Solar Microgrid Feasibility Study City of Ann Arbor

Will Arnuk, Krysten Dorfman, Emma Forbes, Ahana Shanbhogue, Nick Soberal, Adam Simon, Susan Fancy, Peter Knoop

Introduction

- City primary objectives:
 - Resiliency of smaller critical assets
 - Reduction of GHG emissions
 - 25% city-wide by 2025 = 568,000 Metric tonnes CO_2e/yr
- Today's presentation:
 - Survey and selection of potential sites
 - Explanation of assumptions and methodology
 - Assessment of production, emissions, cost
 - Significant opportunities for renewable energy
 - Policy concerns
 - Final recommendations and ongoing work

Site Selection

- Total City-owned Sites: 212
- Sites selected for further consideration: 60
- Sites selected for microgrids for resiliency:
 Fire Stations 1, 2, 3, 4
- Sites with significant solar potential:
 - Maynard Parking Structure
 - Landfill
 - Ann Arbor Public Schools

Important Takeaways

- Microgrids for Fire Stations
 - Opportunities to provide resiliency
 - Small emissions reductions
- Solar PV for Landfill and Schools
 - Significant opportunities to reduce city-wide emissions and meet climate goals

Methods

- ArcGIS for site assessment
 - Building area footprints from City of Ann Arbor Data Catalog
- •NREL PVWatts model for solar PV production ratios
 - TMY3 weather data for Ann Arbor
 - Validated with production data from operating solar projects in southeast Michigan
- •NREL System Advisory Model (SAM) for battery storage
- NREL LCA values to estimate total life-cycle emissions reductions

Assumptions

- Solar Arrays
 - 34° tilt, south-facing
 - Standard (15%) efficiency
 - Fixed Rooftop buildings
 - 177 kWh/m²/yr
 - Fixed Open Rack parking lots/structures, open space
 - 179 kWh/m²/yr
- Solar Array O&M Coverage
 - 50% Landfill & Parking
 - 62.5% Rooftop (NREL 2016)

•SAM

- System sized for storage & resiliency cases, 6hr peak load
- Li-ion battery
- System Cost
 - \$1.75/Watt installed
- Battery Cost
 - \$600/kWh installed (Bloomberg)
- Emissions
 - DTE 2016 Fuel Mix
 - NREL 2013 Emission Factors

ENERGYI

Location: Fire Stations 2, 3, 4

Site	Load (MWh/yr)	Solar Generation (MWh/yr)	Avoided Electricity Cost (\$/yr)	PV Cost (\$)	Payback Period (yrs)
2	22.2	39.4	5,910	58,400	10
3	37.7	66.1	9,920	98,100	10
4	40.0	56.8	8,520	84,300	10

• General payback for rooftop solar PV systems: 10 years

Location: Fire Stations 2, 3, 4

Site	Load (MWh/yr)	Solar Generation (MWh/yr)	Avoided Electricity Cost (\$/yr)	PV Cost (\$)	Battery Size (kWh)	Total Cost (\$)	Payback Period (yrs)
2	22.2	39.4	5,910	58,400	26.3	74,200	13
3	37.7	66.1	9,920	98,100	45.2	125,000	13
4	40.0	56.8	8,520	84,300	38.5	107,000	13

• General payback for systems with batteries: 13 years

Sized for 6 hour storage

• Total LCA emissions reductions: 81.4 tonnes CO₂e/year

Battery Operating Scenarios

- Emergency Discharge vs. Load Leveling
 - Financially equal if purchase/sale price are equal
 - Ability to load level benefit if purchase/sell prices diverge
 - Shorter payback period

Location: Fire Station 1

Site	Load (MWh/yr)	Solar Generation (MWh/yr)	Avoided Electricity Cost (\$/yr)	PV Cost (\$)	Payback Period (yrs)
1	377	186	28,000	276,000	10

- High load large battery required
 - Battery Size: 628 kWh
 - Total Cost (Battery Cost): \$653,000 (\$377,000)
 - Payback Period: 23 years
- LCA emissions reduction: 93.4 tonnes CO₂e/year

Locations evaluated for solar potential only; i.e., no battery

- Maynard Parking Structure
- Landfill
- Ann Arbor Public Schools

Location: Maynard Parking Structure

Site	Solar Generation (MWh/yr)	LCA CO ² e Reductions (tonnes/yr)	Avoided Electricity Cost (\$/yr)	PV Cost (\$)	Payback Period (yrs)
Maynard	497	249	74,500	737,000	10

Does not reduce parking capacity

Location: Landfill

Site	Solar Generation (MWh/yr)	LCA CO ² e Reductions (tonnes/yr)	Avoided Electricity Cost (\$/yr)	PV Cost (\$)	Payback Period (yrs)
Landfill	40,600	20,300	6,080,000	59,500,000	10

- Land footprint: 120 acres
 - Solar array area: 56 acres
- Can generate 90% of annual electricity consumption for cityowned properties with solar PV
- Potential for a pilot community solar program
- Partnership with University of Michigan

Location: Ann Arbor Public Schools

Site	Solar Generation (MWh/yr)	LCA CO ² e Reductions (tonnes/yr)	Avoided Electricity Cost (\$/yr)	PV Cost (\$)	Payback Period (yrs)
Huron	4,120	2,060	618,000	6,070,000	10
Pioneer	4,920	2,460	737,000	7,260,000	10
Skyline	3,940	1,980	591,000	5,810,000	10
Clague	1,250	624	187,000	1,840,000	10

- All Ann Arbor Public Schools (32 total):
 - Total rooftop potential: 22,800 MWh/year
 - Total parking lot potential: 12,400 MWh/year
 - Total LCA emissions reductions: 17,600 tonnes CO₂e/year

Significant Opportunities

- Solar plus storage for resiliency of some city-owned sites
- •On-site natural gas generator at any site as an additional non-spinning reserve (for backup power and load leveling)
- •Large-scale solar to grid for parking structures and landfill
 - Landfill represents opportunity for large-scale solar farm
 - Pilot Community Solar projects can be possible with further negotiation
 - Power Purchase Agreements have enabled landfill solar farms in other states
 - Examples: Rochester, NY; Brooklyn, OH
- School partnerships for community solar or microgrid sites

Policy Issues

- •Generic barriers to microgrids and solar PV include:
 - Local zoning laws
 - Lack of tax incentives
 - Lack of solar access laws/easements
- Michigan/Local barriers
 - Vague or restrictive zoning laws, tax status can limit investment in PV and microgrids
 - Regulatory changes may be seen within the next year
 - No state laws directly enabling community solar
- •Conclusion: behind-the-meter or utility-connected?

Policy Considerations

- Public Schools have potential for community solar or microgrids
 - Currently no state laws directly enable community solar
- Landfill is a potential site for community solar or third-party development with Power Purchase Agreement
- Buying or selling power requires interconnection with grid
- DTE's MIGreenPower Plan expresses support for participation in green pricing programs under the present regulatory environment
 - Another option for green power if resiliency is not a main goal

Final Recommendations

- Evaluate additional cases that can contribute to resiliency and/or significant renewable generation
- Explore investment options for large-scale solar farms
 - Potential partnerships between Public Schools, City, and U of M
 - Enable public participation via community solar
 - Explore financing using Power Purchase Agreement
 - Revise zoning laws that are ill-defined or vague to prevent unintended obstacles to solar, microgrid, and battery installations

Suggested Ongoing Work

- •Create a robust project template for use in future assessments
- •Conduct a detailed assessment of school properties
- Further investigation of:
 - Additional generation sources
 - Wheeler Center
 - Water Treatment Plant
 - Conversion of diesel generators to natural gas (decreases CO₂e)
 - Core downtown microgrid of city-owned assets

Acknowledgements

- Chuck Hookham, Consumers Energy
- Mike Bonnell, Black & Veatch
- Wayne Appleyard, Sunstructures Architects
- •Laura Sherman, 5 Lakes Energy
- Dave Konkle, Great Lakes Renewable Energy Association
- •Nate Geisler, City of Ann Arbor
- Emily Drennen, City of Ann Arbor
- Josh Macdonald, City of Ann Arbor
- Department of Earth and Environmental Sciences

References

- (DTE Energy 2017) DTE Jan. 2016 Dec. 2016 Fuel Mix https://www.newlook.dteenergy.com/wps/wcm/connect/dteweb/home/community-and-news/common/environment/fuel-mix
- (NREL 2013) LCA Harmonization Project <u>https://www.nrel.gov/analysis/sustain_lca_results.html</u>
- (NREL 2016) U.S. Solar Photovoltaic System Cost Benchmark: Q1 2016 <u>https://www.nrel.gov/docs/fy16osti/66532.pdf?utm_source=NREL%20Rep</u> <u>ort%20Shows%20U%2ES%2E%20Solar%20Photovoltaic%20Costs%20C</u> <u>ontinuing%20to%20Fall%20in%202016&utm_medium=email&utm_conten</u> <u>t=nrel&utm_campaign=NewsRelease</u>

