100% Renewable Energy Options Analysis

Presentation to Ann Arbor City Council

September 26, 2023

Overview of Work Session

- Scope of Analysis
- Findings from Public Survey
- Findings from Technical Energy Options Analysis
- Preliminary Thoughts
- Open Discussion

Scope of Analysis

Hired a team to:

- Create an energy options analysis that provides details about the various pathways the City could take to achieve its clean energy goals
- Conduct a traditional electric utility municipalization feasibility study
- Conduct a two-phase rate analysis for a municipal Sustainable Energy Utility

Scope of Analysis

Evaluate how well options align with:

- Achieving community-wide carbon neutrality by 2030
- The goal of powering the community with 100% renewable energy
- A²ZERO's three principles of equity, sustainability, and transformation
- The City's adopted Energy Criteria and Principles
- The goal of achieving a just transition for workers in the fossil fuel industry

Public Survey

Technical Energy Options Report

100% Renewable Energy Options Analysis Technical Report

CITY OF ANN ARBOR 100% RENEWABLE ENERGY OPTIONS ANALYSIS

September, 2023

Project Team

Clean Energy & Water Policy Consultants

Potomac

Ann Arbor Energy Profile

- Near future electric loads will change slowly with electrification growth offset by efficiency improvements.
- Longer-term electric loads will grow significantly due to electrification of transportation and buildings.
- Seasonal patterns will shift from summer to winter peaks

Ann Arbor Energy Profile

 Renewable share of Ann Arbor's power supply will increase due to DTE plans and current Ann Arbor initiatives, but will not reach 100%, without further interventions.

- We evaluated numerous other options that we ruled out as unacceptable or impractical for various reasons.
- Options reviewed include:
 - Behind the Meter Solar or Solar + Storage
 - Community Solar
 - Power Purchase Agreements (Traditional and Virtual)
 - National Renewable Energy Credits
 - Virtual Power Reduction Agreements
 - DTE Mi Green Power Program

 To summarize options, we scored each on each of the A²ZERO criteria and principles.

A	ALIGNMENT OF ENERGY OPTIONS with A ² ZERO Energy Criteria						
CRITERION	MI GREEN POWER	(V)PPAs	NATIONAL RECs	COMMUNITY SOLAR	BTM PV& PVS	VPRA	
Reduce GHG	YES	YES	YES	YES	YES	YES	
Additionality	YES	YES	YES	YES	YES	YES	
Equity & Justice	GOOD	FAIR	POOR	POOR		EXCELLENT	

ALIGNMENT OF ENERGY OPTIONS with A ² ZERO Energy Principles						
PRINCIPLE	MI GREEN POWER	(V)PPAs	NATIONAL RECS	COMMUNITY SOLAR	BTM PV& PVS	VPRA
Enhance Resilience	POOR	POOR	POOR	FAIR	GOOD	FAIR
AP Start Local	FAIR	FAIR	POOR	GOOD	EXCELLENT	GOOD
Speed	FAIR	EXCELLENT	EXCELLENT	POOR	GOOD	POOR
Scalable & Transferable	GOOD	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	FAIR
Cost Effective	EXCELLENT	POOR	POOR	POOR	EXCELLENT	POOR

MARGINAL ENERGY COST VS. DTE ENERGY COST 2023 & 2030 Install Years of Energy Options

- We assessed temporal availability of various options.
- Some options only become available by creating a municipal utility
- Some options become unavailable upon creating a municipal utility

*PV/PVS is range of rooftop small commercial and residential

MARGINAL ENERGY COST VS. DTE ENERGY COST 2023 & 2030 Install Years of Energy Options

 Costs of each energy option were projected from various perspectives. Incremental costs to the assumed payer are shown here based on 2023 and projected 2030 conditions.

^{*}PV/PVS is range of rooftop small commercial and residential

Renewable Energy Scenarios

RENEWABLE ENERGY GROWTH 2023-2030 (SEU and DTE+ Scenario)

 Feasible 100% renewable resource portfolios were developed and evaluated for phasein requirements and costs.

Renewable Energy Scenarios

2030 100% RE Three Energy Options Scenarios					
RE Option Load Share	DTE+	SEU & DTE+	SEU & DTE+ & Community Solar		
DTE Grid, AAPS, Dams	38%	38%	38%		
DTE MIGP	9 %	9%	9 %		
DTE MIGP (City)	2 %	2%	2%		
BTM PV / PVS	10%	10%	10%		
Additional BTM (SEU)	0%	8%	8%		
Community Solar	0%	0%	6%		
RECs (VPPA, National RECs)	42 %	34 %	27%		
Total	100%	100%	100%		

 In the context of continuing service from DTE, creating an SEU and/or community solar materially changes the potential 100% renewable energy portfolio.

Renewable Energy Scenarios

City Costs for Three Energy Options Scenarios						
City Cost Categories (\$000s)	DTE+	SEU & DTE+	SEU & DTE+ & Community Solar			
2030 CITY COSTS						
City Costs	\$17,890	\$24,679	\$22,431			
Recoverable Costs	\$2,327	\$12,145	\$12,145			
Non-Recoverable Costs	\$15,563	\$15,563 \$12,534				
2023-2029 CUMULATIVE CITY COSTS						
City Costs	\$17,728	\$49,098	\$48,021			
Recoverable Costs	\$5,745	\$38,787	\$38,787			
Non-Recoverable Costs	\$11,983	\$10,311	\$9,234			

 Different portfolios under different institutional arrangements have different city financial requirements.

Utility Structure Options

- DTE+ : Ann Arbor residents continue to take service from DTE, but Ann Arbor takes steps to achieve 100% renewable electricity credits.
- Sustainable Energy Utility with DTE+ : Ann Arbor creates an SEU to accelerate solar development within the City but all customers are served by DTE as well and Ann Arbor takes additional steps to achieve 100% renewable electricity credits.
- Ann Arbor Municipal Electric Utility: Ann Arbor takes
 possession of all DTE electrical distribution within the city and
 becomes the load-serving entity for all customers within the
 city except University of Michigan.

SEU Projections and Rates

SEU DEPLOYMENT Three Example Scenarios					
SEU DEPLOYMENT DETAILS	1,250 SUBSCRIBERS"	6,250 SUBSCRIBERS	12,500 SUBSCRIBERS		
Portfolio Capacity (MW)	10	50	100		
PV-Only Capacity (MW)	10	25	50		
PVS Capacity (MW)	=	25	50		
Overnight Cost (\$000)	\$ 24,900	\$ 151,900	\$358,980		
1 st Finance Structure	100% Deb†	100% Debt	10-yr PPA (TPO)		
2 nd Finance Structure	_	-	Year 10 – 100% Debt		
SEU Debt Obligations (\$000)	\$ 24,900	\$ 151,900	\$233,000		
Deployment Year(s)	2024-2027	2027-2030	2025**		
PV-Only Starting PPA Rate**	\$0.125/kWh	\$0.135/kWh	\$0.128/kWh		
(i) PVS Starting PPA Rate****	_	\$0.258/kWh	\$0.246/kWh		
Or (ii) PVS Capacity Payments		\$67/month	\$67/month		

* The subscriber count is based on a generalized 8 kW-dc per subscriber. The subscriber count would be higher with residential subscribers that have smaller loads or lower with commercial subscribers that have larger loads. In addition to the information in the above table, our analysis finds that the IRA expands the economic impact of the state policies we modeled.

** 2025 is reference pricing year and deployment would require many years.

*** This is not a complete DTE electricity bill, it is a reference energy portion of the total bill based on typical customer usage.

**** Units are kWh for illustrative purposes. We recommend monthly capacity payments.

- To succeed, the SEU must be cost-competitive with private solar leases. It can be.
- Storage cannot be paid for by avoided energy costs, but provides the customer resilience value
- City financing requirements for the SEU are substantial and can be debt or provided by an equity partner solar developer.

Municipal Utility

YEAR 1 MEU FINANCIAL OUTCOMES Low & High End Estimates

ltem	Low End Estimate	High End Estimate	
Total Annual Sales (kWh)	939,751,000	939,751,000	
Ann Arbor MEU Average Rate (\$/kWh)	\$0.1585	\$0.2417	
Total Ann Arbor MEU Revenue	\$148,993,000	\$227,158,000	
MEU Power Supply Costs (\$)	\$78,000,000	\$78,000,000	
DTE Average Rate in Ann Arbor (\$/kWh)	\$0.1748	\$0.1748	
Total DTE Revenue in Ann Arbor	\$164,269,000	\$164,269,000	
DTE in Ann Arbor Power Supply Costs (\$)	\$85,000,000	\$85,000,000	
Difference between Ann Arbor MEU and DTE Revenue (Savings)	(\$15,276,000)	\$62,890,000	
% Difference	(9%)	38%	

 Phase 1 financial analysis of a potential MEU are uncertain, primarily because the legal standard for compensating DTE will be litigated with few precedents and competing theories.

Municipal Utility

YEAR 20 MEU FINANCIAL OUTCOMES Low & High End Estimates

ltem	Low End Estimate	High End Estimate	
Total Annual Sales (kWh)	1,745,666,000	1,745,666,000	
Ann Arbor MEU Average Rate (\$/kWh)	\$0.1921	\$0.2345	
Total Ann Arbor MEU Revenue	\$354,068,000	\$432,234,000	
MEU Power Supply Costs (\$)	\$215,000,000	\$215,000,000	
DTE Average Rate in Ann Arbor (\$/kWh)	\$0.2261	\$0.2261	
Total DTE Revenue in Ann Arbor	\$416,769,000	\$416,769,000	
DTE in Ann Arbor Power Supply Costs (\$)	\$133,000,000	\$133,000,000	
Difference between Ann Arbor MEU and DTE Revenue (Savings)	(\$62,701,000)	\$15,464,000	
% Difference	(15%)	4%	

• Over time, as financed payments to DTE are amortized, the municipal rates become more favorable. But, these projections do not include investments that Ann Arbor could choose to make to increase reliability.

Municipal Utility

• MEU Year 1 rate is competitive with DTE rate only in low-cost DTE asset acquisition scenario. Reliability improvements and legal/startup costs would drive MEU rate even higher.

Evaluation of Structural Options

ALIGNMENT OF ORGANIZATIONAL STRUCTURES with A ² ZERO Energy Criteria						
CRITERION	DTE	SEU	MEU (>2030)			
Reduce GHG	YES	YES	YI	5		
Additionality	YES	YES	YES			
Equity & Justice	GOOD	EXCELLENT	POOR	FAIR		

ALIGNMENT OF ORGANIZATIONAL STRUCTURES with A ² ZERO Energy Principles						
PRINCIPLE	DTE	SEU	MEU (>2030)			
Enhance Resilience	POOR	FAIR	POOR			
AP Start Local	FAIR	EXCELLENT	FAIR			
Speed	GOOD	FAIR	POOR			
Scalable & Transferable	EXCELLENT	GOOD				
Cost Effective	FAIR	EXCELLENT	POOR	FAIR		

- Speed and transferability of renewable acquisition favor working with DTE.
- SEU brings A²ZERO values to the portfolio that are otherwise limited.
- MEU is likely to be very slow and not transferable. Other A²ZERO criteria are determined by MEU policies, but could be constrained if MEU is expensive.

Recommendations

- Fulfill 100% renewable electricity by "topping off" with national renewable energy credits
- Pursue SEU to accelerate solar development and resilience within the City of Ann Arbor
- Competitively procure high-quality RECs through virtual PPAs, which can include DTE VGP programs.
- Decouple consideration of municipalization from pursuit of 100% renewable electricity, but if interested in pursuing municipalization, acquire renewables that are convertible to municipal utility use.

Next Steps

- RFPs for Renewable Energy Credits
 - Initiate in 2024 for high-quality RECs
 - Initiate in 2028 for national RECs
- Decide whether to pursue Sustainable Energy Utility
 - Decide financial approach
 - Hire utility manager
 - Create Sustainable Energy Utility
- Decide whether to pursue municipalization
 - Phase 2 Study
 - Retain law firm

Preliminary Thoughts

Preliminary Thoughts

<u>General</u>

- Staff need more time to process results and associated models
- Our goals are achievable and all utility structures present pathways to <u>long-term</u> success
- Behind the meter solar and storage needs to be expanded
- Resilience, reliability, and costs should be centered in decision making

<u>Specific</u>

- Study did not look at costs to improve reliability – if considering an MEU, must understand those costs
- Rate-basing energy storage is complicated. Consider alternative ways to deploy energy storage
- Consider "sunshot" initiative to deploy significant quantities of behind the meter solar and storage ... fast
- Significant challenges, uncertainties, and risks with MEU

Discussion