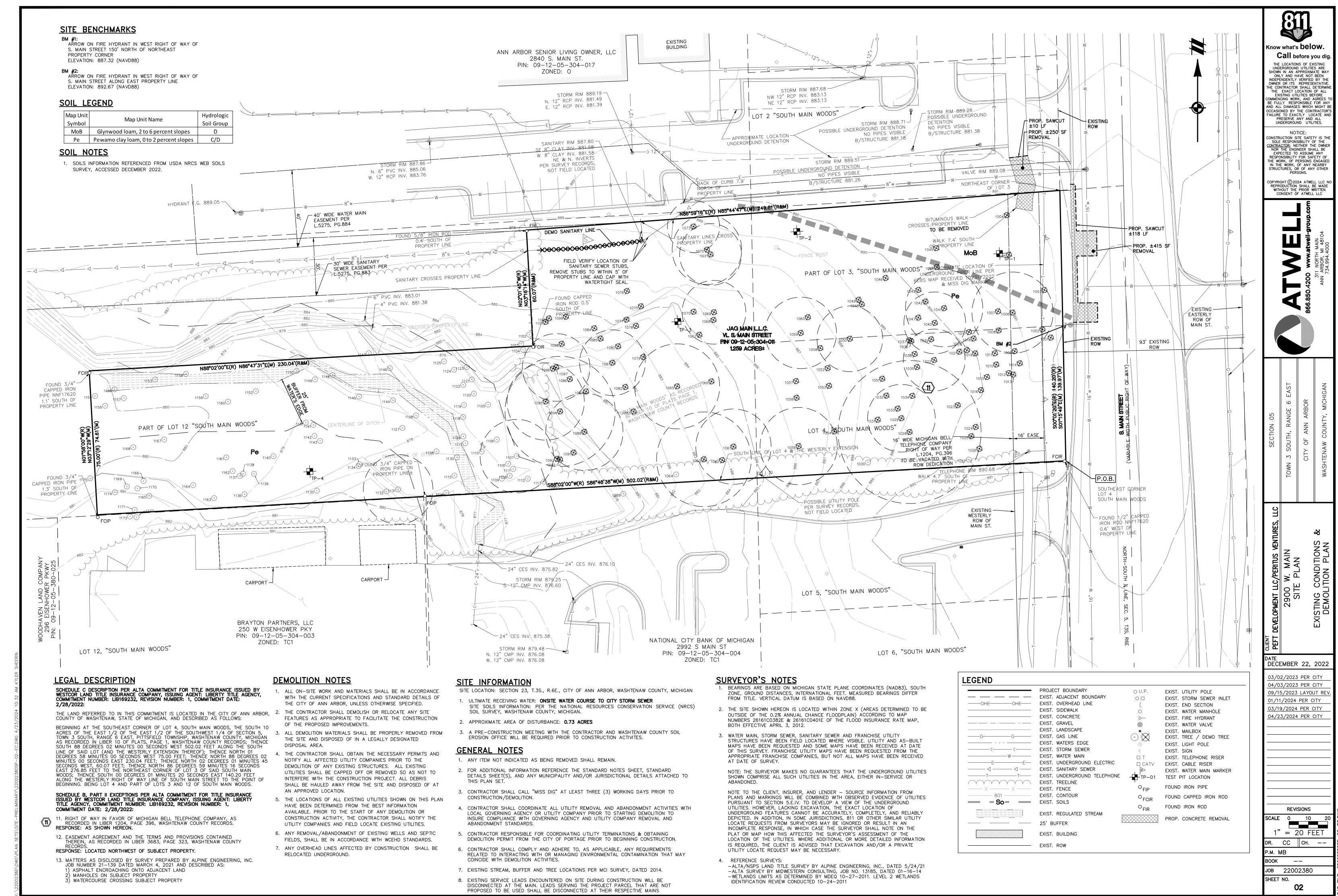


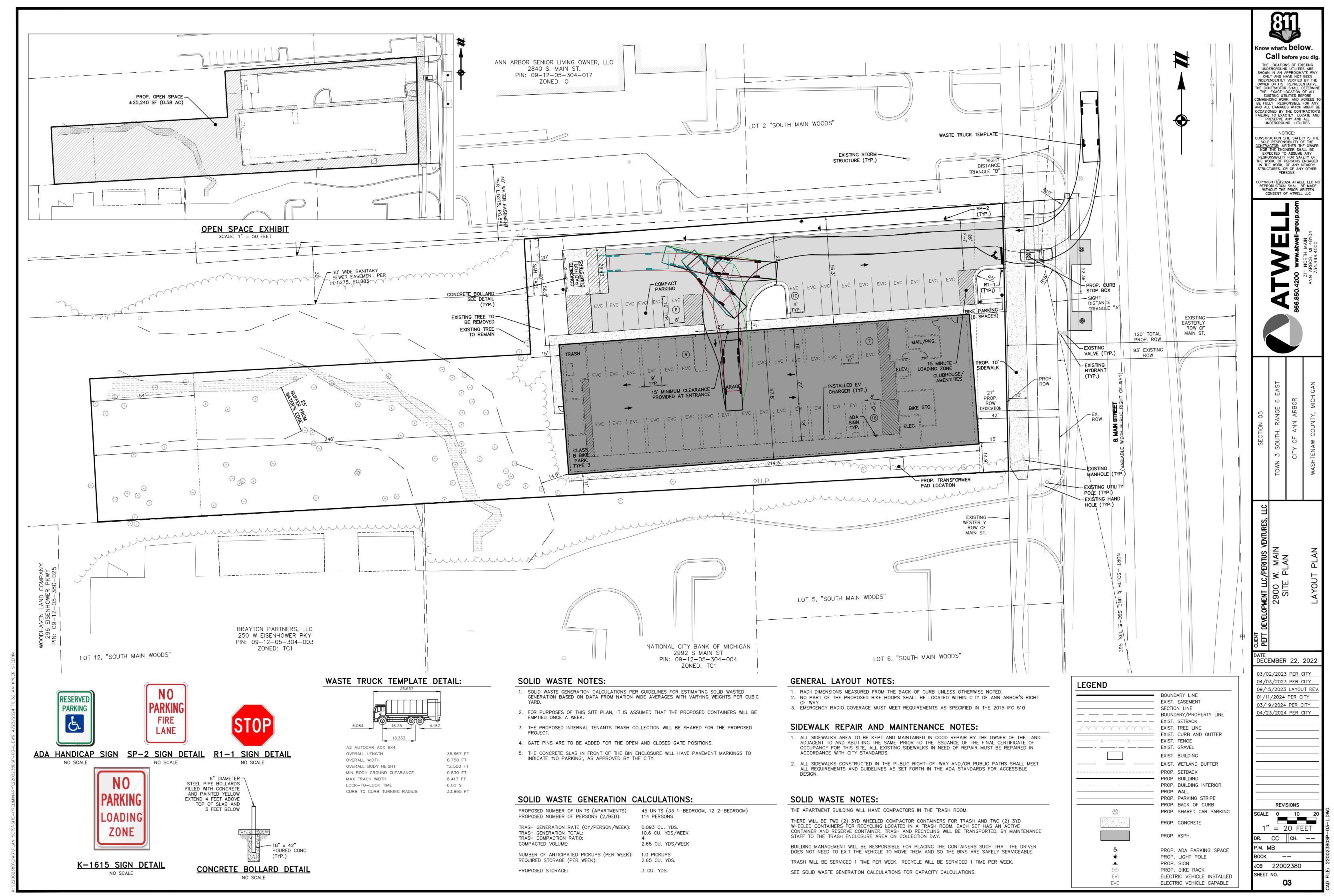
SCALE: 1" = 2500 FEET

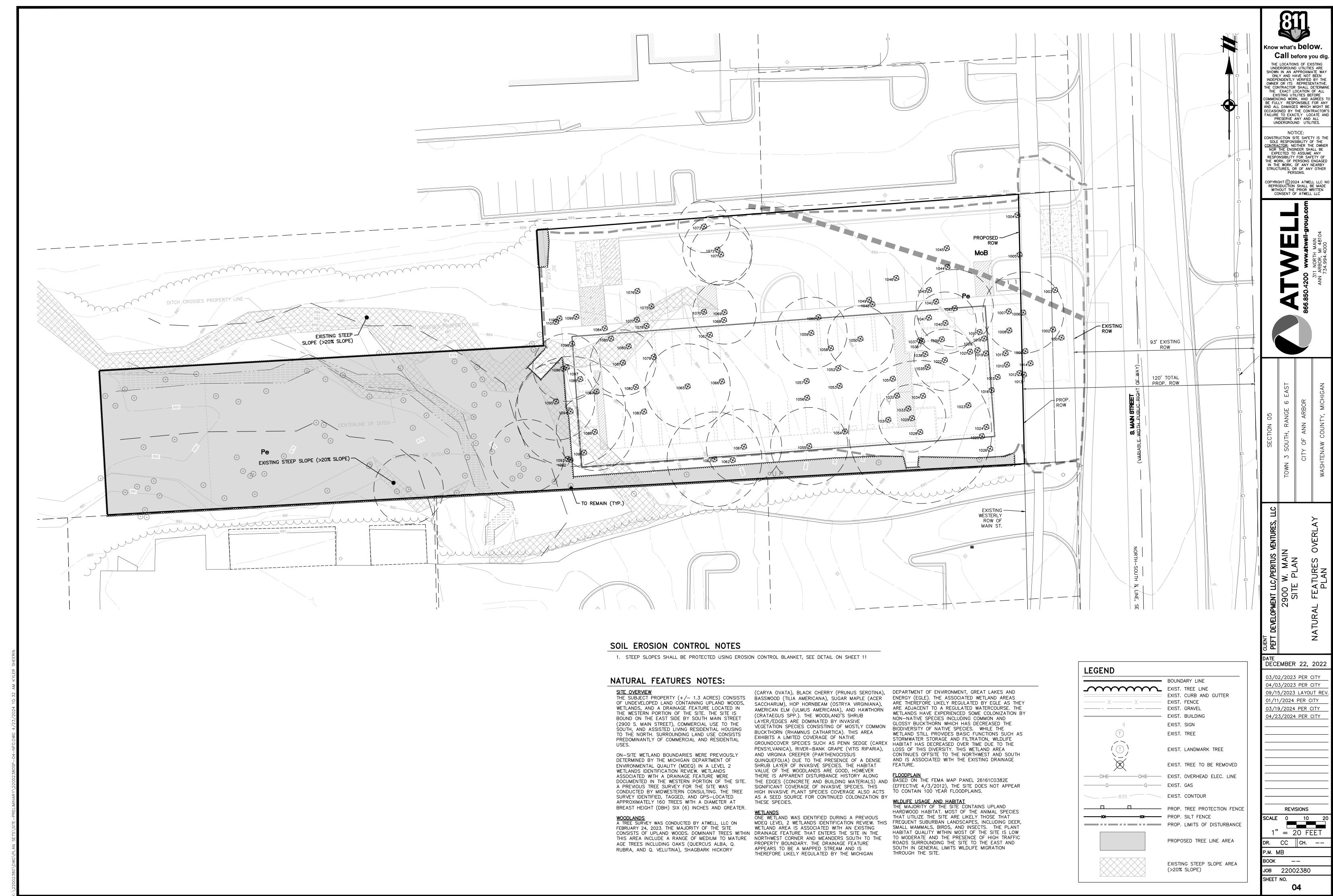
Inow what's **below** Call before you dir UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WA ONLY AND HAVE NOT BEEN EXISTING UTILITIES BEFORE UNDERGROUND UTILITIES ONSTRUCTION SITE SAFETY IS T SOLE RESPONSIBILITY OF THE

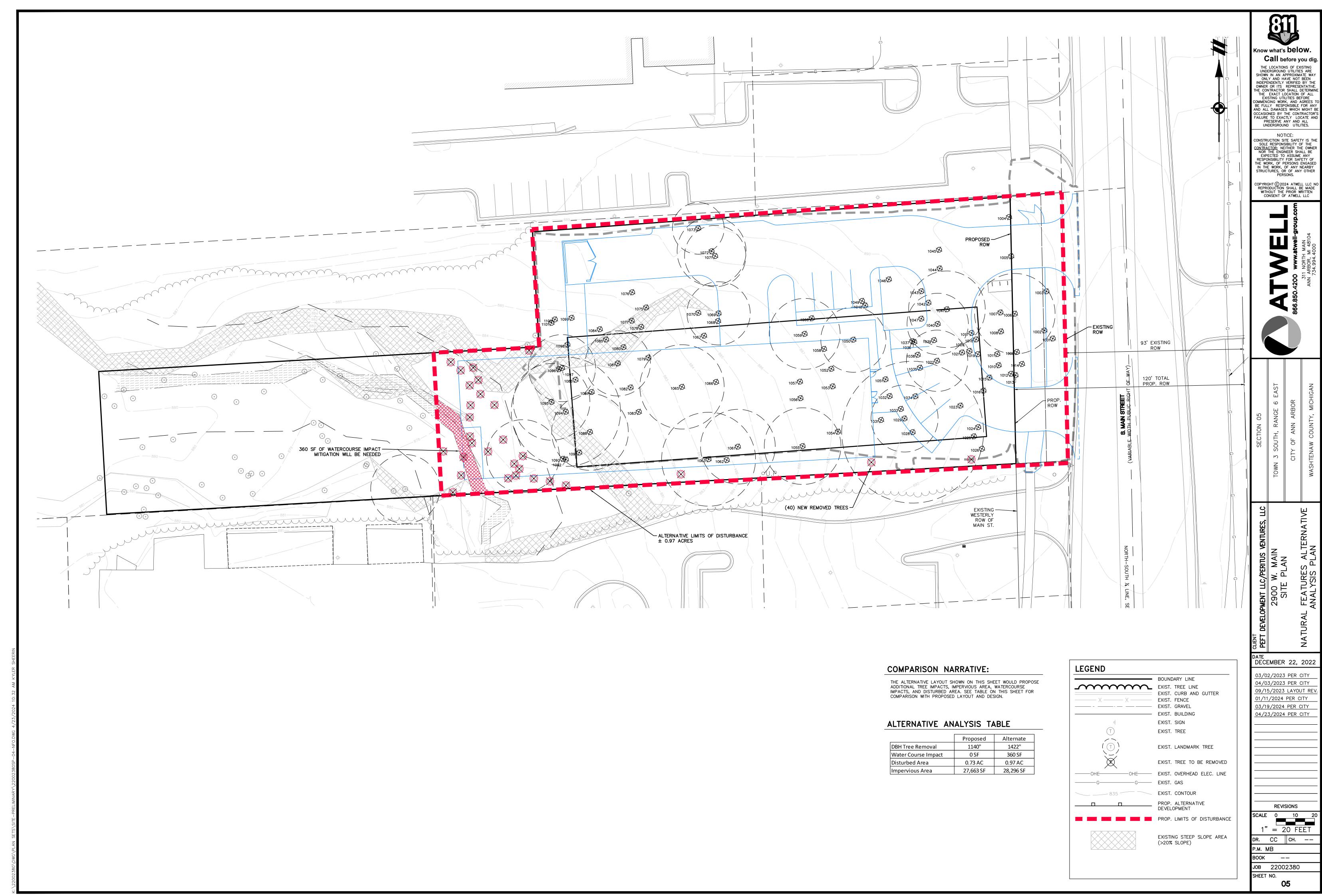
CONTRACTOR; NEITHER THE OWNE NOR THE ENGINEER SHALL BE EXPECTED TO ASSUME ANY RESPONSIBILITY FOR SAFETY OF HE WORK, OF PERSONS ENGAGE

COPYRIGHT © 2024 ATWELL LLC N REPRODUCTION SHALL BE MADE WITHOUT THE PRIOR WRITTEN CONSENT OF ATWELL LLC

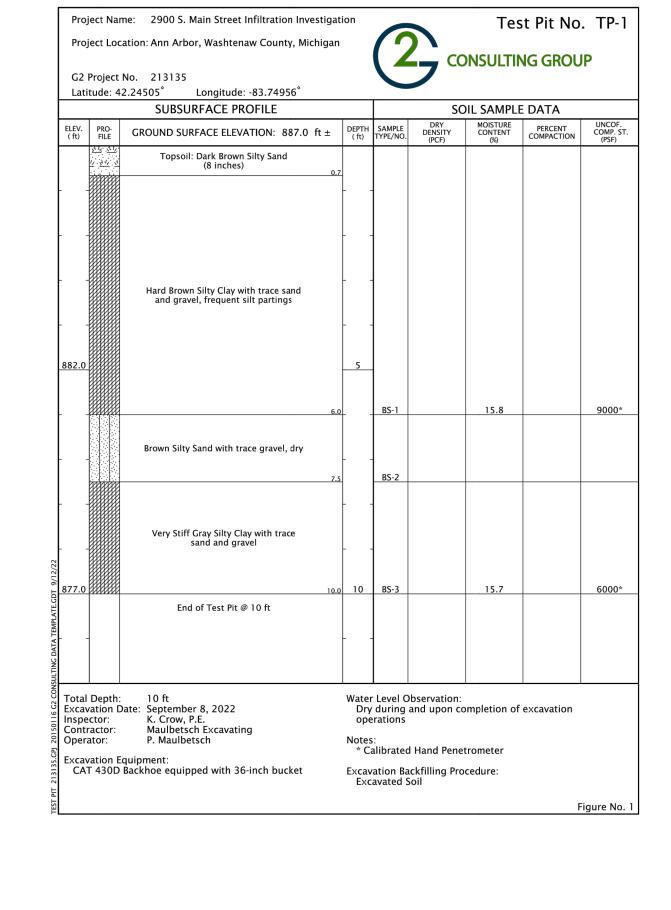

DECEMBER 22, 2022


3/02/2023 PER CITY


04/03/2023 PER CITY 09/15/2023 LAYOUT RE 01/11/2024 PER CITY 03/19/2024 PER CITY 04/23/2024 PER CITY

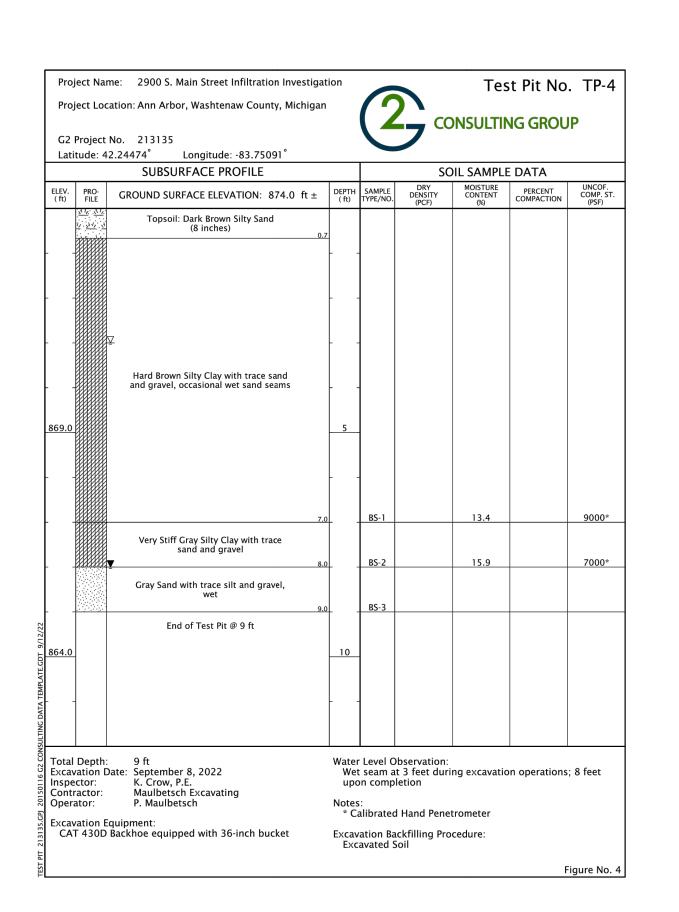

REVISIONS = 50 FEETCC || CH. --

M. MR BOOK ___ JOB 22002380 SHEET NO.



Tree Tag#	Data Code	Scientific Name	Common Name	DBH (inches)	Condition	Bat Hibernacula	Notes/Comments	Invasive Species	Landmark Tree	To Be Remove
1001 1002	PODE QURU	Populus deltoides Quercus rubra	Cottonwood Red Oak	14 13	Good Good	No No		No No	No No	Yes Yes
1003	TIAM	Tilia americana	Basswood	13	Good	No	4 Tauraly (4T), C F C F F	No	No	Yes
1004	CRSPP PRSE	Crataegus species Prunus serotina	Hawthorn Black Cherry	7.5	Good	No No	4 Trunk (4T): 6.5, 6, 5.5	No No	No No	Yes Yes
1006 1007	QURU QURU	Quercus rubra Quercus rubra	Red Oak Red Oak	21 14	Good Good	No No	2 Trunk (2T): 10.5	No No	Yes No	Yes Yes
1008 1009	QURU QURU	Quercus rubra Quercus rubra	Red Oak Red Oak	11 11	Good Good	No No		No No	No No	Yes Yes
1010 1011	QURU QURU	Quercus rubra Quercus rubra	Red Oak Red Oak	7.5 6	Good Good	No No		No No	No No	Yes Yes
1012 1013	TIAM	Tilia americana Tilia americana	Basswood Basswood	11.5 16	Good Good	No No	2T: 11	No No	No No	Yes Yes
1014	QURU	Quercus rubra	Red Oak	14	Good	No		No	No	Yes
1015 1016	QURU QURU	Quercus rubra Quercus rubra	Red Oak Red Oak	11.5 13	Good Good	No No		No No	No No	Yes Yes
1017 1018	QURU QURU	Quercus rubra Quercus rubra	Red Oak Red Oak	10 8	Good Good	No No		No No	No No	Yes Yes
1019 1020	QURU QURU	Quercus rubra Quercus rubra	Red Oak Red Oak	9	Good Good	No No		No No	No No	Yes Yes
1021 1022	CAOV	Carya ovata Quercus rubra	Shagbark Hickory Red Oak	6 16	Good	No No		No No	No Yes	Yes
1023	CAOV	Carya ovata	Shagbark Hickory	10.5	Good	Yes		No	No	Yes
1024 1025	ACSA TIAM	Acer saccarinum Tilia americana	Sugar Maple Basswood	10 9	Good Good	No No		No No	No No	Yes Yes
1026 1027	QURU TIAM	Quercus rubra Tilia americana	Red Oak Basswood	13 9	Good Fair	No No		No No	No No	Yes No
1028 1029	QUAL	Quercus alba Carya ovata	White Oak Shagbark Hickory	37 17.5	Good Good	Yes Yes		No No	Yes Yes	Yes Yes
1030 1031	PRSE	Prunus serotina Carya ovata	Black Cherry Shagbark Hickory	10	Dead Good	No No		No No	No No	No Yes
1032	QURU	Quercus rubra	Red Oak	10.5	Good	No		No	No	Yes
1033 1034	CAOV	Carya ovata Carya ovata	Shagbark Hickory Shagbark Hickory	7	Good Good	No No		No No	No No	Yes Yes
1035 1036	TIAM	Tilia americana Tilia americana	Basswood Basswood	8 12.5	Good Good	No No		No No	No No	Yes Yes
1037 1038	CAOV	Carya ovata Tilia americana	Shagbark Hickory Basswood	9 6.5	Good	Yes No	Missing Top	No No	No No	Yes Yes
1039	TIAM	Tilia americana	Basswood	9	Good	No	iviissiiig IVp	No	No	Yes
1040	QURU	Quercus rubra Quercus rubra	Red Oak Red Oak	16 20	Good	No No		No No	Yes Yes	Yes Yes
1042 1043	ULAM	Ulmus americana Ulmus americana	American Elm American Elm	8	Good Good	No No		No No	No No	Yes Yes
1044 1045	CAOV PRSE	Carya ovata Prunus serotina	Shagbark Hickory Black Cherry	7.5 15	Good Fair	No No	Missing Bark, Missing Branches	No No	No No	Yes Yes
1046 1047	TIAM	Tilia americana Carya ovata	Basswood Shagbark Hickory	11 9	Good	No Yes	, <u>.</u>	No No	No No	Yes Yes
1048	ACSA	Acer saccarinum	Sugar Maple	10	Good	No		No	No	Yes
1049 1050	ULAM QURU	Ulmus americana Quercus rubra	American Elm Red Oak	6 17	Good Good	No No		No No	No Yes	Yes Yes
1051 1052	TIAM ACSA	Tilia americana Acer saccarinum	Basswood Sugar Maple	13 7	Good Good	No No		No No	No No	Yes Yes
1053 1054	OSVI	Ostrya virginiana Tilia americana	American Hophornbeam Basswood	7 11	Good Good	No No		No No	No No	Yes Yes
1055 1056	CAOV	Carya ovata Ostrya virginiana	Shagbark Hickory American Hophornbeam	20 9.5	Good Dead	Yes No		No No	Yes No	Yes Yes
1057	OSVI	Ostrya virginiana	American Hophornbeam	8	Good	No	2T: 5.5	No	No	Yes
1058 1059	ACSA QURU	Acer saccarinum Quercus rubra	Sugar Maple Red Oak	13 18.5	Good Good	No No		No No	No Yes	Yes Yes
1060 1061	ACSA CAOV	Acer saccarinum Carya ovata	Sugar Maple Shagbark Hickory	9 19.5	Good Good	No Yes	2T: 5	No No	No Yes	Yes Yes
1062 1063	CAOV	Carya ovata Carya ovata	Shagbark Hickory Shagbark Hickory	6.5 24.5	Good Good	No Yes		No No	No Yes	Yes Yes
1064 1065	TIAM	Tilia americana	Basswood American Beech	11 22	Good	No No		No No	No Yes	No Yes
1066	ACSA	Fagus grandifolia Acer saccarinum	Sugar Maple	11.5	Good	No		No	No	Yes
1067 1068	ACSA TIAM	Acer saccarinum Tilia americana	Sugar Maple Basswood	13 6	Good Fair	No No	Missing Top	No No	No No	Yes Yes
1069 1070	ACSA OSVI	Acer saccarinum Ostrya virginiana	Sugar Maple American Hophornbeam	16.5 9.5	Good Good	No No	2T: 7.5	No No	Yes No	Yes Yes
1071 1072	CAOV	Carya ovata Carya ovata	Shagbark Hickory Shagbark Hickory	16 18	Good Good	Yes Yes	2T: 13	No No	Yes Yes	Yes Yes
1073 1075	CRSPP	Crataegus species Acer saccarinum	Hawthorn Sugar Maple	13.5 12	Good Good	No No	4T: 11, 9.5, 9	No No	Yes No	Yes Yes
1076	CRSPP	Crataegus species	Hawthorn	9	Good	No	2T: 8	No	No	Yes
1077 1078	QURU ACSA	Quercus rubra Acer saccarinum	Red Oak Sugar Maple	6.5	Good Good	No No		No No	No No	Yes Yes
1079 1080	ACSA ACSA	Acer saccarinum Acer saccarinum	Sugar Maple Sugar Maple	10.5 12.5	Good Good	No No		No No	No No	Yes Yes
1081 1082	QURU OSVI	Quercus rubra Ostrya virginiana	Red Oak American Hophornbeam	17 8	Good Good	No No	2T: 7.5	No No	Yes No	Yes Yes
1083 1084	OSVI	Ostrya virginiana Tilia americana	American Hophornbeam Basswood	6 14.5	Good Good	No No		No No	No No	Yes Yes
1085	QURU	Quercus rubra	Red Oak	10	Good	No		No	No	Yes
1086	TIAM ACSA	Tilia americana Acer saccarinum	Basswood Sugar Maple	7.5 8.5	Good	No No		No No	No No	Yes Yes
1088 1089	CAOV ACSA	Carya ovata Acer saccarinum	Shagbark Hickory Sugar Maple	20 8.5	Good Dead	Yes No	2T: 7	No No	Yes No	Yes No
1090 1091	TIAM	Tilia americana Ulmus americana	Basswood American Elm	11.5 6	Good Good	No No		No No	No No	No Yes
1092 1093	ULAM	Ulmus americana Ulmus americana	American Elm American Elm	7 13.5	Good Good	No No		No No	No No	Yes Yes
1093 1094 1095	QURU	Quercus rubra	Red Oak Shagbark Hickory	28.5	Good	No Yes		No No	Yes	Yes
1096	TIAM	Carya ovata Tilia americana	Basswood	8	Good	No		No	No	Yes
1097 1098	QURU TIAM	Quercus rubra Tilia americana	Red Oak Basswood	17.5 8	Good Fair	No No	Dead Major Limbs	No No	Yes No	Yes Yes
1099 1100	CAOV TIAM	Carya ovata Tilia americana	Shagbark Hickory Basswood	6 13	Good Good	No No		No No	No No	Yes Yes
1101 1102	QURU QURU	Quercus rubra Quercus rubra	Red Oak Red Oak	12 11	Good Poor	No No	Nearly Dead	No No	No No	Yes No
1103 1104	QURU QURU	Quercus rubra Quercus rubra	Red Oak Red Oak	10.5	Fair Good	No No	Dead Main Branches	No No	No No	No No
1105	QURU	Quercus rubra	Red Oak	12	Good	No		No	No	No
1106 1107	QURU QURU	Quercus rubra Quercus rubra	Red Oak Red Oak	19	Good	No No		No No	No Yes	No No
1108 1109	QURU ULAM	Quercus rubra Ulmus americana	Red Oak American Elm	14 6	Good Good	No No		No No	No No	No No
1110 1111	ULAM	Ulmus americana Quercus rubra	American Elm Red Oak	9.5 9.5	Good Good	No No		No No	No No	No No
1112	Other	Other	Other	6.5 7.5	Dead	No		No	No	No
1113	TIAM	Tilia americana Tilia americana	Basswood Basswood	11	Good	No No		No No	No No	No No
1115 1116	ACSA Other	Acer saccarinum Other	Sugar Maple Other	6	Good Dead	No Yes		No No	No No	No No
1117 1118	ACSA ULAM	Acer saccarinum Ulmus americana	Sugar Maple American Elm	7 6.5	Good Good	No No		No No	No No	No No
1119 1120	CAOV	Carya ovata Acer saccarinum	Shagbark Hickory Sugar Maple	7	Good	No Yes	Nearly Dead	No No	No No	No No
1121	TIAM	Tilia americana	Basswood	12	Good	No	iveally bedu	No	No	No
1122 1123	TIAM	Tilia americana Tilia americana	Basswood Basswood	16 12	Good Poor	No No		No No	No No	No No
1124 1125	ACSA QURU	Acer saccarinum Quercus rubra	Sugar Maple Red Oak	10.5 13	Good Poor	No No	2T: 4; Horizontal, Up Rooted	No No	No No	No No
1126	TIAM	Tilia americana	Basswood	12.5	Fair Good	No No	Missing Top	No No	No	No No

Tros	Data			DBH			Arbor - Atwell Project #22002380	Invasive	Landmark	То Ве
Tree Tag#	Data Code	Scientific Name	Common Name	(inches)	Condition	Bat Hibernacula	Notes/Comments	Species	Tree	Removed
1128	CAOV	Carya ovata	Shagbark Hickory	6.5	Good	No		No	No	No
1129	PODE	Populus deltoides	Cottonwood	9	Good	No		No	No	No
1130	ULPU	Ulmus pumila	Siberian Elm	6	Good	No		Yes	No	No
1131	TIAM	Tilia americana	Basswood	18	Good	No		No	Yes	No
1132	ACSA	Acer saccarinum	Sugar Maple	9.5	Good	No		No	No	No
1133	ACSA	Acer saccarinum	Sugar Maple	7.5	Dead	Yes		No	No	No
1134	ULAM	Ulmus americana	American Elm	11	Dead	Yes		No	No	No
1135	Other	Acer nigrum	Black Maple	8	Good	No		No	No	No
1136	CAOV	Carya ovata	Shagbark Hickory	7	Good	No		No	No	No
1137	CAOV	Carya ovata	Shagbark Hickory	6	Good	No		No	No	No
1138	TIAM	Tilia americana	Basswood	10	Good	No		No	No	No
1139	TIAM	Tilia americana	Basswood	14.5	Dead	Yes		No	No	No
1140	TIAM	Tilia americana	Basswood	7.5	Fair	No	Missing Top	No	No	No
1141	CAOV	Carya ovata	Shagbark Hickory	8	Good	No	<u> </u>	No	No	No
1142	CAOV	Carya ovata	Shagbark Hickory	20	Dead	Yes		No	No	No
1143	ACSA	Acer saccarinum	Sugar Maple	6.5	Good	No		No	No	No
1144	ULAM	Ulmus americana	American Elm	6	Good	No		No	No	No
1145	ACSA	Acer saccarinum	Sugar Maple	8.5	Good	No		No	No	No
1146	ULPU	Ulmus pumila	Siberian Elm	9	Good	No		Yes	No	No
1147	RHCA	Rhamnus cathartica	Common Buckthorn	7	Poor	No	5 Trunk (5T): 6.5, 3, 3, 3; Many Main Dead Branches	Yes	No	No
1148	ULPU	Ulmus pumila	Siberian Elm	12	Good	No	5 Trank (51). 6.5, 5, 5, 5, Wany Wan Dead Dranches	Yes	No	No
1149	PODE	Populus deltoides	Cottonwood	7.5	Good	No		No	No	No
1150	PODE	Populus deltoides	Cottonwood	12.5	Good	No		No	No	No
1150		Tilia americana		14		No		+		
	TIAM		Basswood		Good		2T. 11	No	No	No
1152	TIAM	Tilia americana	Basswood	11.5	Good	No	2T: 11	No	No	No
1153	RHCA	Rhamnus cathartica	Common Buckthorn	7.5	Good	No	2T: 3	Yes	No	No
1154	RHCA	Rhamnus cathartica	Common Buckthorn	10	Poor	No	Split In Half	Yes	No	No
1155	RHCA	Rhamnus cathartica	Common Buckthorn	6	Poor	No	Horizontal	Yes	No	No
1156	RHCA	Rhamnus cathartica	Common Buckthorn	6	Good	No		Yes	No	No
1157	RHCA	Rhamnus cathartica	Common Buckthorn	6	Good	No		Yes	No	No
1158	RHCA	Rhamnus cathartica	Common Buckthorn	6.5	Good	No		Yes	No	No
1159	RHCA	Rhamnus cathartica	Common Buckthorn	8	Good	No	2T: 3.5	Yes	No	No
1160	RHCA	Rhamnus cathartica	Common Buckthorn	6	Good	No		Yes	No	No
1161	CAOV	Carya ovata	Shagbark Hickory	10.5	Good	Yes		No	No	No
1162	RHCA	Rhamnus cathartica	Common Buckthorn	6.5	Good	No		Yes	No	No
1163	RHCA	Rhamnus cathartica	Common Buckthorn	6	Good	No		Yes	No	No
1164	RHCA	Rhamnus cathartica	Common Buckthorn	6	Good	No	2T: 4.5	Yes	No	No
1165	TIAM	Tilia americana	Basswood	13.5	Good	No		No	No	No
1166	TIAM	Tilia americana	Basswood	11.5	Good	No		No	No	No
1167	TIAM	Tilia americana	Basswood	12	Good	No	2T: 10	No	No	No
1168	CAOV	Carya ovata	Shagbark Hickory	7	Good	No		No	No	No
1169	CAOV	Carya ovata	Shagbark Hickory	9	Fair	Yes	2T: 7.5; Smaller Trunk Dead, Dead Main Limb	No	No	No
1170	ACSA	Acer saccarinum	Sugar Maple	10	Poor	Yes	Dead Main Branches	No	No	No
1171	ACSA	Acer saccarinum	Sugar Maple	9.5	Good	No		No	No	No
1172	ACSA	Acer saccarinum	Sugar Maple	7	Fair	No	Missing Top, Inner Bark Rot (IBR)	No	No	No
		Acer saccarinum	Sugar Maple	7	Good	No		No	No	No
1173	ACSA	Acei succuillulli	Jugai Mapic	1 /	l door			1 110	140	
1173 1174	ACSA ACSA	Acer saccarinum	Sugar Maple	11	Good	No		No	No	No

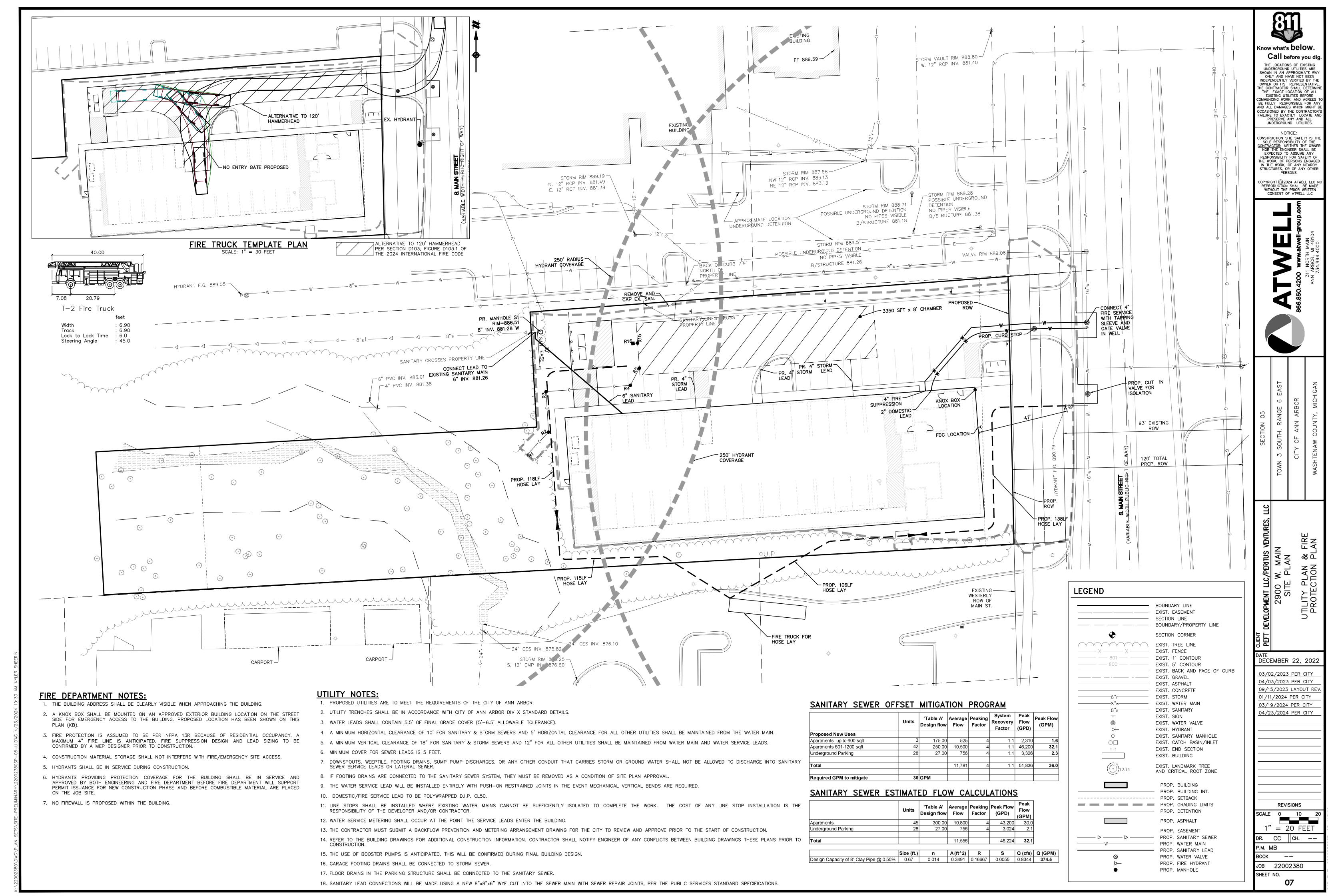

1140"
0"
102''
4020!!
1038"
1038 x 50% =519/ 2.5" cal =
207.6 Trees or 519" DBH

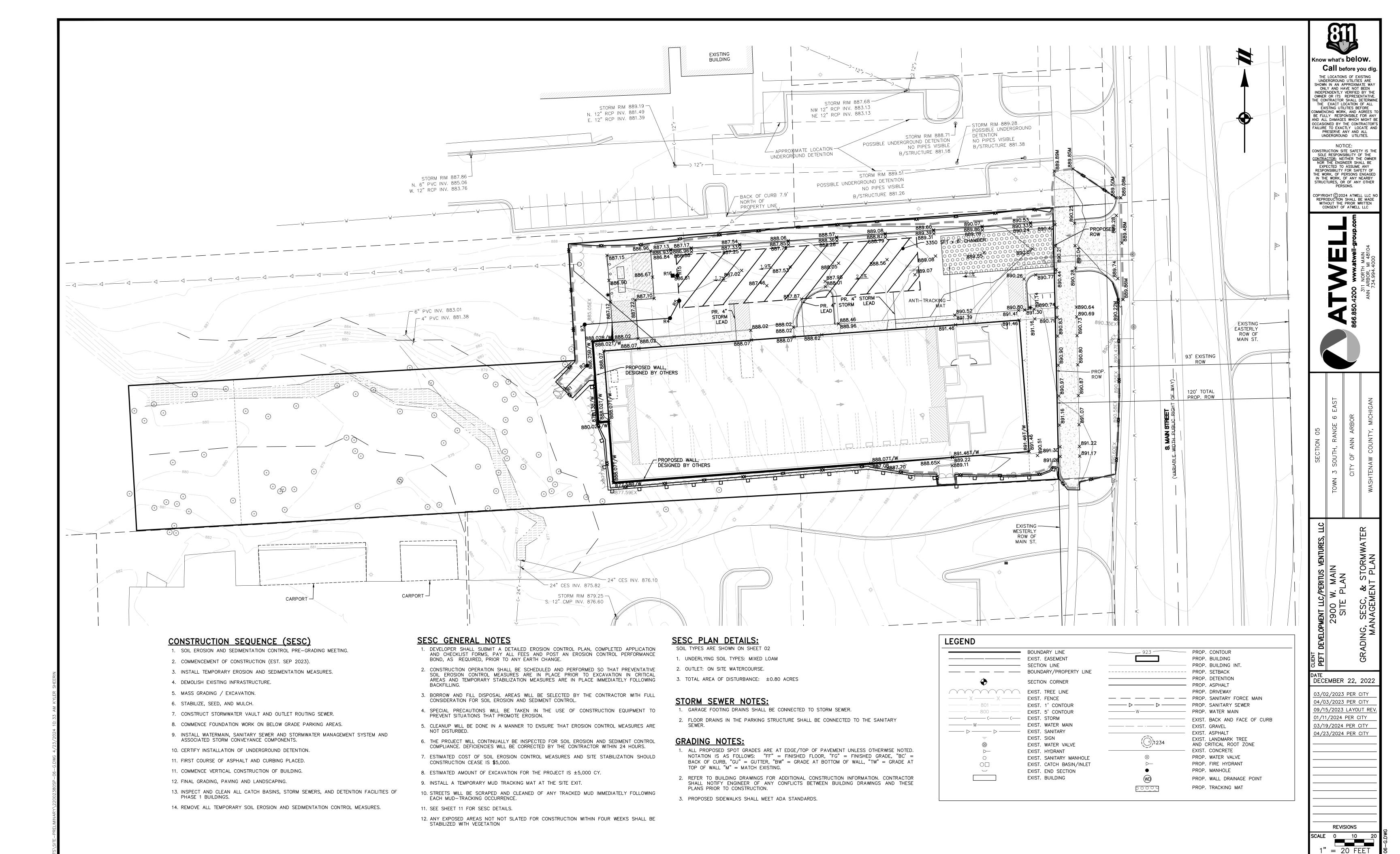
INFILTRATION
A GEOTECHNICAL INFILTRATION EVALUATION HAS BEEN PREPARED
FOR THE SITE BY G2 CONSULTING GROUP (DATED 3-19-19).
BASED ON THIS EVALUATION THE SOILS ON THE SITE CANNOT
SUPPORT INFILTRATION THEREFORE REQUIRING 120% DETENTION
VOLUME (PER WCWRC RULES).

	ject Nan	ne: 2900 S. Main Street Infiltration Investigation: Ann Arbor, Washtenaw County, Michiga			7	Tes	st Pit No	. TP-2
		No. 213135		(2	7 cc	NSULTI	NG GROU	P
		2.24508° Longitude: -83.74995°						
FI FI /		SUBSURFACE PROFILE		SAMPLE		OIL SAMPLI	E DATA PERCENT	UNCOF.
ELEV. (ft)	PRO- FILE	GROUND SURFACE ELEVATION: 884.0 ft ±	DEPTH (ft)	SAMPLE TYPE/NO.	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	COMPACTION	UNCOF. COMP. S' (PSF)
	7.77.7	Topsoil: Dark Brown Silty Sand (7 inches)	.6					
- 879.0 - - -		Hard Brown Silty Clay with trace sand and gravel, frequent silt partings and occasional cobbles	5	BS-1		13.3		9000*
		End of Test Pit @ 10 ft						
Excav Inspe Contr Opera	ctor: ractor: ator:	10 ft ate: September 8, 2022 K. Crow, P.E. Maulbetsch Excavating P. Maulbetsch	Dry ope Notes	during a erations	bservation: and upon co Hand Pene	ompletion of trometer	excavation	

		SUBSURFACE PROFILE				SC	OIL SAMPLI	E DATA	
ELEV. P	RO-	GROUND SURFACE ELEVATION: 881.0 ft	t ±	DEPTH (ft)	SAMPLE TYPE/NO.	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	PERCENT COMPACTION	UNCOF. COMP. S (PSF)
<u>//</u> . <u>\</u>	71/2 71/2 71/2	Topsoil: Dark Brown Silty Sand (12 inches)	1.0			, -,			· · · ·
876.0 871.0 Total De Excavati Inspecto Contract Operato		Hard Brown Silty Clay with trace sand and gravel, frequent silt partings and sand seams	10.0		BS-1		10.9		9000*
		End of Test Pit @ 10 ft							

THE UNDI SHOWN ON THE EXI COMMENTE EXI COMMENTE EXI COMMENTE EXI COMMENTE EXI COMMENTE EXILURE PER UN CONSTRUCTURE SOLE CONTRA NOR EXPRESPORTE WITH WITH STRUCTURE COPYRIC REPRESENTE WITH COPYRIC REPRESENTE EXILURE COPYRIC REPRESENTE COPYRI	LOCATION ERGROUNE IN AN A Y AND H INDENTLY OR ITS WITHACTOR EXACT L STING UTI CING WOR L Y RESP DAMAGE NED BY TO EXAC ESERVE V DERGROUN UCTION SI RESPONS CTOR: NE THE ENGI ECTED TO MISBILLTY RES, OF PER: TURES, OI PER:	REFORM Y NS OF EXAMPLE OF EXAMPL	OU dig. ISTING S ARE ATE WAY BEEN BY THE NTATIVE. DETERMINE OF ALL FORE GREES TO FOR ANY MIGHT BE RACTOR'S CATE AND ALL TIES. Y IS THE E OWNER ALL E OWNER ALL E OWNER ALL E OWNER ANY OF ENGAGED HEARBY OTHER L LLC NO E MADE RITTEN	
SECTION 05	TOWN 3 SOUTH, RANGE 6 EAST	CITY OF ANN ARBOR	WASHTENAW COUNTY, MICHIGAN	
03/0	NIAM .W 0092 2/2023 3/2023 2/2023	22, 5 PER (5 PER (DITY DITY	
01/11	/2024 9/2024 3/2024	PER C	ITY	SM

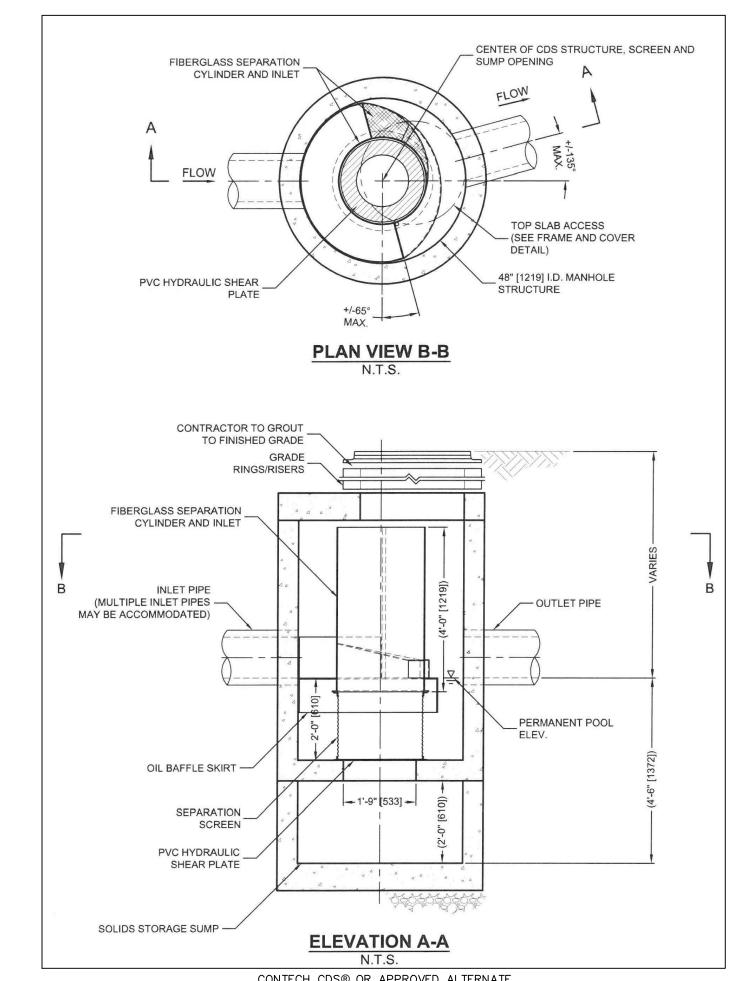

DR. CC || CH. --


06

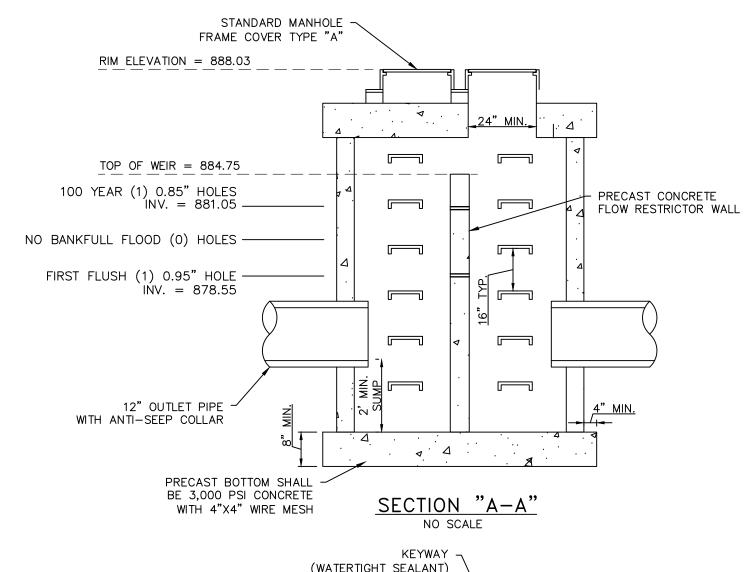
P.M. MB

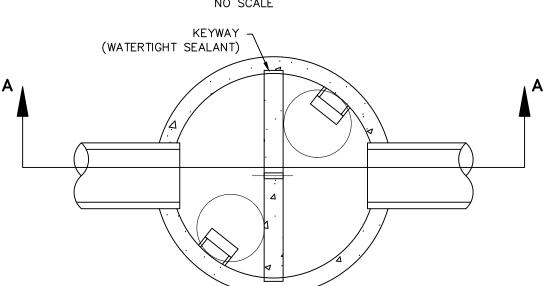
SHEET NO.

BOOK --JOB 22002380


CC || CH. --

P.M. MB


SHEET NO.


BOOK --

JOB 22002380

CONTECH CDS® OR APPROVED ALTERNATE MANUFACTURER TO PROVIDE SIZING AND CONTRACT DESIGN DRAWINGS FOR APPROVAL DURING DETAILED ENGINEERING TYPICAL PRE-TREATMENT STRUCTURE

PLAN VIEW

- NO SCALE 1. THE PRECAST REINFORCED FLOW RESTRICTOR STRUCTURE SHALL BE MANUFACTURED PER ASTM C478
- 2. ALL JOINTS SHALL BE MADE WATERTIGHT.

SPECIFICATIONS.

3. CONTRACTOR TO PROVIDE DETAILED SHOP DRAWINGS OF CONTROL STRUCTURE PRIOR TO CONSTRUCTION.

OUTLET CONTROL STRUCTURE DETAIL OR APPROVED ALTERNATE

STORM WATER DRAINAGE NARRATIVE

STORM WATER MANAGEMENT SYSTEM NARRATIVE

IN CONJUNCTION WITH THE DEVELOPMENT OF THE SITE, THE PROPOSED STORM WATER MANAGEMENT IMPROVEMENTS ARE TO COMPLY WITH THE CURRENT RULES AND REGULATIONS OF THE WASHTENAW COUNTY WATER RESOURCES COMMISSIONERS OFFICE (WCWRC) AND THE CITY OF ANN ARBOR. THIS INCLUDES REQUIRED TREATMENT AND ATTENUATION OF STORM WATER.

A GEOTECHNICAL INFILTRATION EVALUATION HAS BEEN PREPARED FOR THE SITE BY G2 CONSULTING GROUP (DATED 3-19-19). BASED ON THIS EVALUATION THE SOILS ON THE SITE CANNOT SUPPORT INFILTRATION THEREFORE REQUIRING 120% DETENTION VOLUME (PER WCWRC RULES).

CONVEYANCE AND DETENTION: THE PROPOSED STORM WATER RUNOFF WILL BE COLLECTED AND CONVEYED VIA STORM SEWERS TO:

• UNDERGROUND DETENTION CHAMBERS ON THE NORTH SIDE OF THE PROJECT. THESE CHAMBERS WILL DRAIN VIA GRAVITY TO A PROPOSED STORM SEWER OUTLET TO AN EXISTING UNNAMED WATERCOURSE IN THE WESTERN PORTION OF THE SITE. THE BUILDING WILL DRAIN TO THIS

OUTLET FLOW RESTRICTION OF THE DETENTION AREAS WILL BE REQUIRED AND PROVIDED VIA AN OUTLET CONTROL STRUCTURE. THIS WILL REGULATE THE RATE OF DISCHARGE AT OR BELOW THE ALLOWABLE RATES AS DEFINED BY THE RULES OF THE WCWRC.

PROPOSED STORM WATER OUTLET THE PROPOSED STORM WATER OUTLET IS TO AN EXISTING UNNAMED WATERCOURSE IN THE WESTERN PORTION OF THE SITE. THIS WATER COURSE

- ULTIMATELY DRAINS ACROSS THE SITE TO THE SOUTH TOWARD EISENHOWER STREET AND IS TRUBITARY TO THE MALLETS CREEK DRAIN. THE PROPOSED STORM WATER OUTLET LOCATION IS UNDERSTOOD TO BE ADEQUATE FOR THE PROPOSED DISCHARGE FOR THE FOLLOWING REASONS:
- THE OUTLET LOCATION IS THE ONLY VIABLE AND REASONABLE OUTLET FOR THE SITE

•	•	THE	OUTLET .	APPEARS	FUN	CTIONAL	AND) THE	RE ARE	. NO	KNOW	N DO	WNS	STREAM F	LOO	DING ISS	UES	3	
•	•	THE	DISCHAR	GE RATE	AND	VOLUME	ТО	THE	ULTIMA	TE C	UTLET	WILL	ΒE	REDUCE	NI C	PROPOS	SED	CONDITIONS	

					СОМРО	NENTS					
TASKS	Storm Sewer System	Catch Basin Sumps	Catch Basin Inlet Casings	Ditches and Swales	Outflow Control Structure	Rip-Rap	Filtration Basins	Storm Detention Areas	Wetlands	Emergency Overflow	SCHEDULE
Inspect for sediment accumulation	Х	х		Х	Х	Х	Х	Х	Х		Weekly
Removal of sediment accumulation	Х	х		Х	Х	х	Х	Х			As needed* & prior to turnover
Inspect for floatables and debris	Х	Х	Х	Х	Х		Х	Х			Quarterly
Cleaning of floatables and debris	Х	x	Х	Х	Х		Х	Х			Quarterly & at turnover
Inspect Stormwater system components during wet weather and compare to asbuilt plans					x		X	X			Annually and at turnover
Make adjustments as determined by annual wet weather inspection	Х	X	Х	Х	X	Х	Х	X	х	Х	As needed

*as needed means when sediment has accumulated to a maximum of one foot depth

STORM WATER MAINTENANCE TASKS AND SCHEDULE DURING CONSTRUCTION DURING CONSTRUCTION THE CONTRACTOR IS RESPONSIBLE FOR MAINTENANCE OF THE STORMWATER SYSTEM

TASKS	COST
Annual inspection for sediment accumulation	\$300.00
Removal of sediment accumulation every 2 years as needed	\$1,500.00
Inspect for floatables and debris annually and after major storms	\$600.00
Removal of floatables and debris annually and after major storms	\$900.00
Inspect structural elements during wet weather and compare to as-built plans every 2 years	\$900.00
Make structural adjustments or replacements as determined by inspection as needed	\$1,000.00
Have professional engineer carry out emergency inspections upon identification of severe problems	\$1,000.00
A. Total Annual Budget	\$6,200.00

STORM WATER MAINTENANCE TASKS ANNUAL BUDGET NOTE: NO CHEMICALS SHALL BE USED IN THE STORM WATER FEATURES OR BUFFER ZONES WITH THE EXCEPTION OF TREATING FOR INVASIVE SPECIES. MOWING SHALL NOT BE PERFORMED MORE THAN TWICE A YEAR.

now what's **below**.

Call before you dig THE LOCATIONS OF EXISTING THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE

AND ALL DAMAGES WHICH MIGHT BIS OCCASIONED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.

NOTICE:

CONSTRUCTION SITE SAFETY IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR; NEITHER THE OWNER NOR THE ENGINEER SHALL BE EXPECTED TO ASSUME ANY RESPONSIBILITY FOR SAFETY OF THE WORK, OF PERSONS ENGAGED IN THE WORK, OF ANY NEARBY STRUCTURES, OR OF ANY OTHER PERSONS.

COPYRIGHT © 2024 ATWELL LLC NO REPRODUCTION SHALL BE MADE WITHOUT THE PRIOR WRITTEN CONSENT OF ATWELL LLC

DECEMBER 22, 2022

03/02/2023 PER CITY 04/03/2023 PER CITY 09/15/2023 LAYOUT RE 01/11/2024 PER CITY 03/19/2024 PER CITY 04/23/2024 PER CITY

REVISIONS

= 20 FEET CC | CH. --P.M. MB BOOK --

JOB 22002380

09

SHEET NO.

 $B/(T+D) ^E B = 275.0$ D = 25.0C = varies

T = 20 (min.)

		,																					
FROM	TO	INCRE-		EQUIV.	TOTAL	Т	l	Q=CIA	CAPAC-	DIAM.	LENGTH	SLOPE	MIN HG	HG FOR	ACTUAL	VEL.	TIME	H.G.L	. ELEV.	GROUN	ID ELEV.	INVER	T ELEV.
МН	MH	MENT	С	AREA	AREA	TIME	(IN	C.F.S.	ITY OF	OF	OF	OF	BASED	2.5 FPS	HG	FLOW	OF	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER
INPUT		ACRES		100%	100%	(MIN.)	PER	FLOW	SEWER	PIPE	LINE	PIPE	ON "Q"	GIVEN "D"	(%)	FULL	FLOW	END	END	END	END	END	END
		(A)		ACRES	ACRES		HOUR)		(C.F.S.)	(IN.)	(FT.)	(%)	(%)	(%)		(FT./	(MIN.)					1	
				CA	SUM CA											SEC.)						1	
R16	R15	0.00	0.00	0.00	0.00	20.00	6.11	0.00	2.36	12	3	0.44	0.00	0.30	0.30	3.0	0.0	879.49	879.49	887.68	887.85	878.50	878.49
on on one of the other of the o		000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000000		00000000000000000000000000000000000000		de constante de co	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000					rene enteres en	000000000000000000000000000000000000000		on on the second		
R4	R3	0.04	0.93	0.04	0.04	20.00	6.11	0.25	2.36	12	44	0.44	0.01	0.30	0.30	3.0	0.2	879.35	879.22	888.03	886.27	878.49	878.29
R3	R2	0.00	0.00	0.00	0.04	20.20	6.08	0.25	2.36	12	39	0.44	0.01	0.30	0.30	3.0	0.2	879.22	879.10	886.27	882.65	878.29	878.12
R2	R1	0.00	0.00	0.00	0.04	20.40	6.06	0.25	2.36	12	16	0.44	0.01	0.30	0.30	3.0	0.1	879.10	879.05	882.65	878.05	878.12	878.05
		•	•	•	•		•	•	•	•	•	•	•	•		•	•	•			•		-

PRELIMINARY UNDERGROUND DETENTION CALCULATIONS

			Total Contributing Dra	inage Area =	0.67	Acres
				urbed Area =	0.67	
	CoverType	Soil Type	Area (sf)	Area (ac)	Runoff Coef	(c)(Area)
les	Paved Parking Lots, roofs, driveways	D	27,663	0.64	0.95	26,280
riab	Developed Open Space, Good Condition	D	1,522	0.03	0.50	761
thod Va	Water Surfaces	D	0	0.00	1.00	0
Rational Method Variables				Total -	Sum (c)(Area) =	27,041
Rat					Area Total (sf)=	29,185
_			Weighted C-Sum(c)(Area)/Sum	(ac) or Sum(sf)=	0.93

E = 1

	Pervious Cover Type	Soil Type	Area (sf)	Area (ac)	Curve Number	(CN)(Area)
les	Developed Open Space, Good Condition	D	1,522	0.03	80	121,739
/ariables						
NRCS	Total - Sum (CN)(Area) =					
2	Area Total - Sum(ac) of Sum(sf)=					
	Weighted CN-Sum(CN)(Area)/Sum(ac) or Sum(sf)=					

Variables	Impervious Cover Type	Soil Type	Area (sf)	Area (ac)	Curve Number	(CN)(Area)
	Paved Parking Lots, roofs, driveways	D	27,663	0.64	98	2,711,019
	Water Surfaces	D	0	0.00	98	0
aria				0.00		0
NRCS V		Total - Sum (CN)(Area) =				2,711,019
Z		Area Total - Sum(ac) of Sum(sf)=			-	27,663

_	Area Total - Sum(ac) of Sum(sf)=			27,663	
	Weighted CN-Sum(CN)(Area)/Sum(ac) or Sum(sf)=				
W2	First Flush Runoff Calculations (Vff)				
A.	Vff = (1") (1/12) (43560/1) (C) AC =		2,262	cf	
W3	Predevelopment Bankfull Runoff Calculations (Vbf-pre)				
A.	2 year/24 hour storm event	P =	2.35	in	
B.	Pervious Cover CN (Meadow)	CN =	78		
C.	S = (1000/CN)-10	S =	2.82	in	
D.	$Q = (P-0.2S)^2/(P+0.8S)$	Q =	0.69	in	
E.	Pervious Cover Area	Area =	29,185	sf	
F.	$V_{bf-pre} = Q(1/12)$ Area	$V_{bf-pre} =$	1,684	cf	
W4	Pervious Cover Post-development Bankfull Runoff Calculations (Vbf-per-post)				
Α.	2 year/24 hour storm event	P =	2.35	in	

	1 0111040 0010111104		_0,_00	
F.	$V_{bf-pre} = Q(1/12)$ Area	$V_{bf-pre} =$	1,684	cf
W4	Pervious Cover Post-development Bankfull Runoff Calculations (Vbf-per-post)			
A.	2 year/24 hour storm event	P =	2.35	in
B.	Pervious Cover CN	CN =	80	
C.	S = (1000/CN)-10	S =	2.50	in
D.	$Q = (P-0.2S)^2/(P+0.8S)$	Q =	0.79	in
E.	Pervious Cover Area	Area =	1,522	sf
F.	$V_{bf-per-post} = Q(1/12)Area$	$V_{bf-per-post} =$	100	cf
W5	Impervious Cover Post-development Bankfull Runoff Calculations (Vbf-imp-post)			
A.	2 year/24 hour storm event	P =	2.35	in
B.	Impervious Cover CN	CN =	98	
C.	S = (1000/CN) - 10	S =	0.20	in
D.	$Q = (P-0.2S)^2/(P+0.8S)$	Q =	2.12	in
E.	Impervious Cover Area	Area =	27,663	sf
F.	$V_{bf-imp-post} = Q(1/12)$ Area	$V_{bf-imp-post} =$	4,891	cf
W6	Pervious Cover Post-development 100-year Storm Runoff Calculations (V100-per-post)			
A.	100 year storm event	P =	5.11	in
B.	Pervious Cover CN	CN =	80	

W6	Pervious Cover Post-development 100-year Storm Runoff Calculations (V10	O-per-post)		
A.	100 year storm event	P =	5.11	in
B.	Pervious Cover CN	CN =	80	
C.	S = (1000/CN)-10	S =	2.50	in
D.	$Q = (P-0.2S)^2/(P+0.8S)$	Q =	2.99	in
E.	Pervious Cover Area	Area =	1,522	sf
F.	$V_{100\text{-imp-post}} = Q(1/12)$ Area	$V_{100-imp-post} =$	379	cf
W7	Impervious Cover Post-development 100-year Storm Runoff Calculations (V	100-imp-post)		
A.	100 year storm event	P =	5.11	in
B.	Pervious Cover CN	CN =	98	
C.	S = (1000/CN)-10	S =	0.20	in
D.	$Q = (P-0.2S)^2/(P+0.8S)$	Q =	4.87	in
E.	Pervious Cover Area	Area =	27,663	sf
F.	$V_{100\text{-imp-post}} = Q(1/12)$ Area	$V_{100-imp-post} =$	11,234	cf

W9	Runoff Summary & Onsite Infiltration Requirement				
A.	Runoff Summary from Previous Worksheets				
	V _{ff} =	2,262	cf*		
	V _{bf-pre} =	1,684	cf		
	$V_{bf-per-post} =$	100	cf	Total BF Volume (V _{bf-post})	
	$V_{bf\text{-imp-post}} =$	4,891	cf	4,991	cf
	$V_{100-per-post} =$	379	cf	Total 100-year Volume (V ₁₀₀)	
	V _{100-imp-post} =	11,234	cf	11,613	cf
В.	Determine Onsite Infiltration Requirement				
	V _{bf-post} =	4,991	cf		
	$V_{bf-pre} =$	1,684	cf		
	Bankfull Volume Difference =	3,307	cf*		

		Onsite Infiltration Requirement (V _{inf}) =	3,307	cf
W10	Detention / Retention Requirement			
A.	$Q_p = 238.6 (T_c) ^-0.82$		489.15	cfs/in-mi^
B.	Total Site Area		0.67	ac
C.	$Q_{100} = Q_{100-per} + Q_{100-imp}$		7.86	in
D.	Peak Flow (PF) = $(Q_p * Q_{100} * A)/640$		4.026	cfs
E.	Delta = PF - 0.15A		3.926	cfs
F.	V_{det} = (Delta/PF) x V_{100}	Calculated Detention (unadjusted) =	11,323	cf
\\/11	Determine Applicable RMPs and Associated Volume Credits		N/A (assu	me no Infiltra

W11	Determine Applic	cable BMPs and Associate	ed Volume Credits			N/A (assum	e no Infiltration)
				Storage	Ave. Design		
				<u>Volume</u>	Infil. Rate	Infil. During	Total Volume
Prope	osed BMP	Area (ft ²)	Storage Depth (ft)	(ft ³)	<u>(in/hr)*</u>	Storm (ft ³)	Reduction (ft ³)
Infiltra	ation Basin	0	0.0	0	0	0	0
					_		_
		Total Volum	ne Reduction Credit by Propos	sed Structural	BMPs (Vred) =	0	cf

	Ave. Design Infil.		Estimated Drawdown
Proposed BMP	Rate (ft/hr)*	Volume Rate (cf/hr)	Time (hrs)
Infiltration Basin	0.0000	0	N/A

V12	Infiltration / Detention Summary				
	Total BMP Credits Required per WCWRC Rules:		3,307	cf	
	Total BMP Credits Provided:		0	_cf	
	Difference:		(3,307)	cf	
	% Deficiency:		100.0%		
	Volume Penalty (prorated up to 20% based on BMP deficiency):		20.0%		
	Detention Volume adjusted for BMP credits, V _{adj}		11,323	cf	
	Detention Volume required inc. Penalty, V _{req}	120.0%	13,587	cf	
	Zero Outflow Volume, V ₁₀₀		11,613	cf	

DET	Detention Basin Su	mmary				
Elevation	Surface Area (SF)	Depth (FT)	Cumulative Volume (CF)	First Flush Zff	Bank Full Zbf	100-Year Z100
Zo 878.55		0	0	2,262	4,991	13,587
879	3,015	0	0	1	-	-
880	3,015	1.0	3,015	879.75	-	-
881	3,015	1.0	6,030	-	880.66	-
882	3,015	1.0	9,045	-	-	-
883	3,015	1.0	12,060		-	-
884	3,015	1.0	15,075	-	-	883.51
884.55	3,015	0.5	16,733	-	-	-

Design Elevations: 879.75

Total Basin Volume Provided to EL 884.55 =	=	16,733 cf
Freeboard Provided = Top of Bank - Z100	=:	1.00 ft
Bankfull Pond Area = Area @ Zbf	=	0.07 ac

	Freeboard Provided = Top of Bank - Z100 Bankfull Pond Area = Area @ Zbf		=	1.00) ft 7 ac
UTLET	Outlet Control Structure Sizing				
	1. Standpipe outlet holes sizing - "first flush" runoff				
	First Flush discharge should be released from in 24 hours				
	Qff = Vff / 24 hrs / 3600 sec	Qff=	0.026	cfs	
	$hff(ave) = 2/3 \times (Zff - Zo)$	hff(ave) =	0.800	ft	
	$Aff(required) = Qff / 0.62 \times sqrt(2*32.2*h)$	A(required) =	0.006	sf	
	Selected Orifice Diameter =		0.95	in	
	Area of each orifice =		0.0049	sf	
	Number of orifice holes provided =		1	holes at elev.	878.5
	Check First Flush discharge release time				
	Aff(actual) =		0.0049	ft ²	
	Qff = A x 0.62 x sqrt(2*32.2*h) =		0.0219	cfs	
	$Tff = Vff / (Qff \times 3600)$		28.7	hrs	O.K.
	2. Standpipe outlet holes sizing - "Bankfull flood" discharge				
	Bankfull should discharge within 36 to 48 hours				
	Check release from first flush holes only				
	$hbf(ave) = 2/3 \times (Zbf - Zo)$	hbf(ave) =	1.43	ft	
	Qbf = A x 0.62 x sqrt(2*32.2*h) =	Qbf =	0.029	cfs	
	Tbf = Vbf / (Qbf x 3600) =	Tbf =	47.3	hr	O.K.
	3. Standpipe outlet holes sizing - "100-yr flood" discharge				
	O100 = Oa	Q100 =	0.10	cfs	

Qb1 - A x 0.02 x 3411(2 32.2 11) -	QDI -	0.025	CIS	
Tbf = Vbf / (Qbf x 3600) =	Tbf =	47.3	hr	O.K.
3. Standpipe outlet holes sizing - "100-yr flood" discharge				
Q100 = Qa	Q100 =	0.10	cfs	
Release from above holes				
hff = (Z100-Zo)	hff =	5.00	ft	
hbf = (Z100-Zff)	hbf =	3.80	ft	
Q = A x 0.62 x sqrt(64.4*hff) + A x 0.62 x sqrt(64.4*hbf) =		0.05	cfs	
Remaining flow =	Q100-Q=	0.05	cfs	
$A = Q100/(.62 \times sqrt(2*32.2*h))$	A(required) =	0.01	sf	
Selected Orifice Diameter =		0.85	in	
Area of each orifice =		0.0039	sf	
Number of orifice holes required =	=	1	holes at elev.	880.70
Check that the actual flow rate does not exceed the allowable flow rate				
Qff=.62 x #ff holes x A x sqrt(2 x 32.2 x (X100-Xbot))	=	0.055	cfs	
Qbf=.62 x #bf holes x A x sqrt(2 x 32.2 x (X100-Xff))	=	0.000	cfs	
Qmax=Qff+Qbf+(.62 x #100 holes x sqrt(2 x 32.2 x (X100-Xbf))	=	0.088	cfs	O.K.

Qmax=Qff+Qbf+(.62 x #100 holes x sqrt(2 x 32.2 x (X100-Xbf))	=	0.088 cfs	O.K.
Check "100-yr discharge" holes discharge release time			
$hall(ave) = 2/3 \times (X100 - Xbf) + (Xbf - Xo) =$	hall(ave) =	4.05 ft	
Qall = .62 x #ff holes x A x sqrt(2 x 32.2 x h) =	Qall =	0.049 cfs	
$hbf(ave) = 2/3 \times (X100 - Xbf) + (Xbf - Xff) =$	hbf(ave) =	2.85 ft	
$Qbf+100 = A \times 0.62 \times \#bf \text{ holes } x \text{ sqrt}(2 \times 32.2 \times h) =$	Qbf+100 =	0.000 cfs	
$h100(ave) = 2/3 \times (X100 - Xbf) =$	h100(ave) =	1.90 ft	
Q100 = A x 0.62 x #100 holes x sqrt(2 x 32.2 x h) =	Q100(ave) =	0.027 cfs	
Vrem = V100-Vbf =	Vrem =	6,622 cf	
T100 = Tbf + ((Vrem)/(Qboth+Q100ave)) =	T100 =	71.4 hrs	O.K.
4. Riser Outlet Pipe Design			
Outlet pipe designed to handle the 100-year restricted flow			
100-year restricted flow =	Q =	1.90 cfs	

cfs I.
in
%
fps
cfs OK
cfs, per storm sewer calcs

Weir Coefficient (C)=

Height of Weir (H) =

Top of Bank

Bottom of Weir (min. 0.25 ft above Z100) =

Min. Length of Weir, $L = Q/(C \times H^{(3/2)})$

0.44	%		03/19/2024 PER	CITY
0.013			04/23/2024 PER	CITY
3.01	fps			
2.36	cfs OK			
2.2	cfs, per storm sewer	calcs		
3.367	1101			
883.8				
884.55				
0.75				
1.0	ft			
			REVISIONS	
	0.013 3.01 2.36 2.2 3.367 883.8 884.55 0.75	3.01 fps 2.36 cfs OK 2.2 cfs, per storm sewer 3.367 883.8 884.55	0.013 3.01 fps 2.36 cfs OK 2.2 cfs, per storm sewer calcs 3.367 883.8 884.55 0.75	0.013 3.01 fps 2.36 cfs OK 2.2 cfs, per storm sewer calcs 3.367 883.8 884.55 0.75 1.0 ft

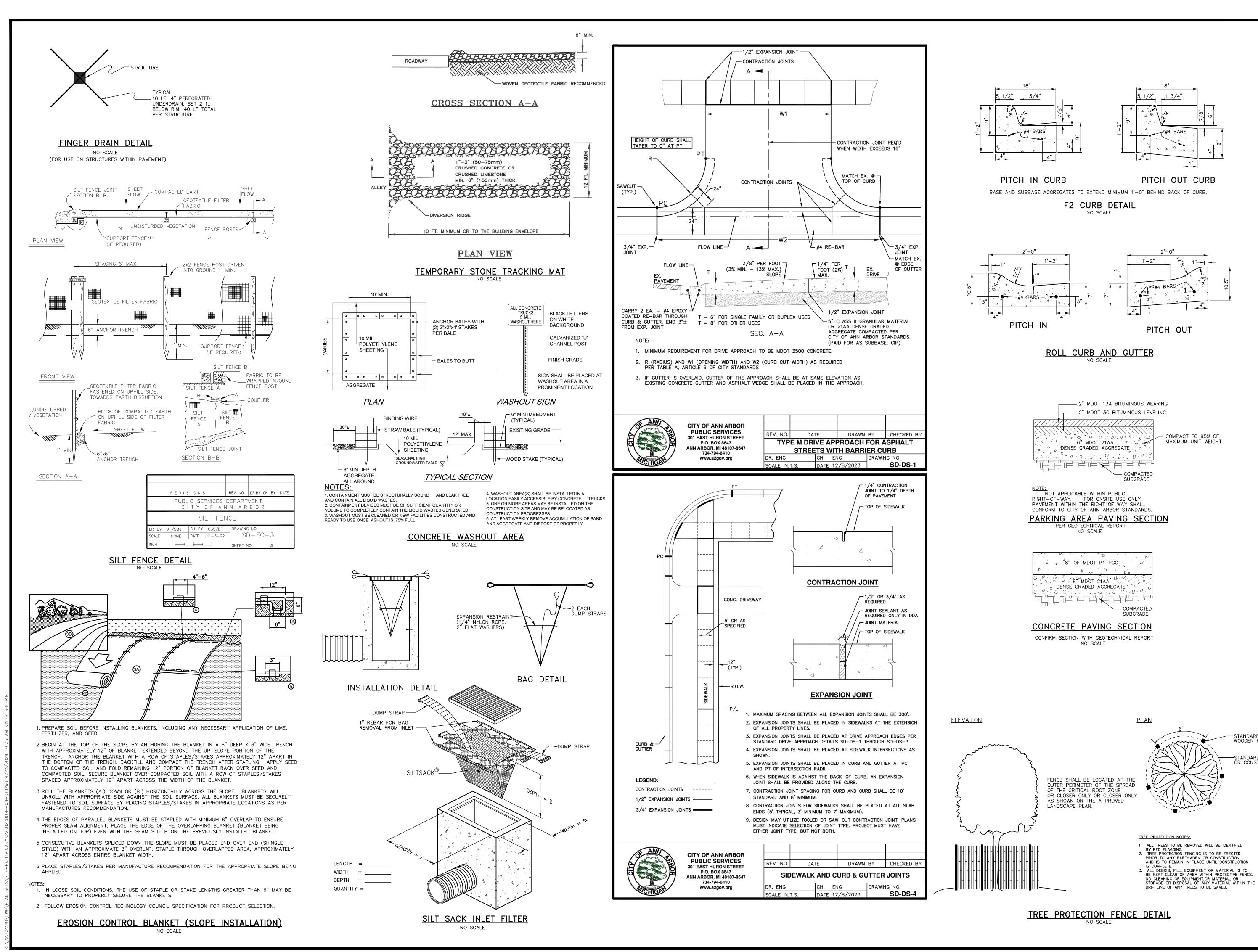
SCALE 0 20 40	(
1" = 40 FEET	g
DR. CC CH	asuaz cuucc
P.M. MB	1020
ВООК ——	
JOB 22002380	
SHEET NO.	1
10	2

DATE DECEMBER 22, 2022

03/02/2023 PER CITY 04/03/2023 PER CITY

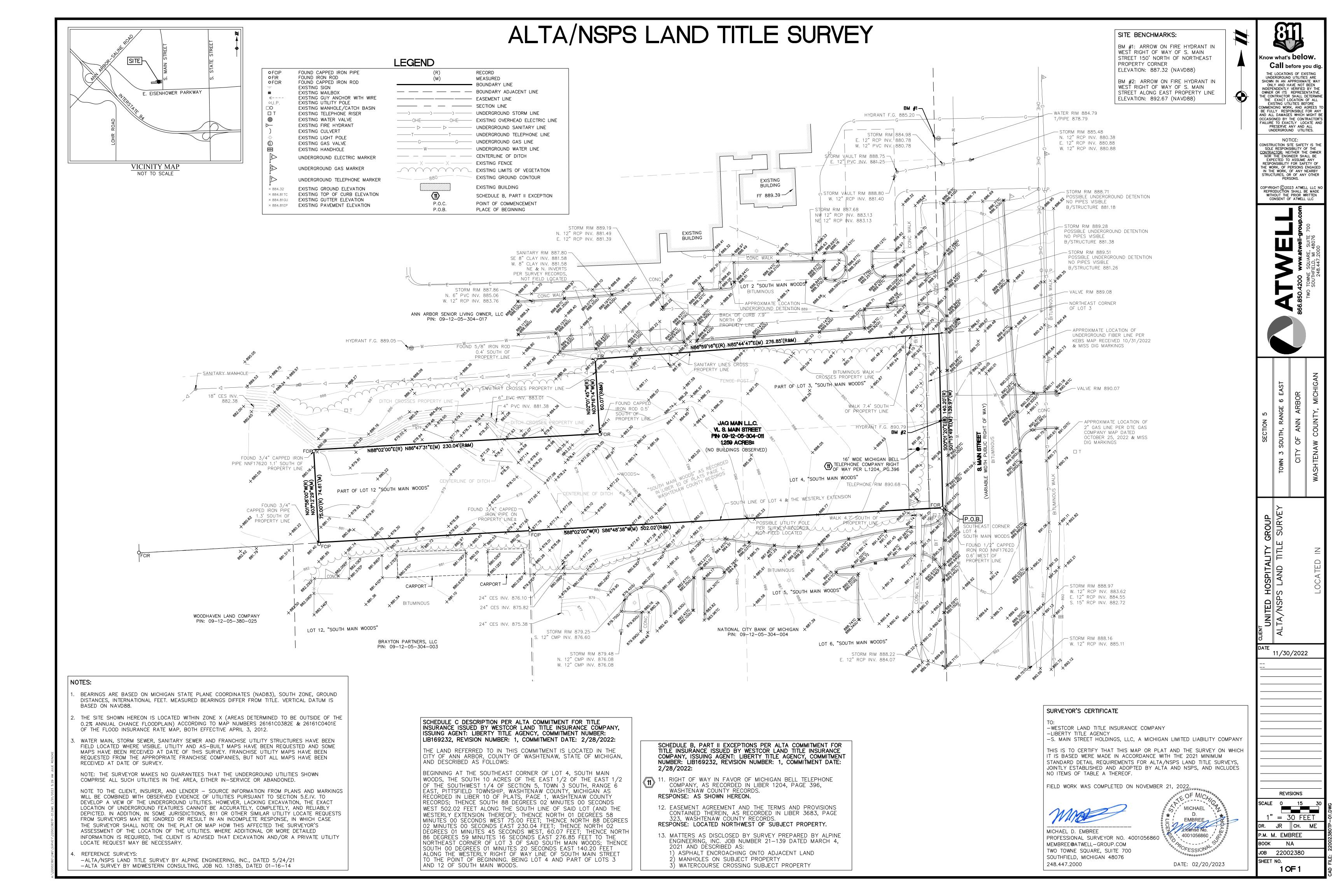
09/15/2023 LAYOUT REV 01/11/2024 PER CITY

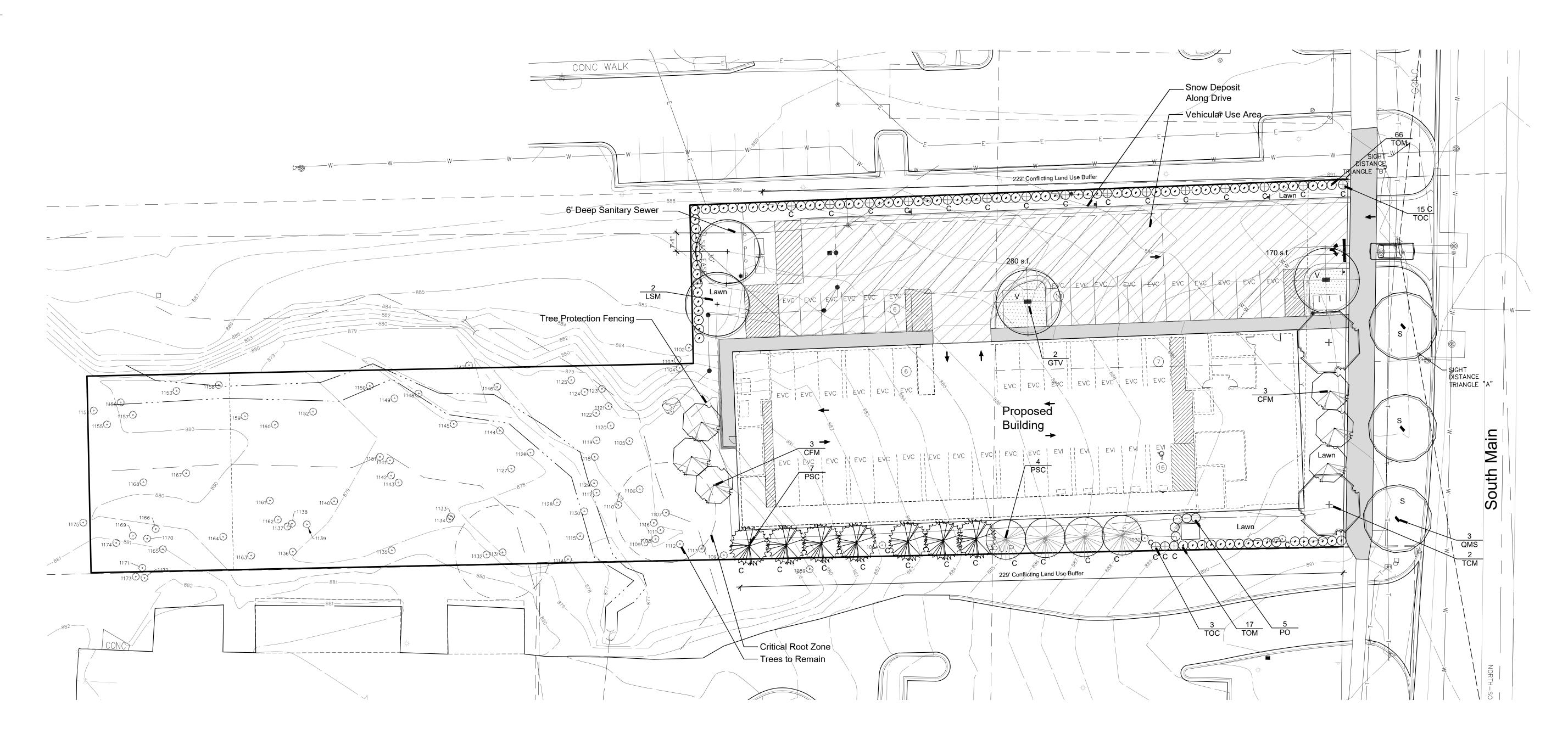
Know what's **below.** Call before you dig.


THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE OCCASIONED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.

NO HCE:

CONSTRUCTION SITE SAFETY IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR; NEITHER THE OWNER NOR THE ENGINEER SHALL BE EXPECTED TO ASSUME ANY RESPONSIBILITY FOR SAFETY OF THE WORK, OF PERSONS ENGAGED IN THE WORK, OF ANY NEARBY STRUCTURES, OR OF ANY OTHER PERSONS.


COPYRIGHT © 2024 ATWELL LLC NO REPRODUCTION SHALL BE MADE WITHOUT THE PRIOR WRITTEN CONSENT OF ATWELL LLC


PRELIMINARY - NOT FOR CONSTRUCTION

(now what's **below** Call before you diç THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WA ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THOWNER OR ITS REPRESENTATIVE THE CONTRACTOR SHALL DETERMING THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES BE FULLY RESPONSIBLE FOR AN ND ALL DAMAGES WHICH MIGHT I OCCASIONED BY THE CONTRACTOR' FAILURE TO EXACTLY LOCATE AN PRESERVE ANY AND ALL UNDERGROUND UTILITIES ONSTRUCTION SITE SAFETY IS 1 SOLE RESPONSIBILITY OF THE CONTRACTOR; NEITHER THE OWNE NOR THE ENGINEER SHALL BE EXPECTED TO ASSUME ANY RESPONSIBILITY FOR SAFETY OF THE WORK, OF PERSONS ENGAGE IN THE WORK, OF ANY NEARBY STRUCTURES, OR OF ANY OTHER COPYRIGHT © 2024 ATWELL LLC N REPRODUCTION SHALL BE MADE WITHOUT THE PRIOR WRITTEN CONSENT OF ATWELL LLC DECEMBER 22, 2022 03/02/2023 PER CITY 04/03/2023 PER CITY -STANDARD STEEL OR WOODEN FENCE POST 09/15/2023 LAYOUT RE 01/11/2024 PER CITY 03/19/2024 PER CITY -STANDARD 48" HIGH SNOW OR CONSTRUCTION FENCE 1/23/2024 PER CITY REVISIONS AS NOTED CC || CH. --P.M. MB BOOK --JOB 22002380

SHEET NO.

Plant List

Landscape Summary

8,976 s.f.

450 s.f.

2 Trees

140 l.f.

27 l.f. 113 l.f.

3 Trees

449 s.f. (1:20)

None, Area is Less than 750 s.f.

\$24,278 (102" - 2.5" = 99.5" x \$244)

273" (52.6 % Inches Planted on-site)

1.8 Trees (449 / 250 s.f.)

2.5 Trees (113 / 45)

102" (7 Trees)

2.5" (1, 2.5" Tree)

15.3 Trees (229' / 15) 16 Trees (3 Trees Existing)

14.8 Trees (222' / 15)

519" (1,038 x 50%)

3. All Landscape Areas will be Watered with an Underground, Automatic Irrigation System.

6. All Species Deviations from the Approved Site Plan Must be Approved in Writing from the City of

7. Tree Mitigation Fee Shall be Paid Prior to Tree Removal and Prior to Issuance of the Grading

8. A ROW Street Tree Permit Shall be Required Prior to any ROW Tree Removal. The Canopy

5. All Trees Shall be Planted no Closer than 10' to Utility Leads and 15' from Hydrants.

Loss Fee Will be Paid Via a ROW Street Tree Permit Prior to Removal.

15 Trees

1,038"

Remaining DBH Paid into Fund \$60,024 (519" - 273) x \$244

Vehicular Use Area

Trees Required Trees Provided

Right of Way Length

Net Right of Way Length

Street Trees Required Street Trees Provided

Street Tree Canopy Loss

Street Tree DBH Replaced

Conflicting Land Use Buffer Length 229'

Conflicting Land Use Buffer Length 222'

1. Utility Boxes will be Screened on 3 Sides.

4. Snow Storage Shall not Include Landscaped Areas.

2. Lawn Areas to be Seed or Sod.

Ann Arbor Prior to Installation.

DBH Removed

Fee Required

South

North

"C" Conflicting Land Use Buffer

Trees Required

Trees Provided

Trees Required Trees Provided

Mitigation Required

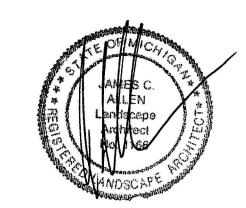
Inches Provided

Tree Mitigation D.B.H. Removed

Street Trees

"S" Less Driveway

"V" Landscape Area Required Landscape Area Provided


Bioretention Required

Use Area

sym.	qty.	botanical name	common name	caliper	spacing	root	height	
Vehicu	ılar Us	e Planting						
GTV	2	Gleditsia triacanthos var. 'Inermis'	Honey Locust	2.5"	as shown	B&B		
	2	Trees Provided						
sym.	qty.	botanical name	common name	caliper	spacing	root	height	
Street	Trees							
QMS	3	Quercus macrocarpa	Bur Oak	2.5"	as shown	B&B		
	3	Trees Provided						
sym.	qty.	botanical name	common name	caliper	spacing	root	height	
Conflic		and Use						
PAC	4	Picea abies	Norway Spruce		as shown	B&B	8.0'	
PSC	7	Pinus strobus	Whte Pine		as shown	B&B	8.0'	
TOC	18	Thuja occidentalis	White Cedar		as shown	B&B	8.0'	
	29	Trees Provided						
sym.	qty.	botanical name	common name	caliper	spacing	root	height	Inches
	and Mi	tigation						
CFM	6	Cornus florida	Flowering Dogwood	2.0"	as shown	B&B		12
LSM	2	Liquidambar styraciflua	American Sweetgum	3.0"	as shown	B&B		6
TCM	2	Tilia americana	American Linden	3.0"	as shown	B&B		6
TOM	83	Thuja occidentalis	White Cedar		as shown	B&B	8.0'	249
					I	nches I	Provided	273
sym.	qty.	botanical name	common name	caliper	spacing	root	height	
Genera	al Plan	tings						
PO	5	Physocarpus opulifolius 'Coppertina'	Coppertina Ninebark		as shown	cont	24"	

Seal:

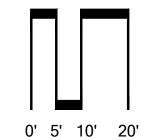
Title:

Landscape Plan

Project:

2900 South Main Ann Arbor, Michigan

Prepared for:

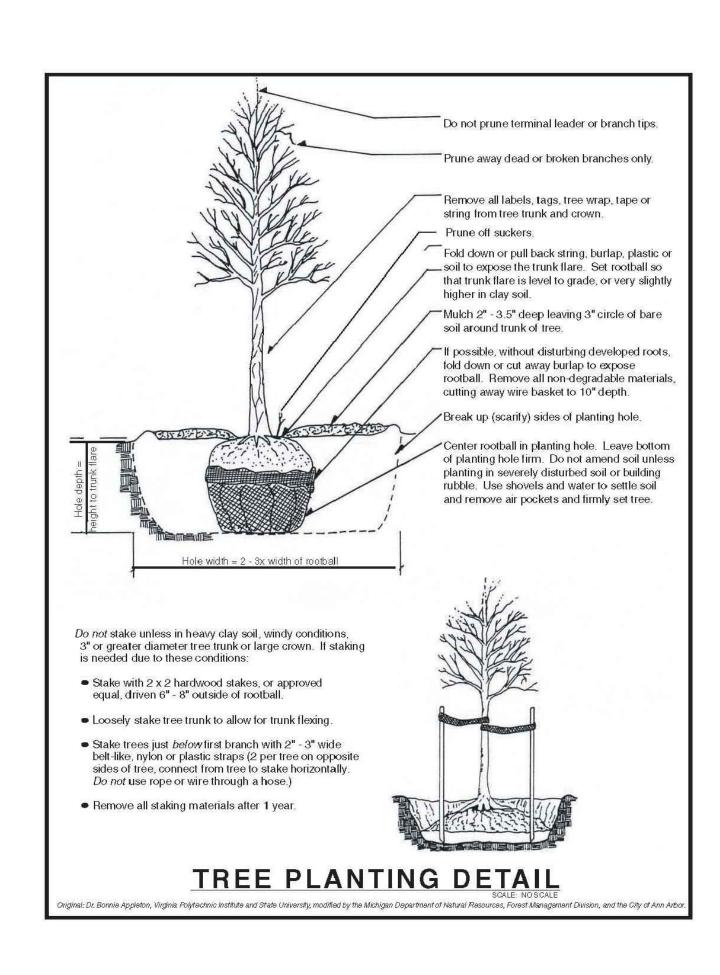

Atwell, LLC 311 North Main Street Ann Arbor, Michigan 48104

Issued:
December 20, 2022
March 16, 2023
September 11, 2023
January 12, 2024
March 12, 2024
April 19, 2024

Job Number:

22-088

Drawn By: Checked By:



NORTH 1"=20'

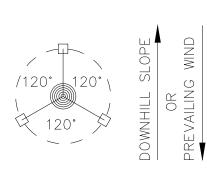
20' NOR 1"=20

Sheet No.

Know what's below.
Call before you dig.

Maintenance Notes

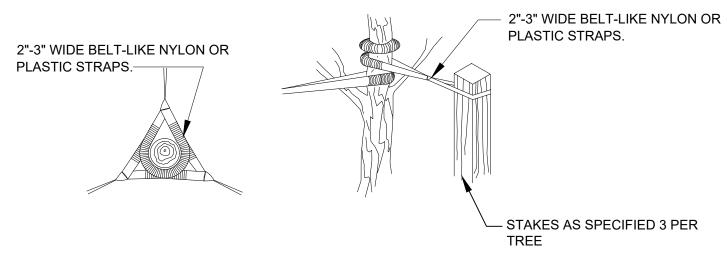
Continuing Care


Landscaping shall be kept in a neat, orderly and healthy growing condition, free from debris and refuse. All landscape materials shall be maintained by a regular program or mowing, watering, weeding, feeding and pruning. Pruning shall be minimal at the time of installation, only to remove dead or diseased branches. Subsequent pruning shall assure proper maturation of plants to achieve their approved purpose.

All dead, damaged or diseased plant material shall be replaced, in accordance with Chapter 55, Article V:5.29.6.I of the Ann Arbor City Code, by the end of the planting season as a continued obligation of the site plan.

This shall be accomplished by the use of hose bibs to provide water for the landscape areas

Construct Earth Bed to Required Grade and Trim. Prior to Placement of Topsoil or Compost, Harrow all Earth Beds to a Minimum of 3" Depth.


Beyond Initial Fertilization, All Future Fertilizer Applications Shall not Contain Phosphorus.

ORIENT STAKING/GUYING TO PREVAILING WINDS, EXCEPT ON SLOPES GREATER THAN 3:1 ORIENT TO SLOPE.

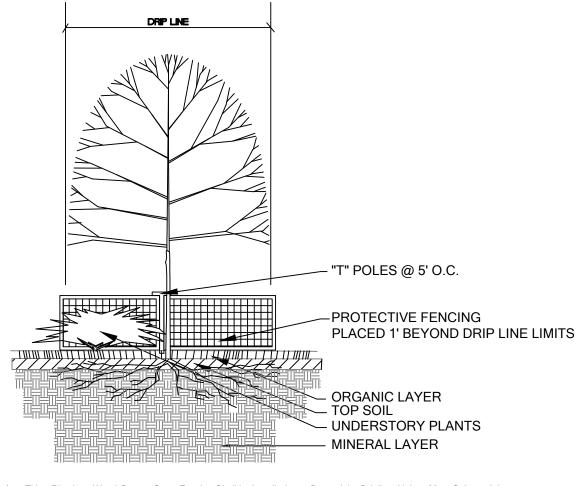
USE SAME STAKING/GUYING ORIENTATION FOR ALL PLANTS WITHIN EACH GROUPING OR AREA

STAKING/GUYING LOCATION

GUYING DETAIL

STAKING DETAIL

TREE STAKING DETAIL


GUY EVERGREEN TREES ABOVE TREE SHALL BEAR SAME 12' HEIGHT. STAKE EVERGREEN **RELATION TO FINISH GRADE AS** IT BORE ORIGINALLY OR TREE BELOW 12' HEIGHT. SLIGHTLY HIGHER THAN FINISH STAKE TREES AT FIRST BRANCH GRADE UP TO 6" ABOVE GRADE, USING 2"-3" WIDE BELT-LIKE IF DIRECTED BY LANDSCAPE NYLON OR PLASTIC STRAPS ARCHITECT FOR HEAVY CLAY ALLOW FOR SOME MINIMAL SOIL AREAS. FLEXING OF THE TREE. REMOVE AFTER ONE YEAR. DO NOT PRUNE TERMINAL LEADER. PRUNE ONLY DEAD OR BROKEN BRANCHES. 2" X 2" HARDWOOD STAKES, MIN. 36" ABOVE GROUND FOR REMOVE ALL TAGS, STRING, UPRIGHT, 18" IF ANGLED. DRIVE PLASTICS AND OTHER STAKES A MIN. 18" INTO MATERIALS THAT ARE **UNDISTURBED GROUND** UNSIGHTLY OR COULD CAUSE OUTSIDE ROOTBALL. REMOVE GIRDLING. AFTER ONE YEAR. MULCH 4" DEPTH WITH SHREDDED HARDWOOD BARK. NATURAL IN COLOR. LEAVE 3" CIRCLE OF BARE SOIL AT BASE PLANTING MIXTURE: OF TREE TRUNK. PULL ANY AMEND SOILS PER ROOT BALL DIRT EXTENDING SITE CONDITIONS ABOVE THE ROOT FLARE AWAY AND REQUIREMENTS FROM THE TRUNK SO THE ROOT OF THE PLANT FLARE IS EXPOSED TO AIR. MATERIAL. MOUND EARTH TO FORM SAUCER -SCARIFY SUBGRADE REMOVE ALL NON-BIODEGRADABLE MATERIALS AND PLANTING PIT TREE PIT = 3 xSIDES. RECOMPACT COMPLETELY FROM THE **ROOTBALL WIDTH** BASE OF TO 4" ROOTBALL. CUT DOWN WIRE

DEPTH.

EVERGREEN TREE PLANTING DETAIL

TREE PROTECTION DETAIL

BASKET AND FOLD DOWN BURLAP FROM TOP 1/2 OF THE ROOTBALL

- Either Plastic or Wood Orange Snow Fencing Shall be Installed at or Beyond the Dripline, Unless More Substantial
- Fencing is Required.
 Stakes Shall be Metal "T" Poles Spaced no Further than 5' on Center. Fencing Shall not be Installed Closer to the Tree than the Dripline of Those Trees to be Saved. Special
- Circumstances Shall be Reviewed by the City. 4. Fencing Shall be Erected Prior to Construction. The City Shall be Notified Once the Fencing is Instaled for
- 5. Under no Circumstances Shall the Portective Fencing be Removed Without Proper Approval from the City.
- No Person Shall Conduct any Activity Within Areas Proposed to Remain. This Shall Include, but not Limited to:
 a. No Solvents or Chemicals Within Protected Areas. b. No Building Materials or Construction Equipment Within Protected Areas.
- c. No Grade Changes, Including Fill, Within Protected Areas. d. No Removal of Vegetation from the Ground Up Without Permission from the Proper Reviewing Authority,
- Including the Woodlands Review Board. e. Any Required Swale Needs to be Directed Around the Protected Areas. Instances Where Swales are Approved Through a Protected Area, the Swales Need to be HAND DUG. Machinery of Any Kind is
- Regulated Woodland or Regulated Trees Adjacent to the Property are Also Required to be Protected Whether or not
- they are Shown on the Plan

VARIES 2" SHREDDED BARK -METAL EDGING FINISHED GRADE PLANTING MIXTURE, AS SPECIFIED

PERENNIAL PLANTING DETAIL

TREE SHALL BEAR SAME RELATION TO FINISH GRADE AS IT BORE ORIGINALLY OR SLIGHTLY HIGHER THAN FINISH GRADE UP TO 4" ABOVE GRADE, IF DIRECTED BY LANDSCAPE ARCHITECT FOR HEAVY CLAY SOIL AREAS.

PRUNE ONLY DEAD OR BROKEN BRANCHES.

REMOVE ALL TAGS, STRING, PLASTICS AND OTHER MATERIALS THAT ARE **UNSIGHTLY OR COULD CAUSE** GIRDLING.

> SCARIFY SUBGRADE AND PLANTING PIT SIDES. RECOMPACT BASE OF TO 4"

> > DEPTH.

SHRUB PLANTING DETAIL

NOT TO SCALE

MULCH 3" DEPTH WITH

3" FROM TRUNK.

PLANTING MIXTURE:

AND REQUIREMENTS

AMEND SOILS PER

SITE CONDITIONS

OF THE PLANT

MATERIAL.

REMOVE ALL

SHREDDED HARDWOOD BARK.

NATURAL IN COLOR. PULL BACK

MOUND EARTH TO FORM SAUCER

REMOVE COLLAR OF ALL FIBER -

POTS. POTS SHALL BE CUT TO

PROVIDE FOR ROOT GROWTH.

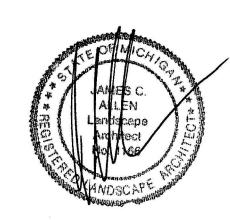
NON-BIODEGRADABLE MATERIALS

ROOTBALL. FOLD DOWN BURLAP

FROM TOP $\frac{1}{3}$ OF THE ROOTBALL

REMOVE ALL NONORGANIC

CONTAINERS COMPLETELY


COMPLETELY FROM THE

LANDSCAPE NOTES

- 1. All plants shall be north Midwest American region grown, No. 1 grade plant materials,
- and shall be true to name, free from physical damage and wind burn.
- 2. Plants shall be full, well-branched, and in healthy vigorous growing
- Plants shall be watered before and after planting is complete.
- 4. Staking is only needed if site is windy or stock is great than 3". Trees to be mulched and shall be guaranteed to exhibit a normal growth cycle for at least two (2) full years following City approval.
- 5. All material shall conform to the guidelines established in the most recent
- edition of the American Standard for Nursery Stock. 6. Provide clean backfill soil, using material stockpiled on site. Soil shall be
- screened and free of any debris, foreign material, and stone. Amended planting mix shall consist of 1/3 screened topsoil, 1/3 sand and
- 1/3 peat, mixed well and spread to the depth as indicated in planting details. 8. All plantings shall be mulched per planting details located on this sheet.
- 9. The Landscape Contractor shall be responsible for all work shown on the landscape drawings and specifications.
- 10. No substitutions or changes of location, or plant types shall be made
- without the approval of the Landscape Architect. 11. The City shall be notified of any discrepancies between
- the plans and field conditions prior to installation.
- 12. The Landscape Contractor shall be responsible for maintaining all plant
- material in a vertical condition throughout the guaranteed period. 13. The Landscape Architect shall have the right, at any stage of the installation,
- to reject any work or material that does not meet the requirements of the plans and specifications, if requested by owner. 14. Contractor shall be responsible for checking plant quantities to ensure
- quantities on drawings and plant list are the same. In the event of a discrepancy, the quantities on the plans shall prevail.
- 15. The Landscape Contractor shall seed and mulch or sod (as indicated on plans) all areas disturbed during construction, throughout the contract limits.
- 16. A pre-emergent weed control agent, "Preen" or equal, shall be applied
- uniformly on top of all mulching in all planting beds.
- 17. All landscape areas shall be irrigated with hose bibs. 18. Sod shall be two year old "Baron/Cheriadelphi" Kentucky Blue Grass grown in a sod
- 19. All landscape islands shall be backfilled with a sand mixture to facilitate drainage.
- 20. All proposed landscape islands shall be curbed.
- 21. All landscape areas shall be irrigated.
- 22. Overhead utility lines and poles to be relocated as directed by utility company of record. 23. Evergreen and canopy trees shall be planted a minimum of 10' from a fire hydrant, and
- manhole, 15' from overhead wires. 24. All plant material shall be guaranteed for two (2) years after City Approval and shall be installed and maintained according to City of Ann Arbor standards. Replace Failing Material During the
- Next Approprate Planting Period. 25. All proposed street trees shall be planted a minimum of 4' from both the back of curb and
- proposed walks.
- 26. All tree and shrub planting beds shall be mulched with shredded hardwood bark, spread to minimum depth of 4". All lawn area trees shall have a 4' diameter circle of shredded hardwood mulch 3" away from trunk. All perennial, annual and ground cover beds shall receive 2" of dark colored bark mulch as indicated on the plant list. Mulch is to be free from debris and foreign material, and shall contain no pieces of inconsistent size.
- 27. All Substitutions or Deviations from the Landscape Plan Must be Approved by the City of Ann
- Arbor Prior to their Installation.
- 28. Fertilizer Applications Beyond the Initial Topsoil and Seeding Application Shall not Contain Phosphorus.

Seal:

Landscape Details

Project:

2900 South Main Ann Arbor, Michigan

Prepared for:

Atwell, LLC 311 North Main Street Ann Arbor, Michigan 48104

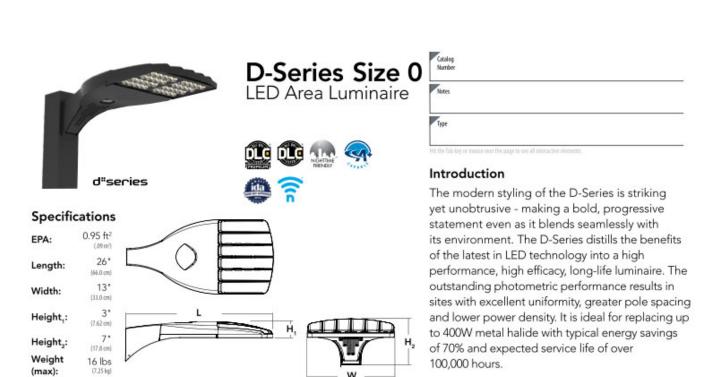
Revision:	Issued:
Submission	December 20, 2022
Revised	March 16, 2023
Revised	September 11, 2023
Revised	January 12, 2024
Revised	March 12, 2024
Revised	April 19, 2024

Job Number:

22-088

Drawn By: Checked By: jca

Know what's **below.**


Call before you dig.

Sheet No.

Schedule						
Symbol	Label	QTY	Manufacturer	Description	Lamp	Mounting Height
\bigcirc	A	7	Lithonia Lighting	WDGE2 LED WALL MOUNTED LUMINAIRE 3000K 80CRI	LED	12'-0"
0	В	22	Lithonia Lighting	VCPG PARKING GARAGE LUMINAIRE 3000K 80CRI	LED	16'-0"
	С	3	Lithonia Lighting	D-Series Size 0 Area Luminaire 3000K 80CI	LED	18'-0"

Statistics							
Description	Symbol	Avg	Max	Min	Max/Min	Avg/Min	Avg/Max
BOUNDARY LINE	+	0.0 fc	0.3 fc	0.0 fc	N/A	N/A	0.0:1
ENTRANCE ROAD	ж	1.5 fc	2.3 fc	0.3 fc	7.7:1	5.0:1	0.7:1
PARKING GARAGE	+	16 fc	21 fc	3 fc	7.0:1	5.3:1	0.8:1
SITE	+	0.4 fc	2.3 fc	0.0 fc	N/A	N/A	0.2:1

Orde	ring Information			EXAMP	LE: DSX0 LED F	6 40K T3M N	IVOLT SPA NL	TAIR2 PIF	RHN DDB	
DSX0 LED										
Series	LEDs	Color temperature	Distribution			Voltage	Mounting			
DSX0 LED	Forward optics P1 P4 P7 P2 P5 P3 P6 Rotated optics P10' P12' P11' P13'	30K 3000 K 40K 4000 K 50K 5000 K	T1S Type I short T2S Type II short T2M Type II short T3M Type III short T3M Type III short T3M Type III short T4M Type IV med T4M Type IV med T4M Type V very:	um t ium iium ow medium	TSS Type V short? TSM Type V medium? TSW Type V wide? BLC Backlight control. LCCO Left corner cutoff? RCCO Right corner cutoff	120 ⁵ 208 ⁵ 240 ⁵ 277 ⁵	208 ³ RPA RX 240 ⁵ WBA W 277 ⁵ SPUMBA SC 347 ⁵⁶ RPUMBA R 480 ^{X.6} Shipped separately KMA8 DDBXD U M		iquate pole mounting Round pole mounting Nall bracket ² iquate pole universal mounting adapt Round pole universal mounting adapt by Mast arm mounting bracket adaptor specify finish) ^a	
Control opt	tions					Other optio	ns	Finish (equa	ed	
PIRHN PER	nstalled nLight AIR generation 2 enabled ^{8,10} Network, high/low motion/ambient NEMA twist-lock receptacle only (control ord Seven-pin receptacle only (leads ex separate) ^{12,13} 0-10V dimming extend out back of (control ordered separate) ¹⁴	ontrol ordered separate) ¹² lered separate) ^{12,13} It fixture) (control ordered	PIR PIRH PIR1FG3V PIRH1FG3V FA0	height, ambie High/low, mot height, ambie High/low, mot height, ambie High/low, mot	tion/ambient sensor, 8–15" mour nt sensor enabled at 5fc 16.86 tion/ambient sensor, 15–30" mou nt sensor enabled at 5fc 16.89 tion/ambient sensor, 8–15" mour nt sensor enabled at 1fc 16.86 tion/ambient sensor, 15–30" mou nt sensor enabled at 1fc 16.86 sele output 17	HS Hou set sing thing DF Doo Left L90 Left unting R90 Rigi	use-side shield ¹⁹ gle fuse {120, 277, 347V} ³ ble fuse {208, 240, 480V} ⁵ rotated optics ¹ ht rotated optics ¹ used drop lens ¹⁰	DBLXD DNAXD DWHXD DDBTXD DBLBXD DNATXD	Dark bronze Black Natural aluminum White Textured dark bron. Textured black Textured natural aluminum Textured white	

(culturi ordered separare)		BS Bird spikes ¹⁹ EGS External glare shield	DWHGXD Textured white
_	B DN DN B NO PRINCE GO PERSONAL		DSX0-LED
LITHONIA LIGHTING	One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7376 © 2011-2020 Acuity Brands Lighting, Inc. All rights reserved.	8) • www.lithonia.com	Re- F

Introduction

The WDGE LED family is designed to meet specifier's

shape that blends with any architecture. The clean

providing a true site-wide solution. Embedded with

additional energy savings and code compliance.

WDGE2 with industry leading precision refractive

optics provides great uniform distribution and optical

emergency battery backup options, including an 18W

ideal wall-mounted lighting solution for pedestrian scale

control. When combined with multiple integrated

cold temperature option, the WDGE2 becomes the

nLight® AIR wireless controls, the WDGE family provides

rectilinear design comes in four sizes with lumen

packages ranging from 1,200 to 25,000 lumens,

every wall-mounted lighting need in a widely accepted

STORM RIM 889.19

N. 12" RCP INV. 881.49

A+ Capable options indicated by this color background.

LITHONIA LIGHTING

VCPGX LED

Introduction The all new VCPGX LED (Visually Comfortable Parking Garage) luminaire is the ultimate solution for parking garage applications. The deep recessed lens design of VCPGX LED minimizes high angle glare, while its patent pending transition zone reduces the contrast ratio between the luminaire and the dark ceiling. The dedicated up-light

module option further reduces this contrast, creating a more visually comfortable environment. The VCPGX LED delivers up to 87% in energy savings when replacing 175W metal halide luminaires. With over

100,000 hour life expectancy (12+ years of 24/7 continuous Weight: operation), the VCPGX LED luminaire provides significant (without options) maintenance savings over traditional luminaires.

Rev. 11/21/22

Inform	ation		EXA	MPLE: VCPG	X LED V8 P3 40K 700	CRI T5M MVOLT PM UPL2 DWHXI
Light ines	Package	Color temperature	Color Rendering Index	Distribution	Voltage	Mounting
4 Light Engines 8 Light Engines	P1 P2 P3 P4 P5 P6 P7 (with V8 only)	30K 3000 K 35K 3500 K 40K 4000 K 50K 5000 K	70CRI 80CRI	TSM Type V, medium TSR¹ Type V, rectangular TSW Type V, wide TSE Type V entry LANE¹ Drive lane	MVOLT For ordering with fus 347 120 480 208 240 277 347 480	Shipped included PM Pendant mount standard (24-inch length supply leads SRM Surface mount (24-inch length supply leads) ARM Arm mount (use RSXWBA accessory to mount to a wal Shipped separately YK Yoke/trunnion mount?

ptions				Finish cop	
Shipped ir	nstalled	Standalone Sens	ors/Controls	DWHXD	White
UPL1	Up-Light: 500 lumens	PIR	Motion/ambient sensor for 8-15' mounting heights	DNAXD	Natural aluminum
UPL2	Up-Light: 700 lumens	PIRH	Motion/ambient sensor for 15-30' mounting heights	DDBXD	Dark bronze
E8WC E10WH	Emergency battery backup, CEC compliant (8W, -20°C min) 3AS Emergency battery backup, CEC compliant (10W, 5°C min) 3AS	PIR3FC3V	Motion/ambient sensor for 8–15' mounting heights, pre programmed to 3fc and 35% light output	DBLXD	Black
HA	High ambient (50°C, only P1-P4)	PIRH3FC3V	Motion/ambient sensor for 15-30' mounting heights, pre programmed to 3fc and 35%		
SF	Single fuse (120V, 277V, 347V)		light output		
DF	Double fuse (208V, 240V, 480V)	Natural of Con-	Control Control		
SPD10KV	10KV Surge Pack	Networked Senso			
LDS36	36in (3ft) lead length	NLTAIR2 PIR	nUGHT ARWineless enabled motion/ambient sensor for 8-15' mounting heights		
LDS72	72in (6ft) lead length	NLTAIR2 PIRH	nLIGHT AIR Wheless enabled motion/ambient sensor for 15'-30' mounting heights		
LDS108	108in (9ft) lead length	NLTAIR2 PIR924	nLKGHT AIR Wireless enabled, UL924 Listed motion/ambient sensor for 8-15' mounting heights?		
DMG	External 0-10V leads (no controls) ⁶	NLTAIR2 PIRH924	nLVGHT AIR Wireless enabled, UL924 Listed motion/ambient sensor for 15'-30' mounting heights'		
TP	Tamper proof screws				
Shipped S	eparately				
BDS	Bird Shroud				
BSW	Bird Spikes				

© 2018-2022 Acuity Brands Lighting, Inc. All rights reserved.

One Lithonia Way . Conyers, Georgia 30012 . Phone: 1-800-705-SERV (7378) . www.lithonia.com

Architectural Wall Sconce Precision Refractive Optic 20 BAA

Specifications Depth (D1): Depth (D2): 1.5* Height: 11.5" Width:

						арріі	cations in	any enviro	onment.		
WDGE LE	D Family O	verview									
		Construction and	CALIFIE TOPE			10 5	Approxima	ate Lumens (4	000K, 80CRI)		7 E
Luminaire	Optics	Standard EM, 0°C	Cold EM, -20°C	Sensor	P0	P1	P2	P3	P4	P5	P6
WDGE1 LED	Visual Comfort	4W		=	750	1,200	2,000		177	-	
WDGE2 LED	Visual Comfort	10W	18W	Standalone / nLight		1,200	2,000	3,000	4,500	6,000	
WDGE2 LED	Precision Refractive	10W	18W	Standalone / nLight	700	1,200	2,000	3,200	4,200	_	-
WDGE3 LED	Precision Refractive	15W	18W	Standalone / nLight		7,500	8,500	10,000	12,000		10.77
WDGE4 LED	Precision Refractive			Standalone / nLight		12,000	16,000	18,000	20,000	22.000	25.000

Series	Package	Color Temperature	CRI	Distribut	tion	Voltage	Mounting		
WDGE2 L	P01 P12 P22 P32 P47	27K 2700K 30K 3000K 40K 4000K 50K 5000K AMB ³ Amber	70CRI ⁴ 80CRI LW ³ Limited Wavelength	T2M 1 T3M 1 T4M 1	fype I Short fype II Medium fype III Medium fype IV Medium Forward Throw Medium	MVOLT 347 ⁵ 480 ³	Shipped included SRM Surface mounting bracket ICW Indirect Canopy/Ceiling Washer bracket (dry/ damp locations only) st	PBBW S urfa	rately ch Architectural wall spacer sce-mounted back box (top, let conduit entry). Use when then junction box available.
Options								Finish	
E10WH	Emergency battery back (10W, 5°C min)	kup, Certified in CA Title 20 I		Standalone So	ensors/Controls	ion concor for 9. 19	S' mounting heights. Intended for use on	DDBXD	Dark bronze Black
E20WC	Emergency battery back (18W, -20°C min)	kup, Certified in CA Title 201	MAEDBS	PIRH	switched circuits with e	cternal dusk to da		DNAXD	Natural aluminum
PE7	Photocell, Button Type			T HINE	switched circuits with e			DWHXD	White
DMG ¹	0-10V dimming wires p an external control, or	pulled outside fixture (for u dered separately)	se with	PIR1FC3V	Bi-level (100/35%) mot programmed for dusk to		mounting heights with photocell pre-	DDBTXD	Sandstone Textured dark bronze
BCE	Bottom conduit entry f points.	for back box (PBBW). Total	of 4 entry	PIRH1FC3V	Bi-level (100/35%) mot programmed for dusk to		0'mounting heights with photocell pre-	DBLBXD	Textured black Textured natural aluminu
BAA	Buy America(n) Act Cor	npliant		Networked Se	ensors/Controls			DWHGXI	Textured white
				NLTAIR2 PIR NLTAIR2 PIRH See page 4 for out			/ambient sensor for 8-15' mounting heights. /ambient sensor for 15-30' mounting heights.	DSSTXD	Textured sandstone

Scale - 1'' = 25ft

CONC WALK

STORM RIM 887.68

NW 12" RCP INV. 883.13

NE 12" RCP INV. 883.13

General Note

1. SEE SCHEDULE FOR LUMINAIRE MOUNTING HEIGHT.

2. CALCULATIONS ARE SHOWN IN FOOTCANDLES AT: 0' - 0"

THE ENGINEER AND/OR ARCHITECT MUST DETERMINE APPLICABILITY OF THE LAYOUT TO EXISTING / FUTURE FIELD CONDITIONS. THIS LIGHTING LAYOUT REPRESENTS ILLUMINATION LEVELS CALCULATED FROM LABORATORY DATA TAKEN UNDER CONTROLLED CONDITIONS IN ACCORDANCE WITH ILLUMINATING ENGINEERING SOCIETY APPROVED METHODS. ACTUAL PERFORMANCE OF ANY MANUFACTURER'S LUMINAIRE MAY VARY DUE TO VARIATION IN ELECTRICAL VOLTAGE, TOLERANCE IN LAMPS, AND OTHER VARIABLE FIELD CONDITIONS. MOUNTING HEIGHTS INDICATED ARE FROM GRADE AND/OR FLOOR UP.

THESE LIGHTING CALCULATIONS ARE NOT A SUBSTITUTE FOR INDEPENDENT ENGINEERING ANALYSIS OF LIGHTING SYSTEM SUITABILITY AND SAFETY. THE ENGINEER AND/OR ARCHITECT IS RESPONSIBLE TO REVIEW FOR MICHIGAN ENERGY CODE AND LIGHTING QUALITY COMPLIANCE.

UNLESS EXEMPT, PROJECT MUST COMPLY WITH LIGHTING CONTROLS REQUIRMENTS DEFINED IN ASHRAE 90.1 2013. FOR SPECIFIC INFORMATION CONTACT GBA CONTROLS GROUP AT ASG@GASSERBUSH.COM OR 734-266-6705.

Alternates Note

THE USE OF FIXTURE ALTERNATES MUST BE RESUBMITTED TO THE CITY FOR APPROVAL.

Mounting Height Note MOUNTING HEIGHT IS MEASURED FROM GRADE TO

FACE OF FIXTURE. POLE HEIGHT SHOULD BE CALCULATED AS THE MOUNTING HEIGHT LESS BASE HEIGHT.

Ordering Note

FOR INQUIRIES CONTACT GASSER BUSH AT QUOTES@GASSERBUSH.COM OR 734-266-6705.

Drawing Note

THIS DRAWING WAS GENERATED FROM AN ELECTRONIC IMAGE FOR ESTIMATION PURPOSE ONLY. LAYOUT TO BE VERIFIED IN FIELD BY OTHERS.

Designer DP/KB Date 12/21/2022 rev. 9/12/2023 Scale Not to Scale Drawing No. #22-83840-V3

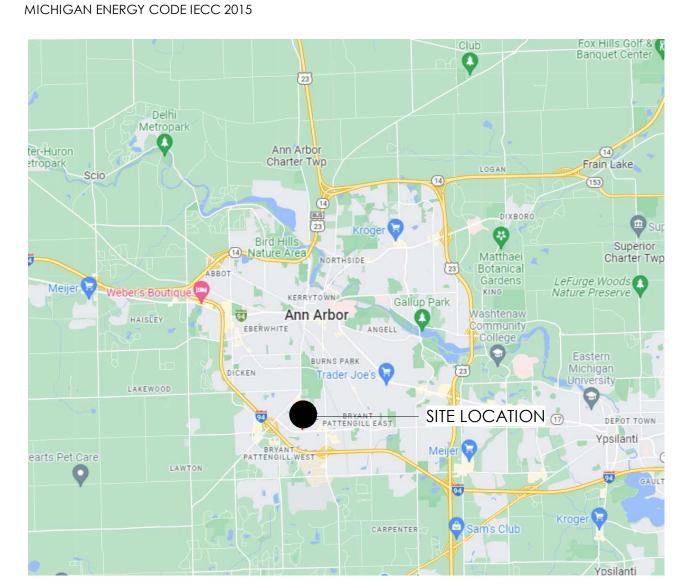
UHG Flats Ann Arbor

2900 S. Main St. Ann Arbor, 48103

Owner

United Hospitality Group 555 S. Old Woodward Ave. Ste. 765 Birmingham, MI 48009 P.248.709.9958

Architect


Krieger | Klatt Architects Inc. 2120 E. 11 Mile Rd. Royal Oak, MI 48067 P.248.414.9270 F.248.414.9275

Civil Engineer

ATWELL, LLC 311 North Main St. Ann Arbor, MI 48104 P.734.887.2714

Building Code Notes:

ALL WORK IS TO COMPLY WITH:
MICHIGAN BUILDING CODE 2015
MICHIGAN MECHANICAL CODE 2015
MICHIGAN ACCESSIBILTY CODE 2009; A117.1, 2009
MICHIGAN ELECTRICAL CODE NFPA 70, 2017
MICHIGAN PLUMBING CODE 2018

Location Map NTS

General Scope of Work:

- 1. CONSTRUCTION OF A 4-STORY MULTI-FAMILY APARTMENT
- COMPLEX

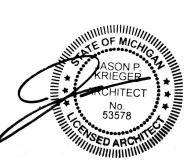
 2. MODIFYING EXISTING TOPOGRAPHY TO ACCOMODATE PROPOSED MULTI-FAMILY APARTMENT COMPLEX

	Sheet Index		
Sheet No	Title	09-15-2023 SPA Resubmittal #1 01-11-2024 SPA Resubmittal #2 03-18-2024 SPA Resubmittal #3	
G.001	Cover Sheet	• • •	
A.100	Floor Plan	• •	
A.101	Floor Plan	•	
A.200	Elevations	• •	
A.201	Elevations	• •	
A.400	Building Sections	• •	-
A.900	Renderings	•	
A.901	Renderings	•	

KRIEGER KLATT ARCHITECTS

2120 E. 11 Mile Rd. | Royal Oak, MI 48067 P: 248.414.9270 F: 248.414.9275 www.kriegerklatt.com

Clien


United Hospitality Group 555 S. Old Woodward Ave. Ste. 765 Birmingham, MI 48009

Project:

UHG Flats Ann Arbor 2900 S. Main St. Ann Arbor, 48103

Issued	Description	Е
09-15-2023	SPA Resubmittal #1	B
01-11-2024	SPA Resubmittal #2	B
03-18-2024	SPA Resubmittal #3	B
		_

Seal:

Note:

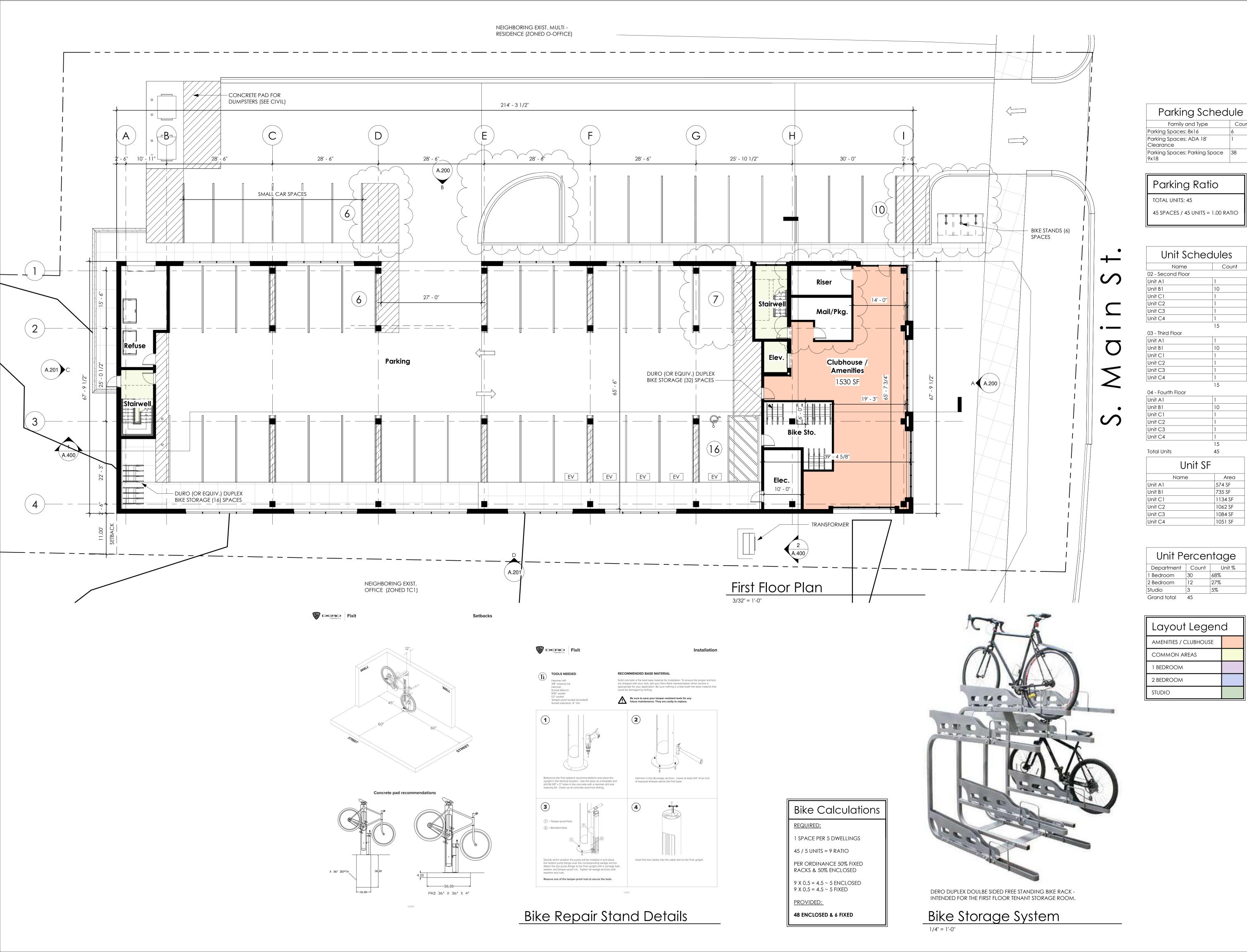
Do not scale drawings. Use calculated dimensions only. Verify existing conditions in field

North Arrow:

Sheet Title:

Cover Sheet

Project Number:


23-077

Scale:

1/4" = 1'-0"

Sheet Number:

G.001

2120 E. 11 Mile Rd. | Royal Oak, MI 48067 P: 248.414.9270 F: 248.414.9275 www.kriegerklatt.com

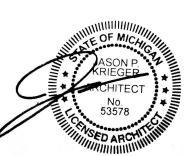
Client:

United Hospitality Group 555 S. Old Woodward Ave. Ste. 765 Birmingham, MI 48009

Project:

UHG Flats Ann Arbor 2900 S. Main St. Ann Arbor, 48103

Count


574 SF 735 SF

1134 SF 1062 SF

1084 SF 1051 SF

Issued	Description	В
09-15-2023	SPA Resubmittal #1	RF
03-18-2024	SPA Resubmittal #3	RI
		+
		-
		\perp
		+
		+
		+
		\perp
		\perp

Seal:

Note:

Do not scale drawings. Use calculated dimensions only. Verify existing conditions in

North Arrow:

Sheet Title:

Floor Plan

Project Number:

23-077

Scale:

As indicated

Sheet Number:

Right (North) Side Elevation

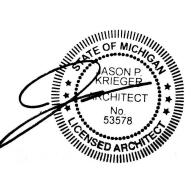
A.100 1/8" = 1'-0"

Front (East) Elevation

A.100 1/8" = 1'-0"

KRIEGER KLATT ARCHITECTS

2120 E. 11 Mile Rd. | Royal Oak, MI 48067 P: 248.414.9270 F: 248.414.9275 www.kriegerklatt.com


<u>Client:</u>

United Hospitality Group 555 S. Old Woodward Ave. Ste. 765 Birmingham, MI 48009

Project:

UHG Flats Ann Arbor 2900 S. Main St. Ann Arbor, 48103

Issued	Description
09-15-2023	SPA Resubmittal #1
01-11-2024	SPA Resubmittal #2
<u> </u>	

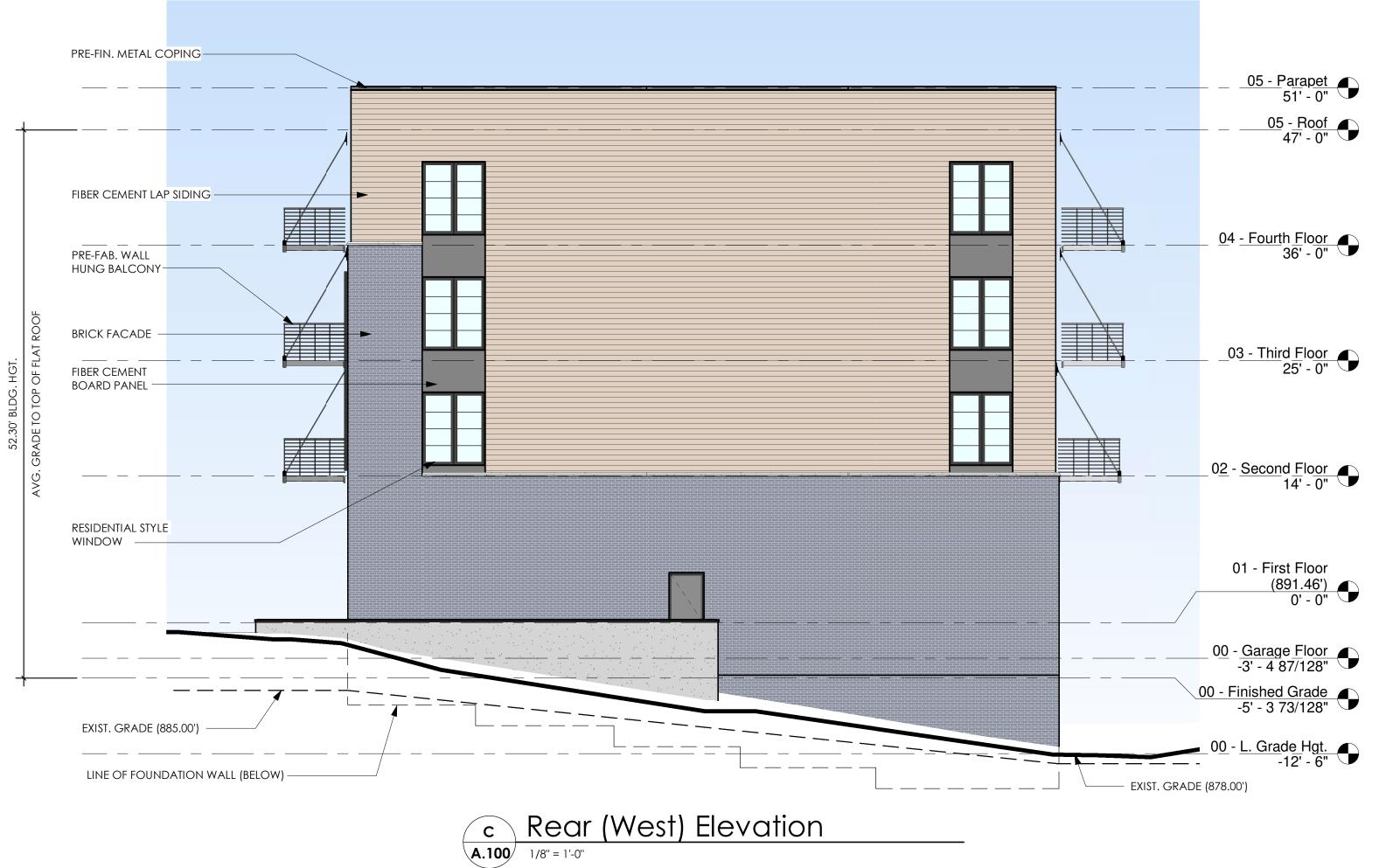
Note:

Do not scale drawings. Use calculated dimensions only. Verify existing conditions in field.

North Arrow:

Sheet Title:

Elevations


Project Number:

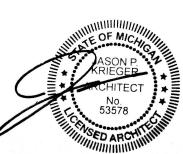
23-077

Scale:

1/8'' = 1'-0''

Sheet Number:

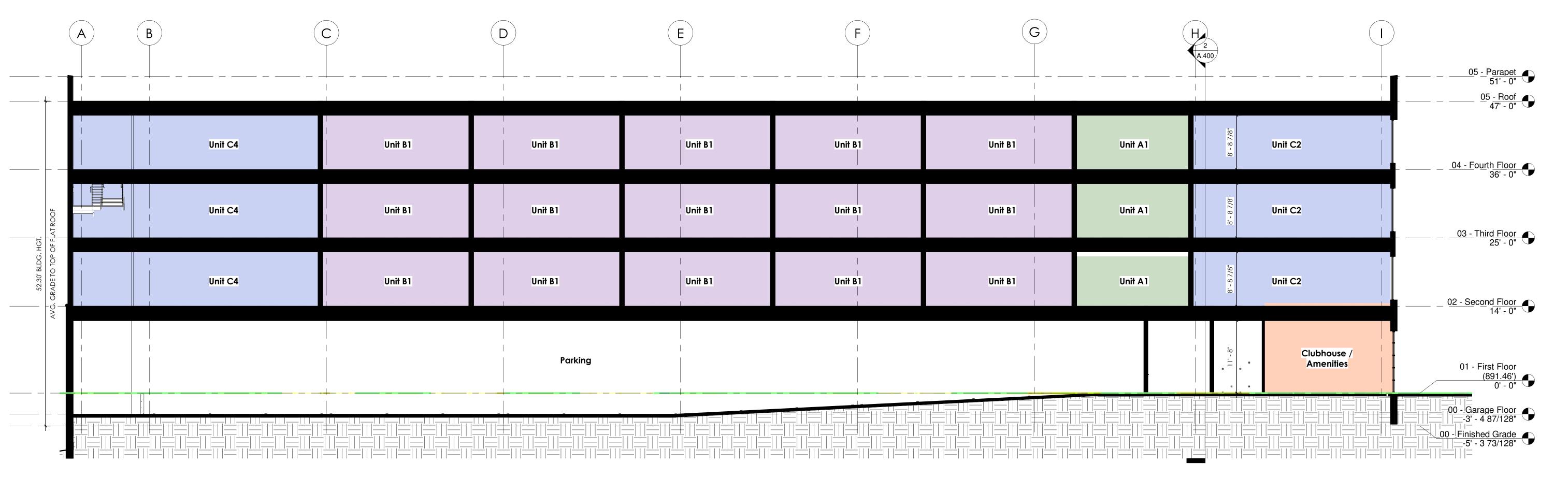
2120 E. 11 Mile Rd. | Royal Oak, MI 48067 P: 248.414.9270 F: 248.414.9275 www.kriegerklatt.com


Client:

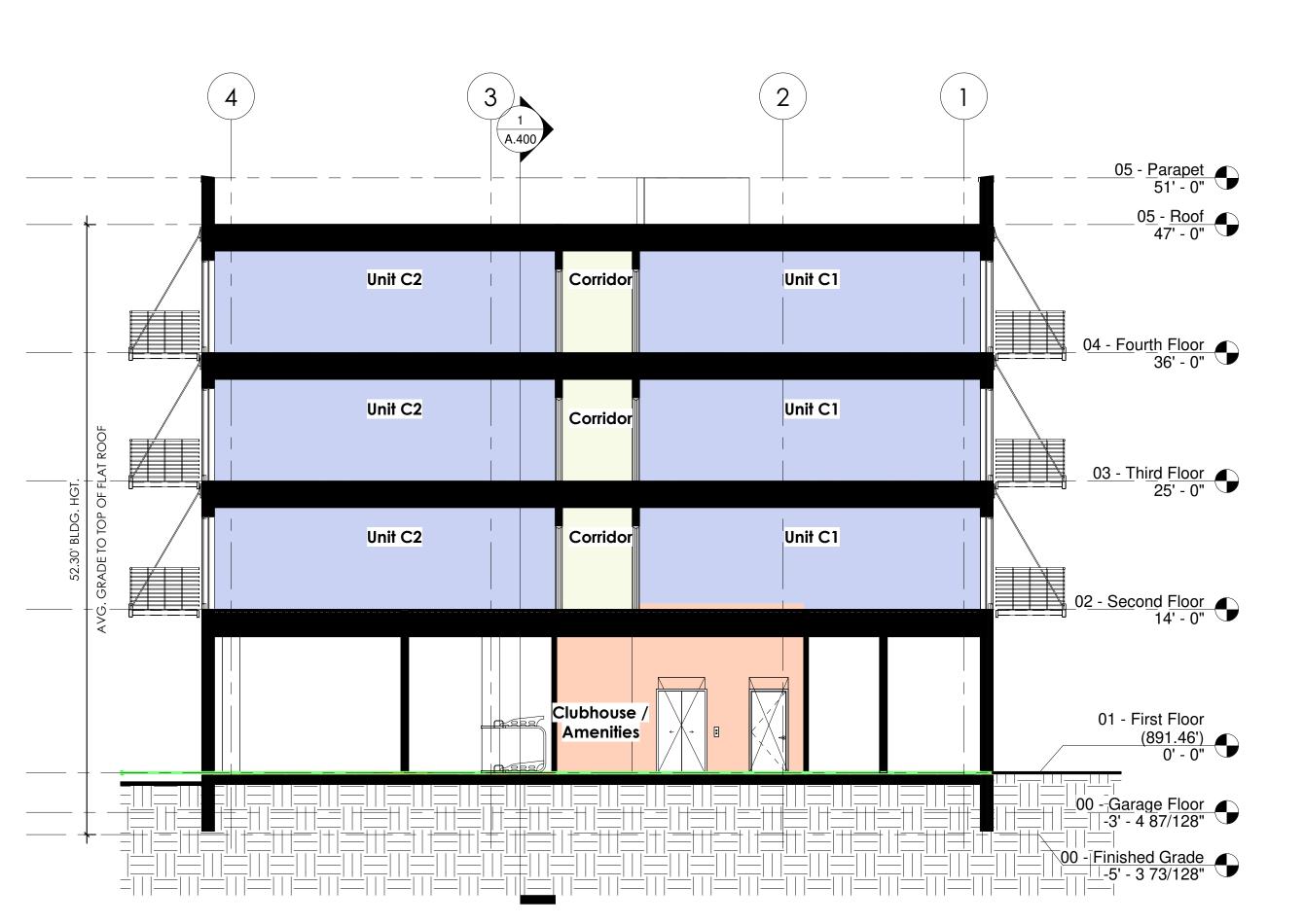
United Hospitality Group 555 S. Old Woodward Ave. Ste. 765 Birmingham, MI 48009

Project:

UHG Flats Ann Arbor 2900 S. Main St. Ann Arbor, 48103


Issued	Description
09-15-2023	SPA Resubmittal #1
01-11-2024	SPA Resubmittal #2
01 11 2021	OT / TTOOGDTTILLET // 2

Do not scale drawings. Use calculated dimensions only.


Verify existing conditions in

Sheet Number:

Building Section (West & East)

A.100 1/8" = 1'-0"

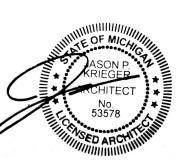
Building Section (North & South)

A.100 1/8" = 1'-0"

KRIEGER KLATT ARCHITECTS

2120 E. 11 Mile Rd. | Royal Oak, MI 48067 P: 248.414.9270 F: 248.414.9275 www.kriegerklatt.com

<u>Client:</u>


United Hospitality Group 555 S. Old Woodward Ave. Ste. 765 Birmingham, MI 48009

Project:

UHG Flats Ann Arbor 2900 S. Main St. Ann Arbor, 48103

Issued	Description	В
09-15-2023	SPA Resubmittal #1	R
01-11-2024	SPA Resubmittal #2	R

Seal:

Note:

Do not scale drawings. Use calculated dimensions only. Verify existing conditions in field.

North Arrow:

Sheet Title:

Building Sections

Project Number:

23-077

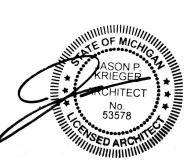
Scale:

1/8'' = 1'-0''

Sheet Number:

2120 E. 11 Mile Rd. | Royal Oak, MI 48067 P: 248.414.9270 F: 248.414.9275 www.kriegerklatt.com

<u>Client:</u>


United Hospitality Group 555 S. Old Woodward Ave. Ste. 765 Birmingham, MI 48009

Project:

UHG Flats Ann Arbor 2900 S. Main St. Ann Arbor, 48103

Issued	Description
09-15-2023	SPA Resubmittal #1
03-13-2023	Of A Hesubilitial #1
	1

Seal:

Note:

Do not scale drawings. Use calculated dimensions only. Verify existing conditions in field.

North Arrow:

Sheet Title:

Renderings

Project Number:

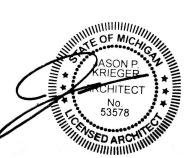
23-077

Scale:

Sheet Number:

2120 E. 11 Mile Rd. | Royal Oak, MI 48067 P: 248.414.9270 F: 248.414.9275 www.kriegerklatt.com

<u>Client:</u>


United Hospitality Group 555 S. Old Woodward Ave. Ste. 765 Birmingham, MI 48009

Project:

UHG Flats Ann Arbor 2900 S. Main St. Ann Arbor, 48103

Issued	Description	В
09-15-2023	SPA Resubmittal #1	R

Seal:

Note:

Do not scale drawings. Use calculated dimensions only. Verify existing conditions in field.

North Arrow:

Sheet Title:

Renderings

Project Number:

23-077

Scale:

Sheet Number: